Las Torres de Hanói: Un Viaje Matemático

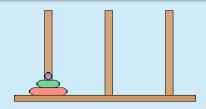
Círculos Matemáticos

Universidad Industrial de Santander

El Misterio del Templo Sagrado

• En un templo ancestral, monjes mueven 64 discos de oro

El Misterio del Templo Sagrado

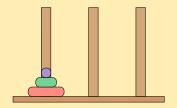

- En un templo ancestral, monjes mueven 64 discos de oro
- Cada movimiento sigue reglas matemáticas perfectas

El Misterio del Templo Sagrado

- En un templo ancestral, monjes mueven 64 discos de oro
- Cada movimiento sigue reglas matemáticas perfectas
- Al completar la tarea... jel universo revelará su secreto!

El Misterio del Templo Sagrado

- En un templo ancestral, monjes mueven 64 discos de oro
- Cada movimiento sigue reglas matemáticas perfectas
- Al completar la tarea... jel universo revelará su secreto!



Un disco a la vez
 La paciencia es virtud

- Un disco a la vez
 La paciencia es virtud
- Nunca grande sobre pequeño El orden define la armonía

- Un disco a la vez La paciencia es virtud
- Nunca grande sobre pequeño El orden define la armonía
- Mover toda la torre Del inicio al destino final

- Un disco a la vez
 La paciencia es virtud
- Nunca grande sobre pequeño El orden define la armonía
- Mover toda la torre Del inicio al destino final

Tu Misión

• Con 3 discos, encuentra la solución óptima

La Verdad Revelada

Tu Misión

- Con 3 discos, encuentra la solución óptima
- Cuenta cada movimiento cuidadosamente

La Verdad Revelada

Tu Misión

- Con 3 discos, encuentra la solución óptima
- Cuenta cada movimiento cuidadosamente
- Tiempo: 4 minutos

La Verdad Revelada

Tu Misión

- Con 3 discos, encuentra la solución óptima
- Cuenta cada movimiento cuidadosamente
- Tiempo: 4 minutos

La Verdad Revelada

M(3) = 7 movimientos exactos

Tu Misión

- Con 3 discos, encuentra la solución óptima
- Cuenta cada movimiento cuidadosamente
- Tiempo: 4 minutos

La Verdad Revelada

M(3) = 7 movimientos exactos

El Arte de la Recursividad

Pensar en Círculos que se Expanden

Resolver un problema usando soluciones de versiones más simples del mismo problema.

La Magia de la Autoreferencia

El Arte de la Recursividad

Pensar en Círculos que se Expanden

Resolver un problema usando soluciones de versiones más simples del mismo problema.

La Magia de la Autoreferencia

$$S(n) = \begin{cases} 1 & \text{si } n = 1\\ n + S(n-1) & \text{si } n > 1 \end{cases}$$

El Arte de la Recursividad

Pensar en Círculos que se Expanden

Resolver un problema usando soluciones de versiones más simples del mismo problema.

La Magia de la Autoreferencia

$$S(n) = \begin{cases} 1 & \text{si } n = 1\\ n + S(n-1) & \text{si } n > 1 \end{cases}$$

•
$$S(4) = 4 + \frac{S(3)}{2} = 4 + 3 + \frac{S(2)}{2} = 4 + 3 + 2 + 1 = 10$$

Secuencia Aritmética	Secuencia Geométrica
Suma constante	Multiplicación constante

Secuencia Aritmética

- Suma constante
- 3, 7, 11, 15, . . .

- Multiplicación constante
- 2, 4, 8, 16, . . .

Secuencia Aritmética

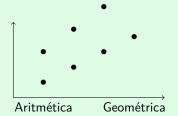
- Suma constante
- 3, 7, 11, 15, . . .
- d = 4

- Multiplicación constante
- 2, 4, 8, 16, . . .
- r = 2

Secuencia Aritmética

- Suma constante
- 3, 7, 11, 15, . . .
- d = 4
- $a_n = 3 + (n-1) \cdot 4$

- Multiplicación constante
- 2, 4, 8, 16, ...
- r = 2
- $a_n = 2 \cdot 2^{n-1}$



Secuencia Aritmética

Suma constante

- 3, 7, 11, 15, . . .
- d = 4
- $a_n = 3 + (n-1) \cdot 4$

- Multiplicación constante
- 2, 4, 8, 16, . . .
- r = 2
- $a_n = 2 \cdot 2^{n-1}$

Discos (n)	Movimientos M(n)
1	1
2	3
3	7
4	
5	
6	
7	
8	

Discos (n)	Movimientos M(n)
1	1
2	3
3	7
4	?
5	
6	
7	
8	

Discos (n)	Movimientos M(n)
1	1
2	3
3	7
4	?
5	?
6	
7	
8	

Discos (n)	Movimientos M(n)
1	1
2	3
3	7
4	?
5	?
6	?
7	
8	

Discos (n)	Movimientos M(n)
1	1
2	3
3	7
4	?
5	?
6	?
7	?
8	

Discos (n)	Movimientos M(n)
1	1
2	3
3	7
4	?
5	?
6	?
7	?
8	?

Sigue las Pistas Recursivas

Discos (n)	Movimientos M(n)
1	1
2	3
3	7
4	?
5	?
6	?
7	?
8	?

Descifra el código en 6 minutos

Sigue las Pistas Recursivas

Discos (n)	Movimientos M(n)
1	1
2	3
3	7
4	?
5	?
6	?
7	?
8	?

Descifra el código en 6 minutos

$$M(1) = 1$$

$$M(1) = 1$$

 $M(2) = 2 \times 1 + 1 = 3$

$$M(1) = 1$$

$$M(2) = 2 \times 1 + 1 = 3$$

$$M(3) = 2 \times 3 + 1 = 7$$

$$M(1) = 1$$

$$M(2) = 2 \times 1 + 1 = 3$$

$$M(3) = 2 \times 3 + 1 = 7$$

$$M(4) = 2 \times 7 + 1 = 15$$

$$M(1) = 1$$

 $M(2) = 2 \times 1 + 1 = 3$
 $M(3) = 2 \times 3 + 1 = 7$
 $M(4) = 2 \times 7 + 1 = 15$
 $M(5) = 2 \times 15 + 1 = 31$

$$M(1) = 1$$

 $M(2) = 2 \times 1 + 1 = 3$
 $M(3) = 2 \times 3 + 1 = 7$
 $M(4) = 2 \times 7 + 1 = 15$
 $M(5) = 2 \times 15 + 1 = 31$
 $M(6) = 2 \times 31 + 1 = 63$

Revelación: La Secuencia Secreta

Cálculo Paso a Paso

$$M(1) = 1$$

$$M(2) = 2 \times 1 + 1 = 3$$

$$M(3) = 2 \times 3 + 1 = 7$$

$$M(4) = 2 \times 7 + 1 = 15$$

$$M(5) = 2 \times 15 + 1 = 31$$

$$M(6) = 2 \times 31 + 1 = 63$$

$$M(7) = 2 \times 63 + 1 = 127$$

Revelación: La Secuencia Secreta

Cálculo Paso a Paso

$$M(1) = 1$$

$$M(2) = 2 \times 1 + 1 = 3$$

$$M(3) = 2 \times 3 + 1 = 7$$

$$M(4) = 2 \times 7 + 1 = 15$$

$$M(5) = 2 \times 15 + 1 = 31$$

$$M(6) = 2 \times 31 + 1 = 63$$

$$M(7) = 2 \times 63 + 1 = 127$$

$$M(8) = 2 \times 127 + 1 = 255$$

n	M(n)	Patrón Oculto
1	1	
2	3	
3	7	
4	15	
5	31	
6	63	
7	127	
8	255	

n	M(n)	Patrón Oculto
1	1	$2^{1}-1$
2	3	
3	7	
4	15	
5	31	
6	63	
7	127	
8	255	

n	M(n)	Patrón Oculto
1	1	$2^{1}-1$
2	3	$2^2 - 1$
3	7	
4	15	
5	31	
6	63	
7	127	
8	255	

n	M(n)	Patrón Oculto
1	1	$2^{1}-1$
2	3	$2^2 - 1$
3	7	$2^3 - 1$
4	15	
5	31	
6	63	
7	127	
8	255	

n	M(n)	Patrón Oculto
1	1	$2^{1}-1$
2	3	$2^2 - 1$
3	7	$2^3 - 1$
4	15	$2^4 - 1$
5	31	
6	63	
7	127	
8	255	

n	M(n)	Patrón Oculto
1	1	$2^{1}-1$
2	3	$2^2 - 1$
3	7	$2^3 - 1$
4	15	$2^4 - 1$
5	31	$2^5 - 1$
6	63	
7	127	
8	255	

n	M(n)	Patrón Oculto
1	1	$2^{1}-1$
2	3	$2^2 - 1$
3	7	$2^3 - 1$
4	15	$2^4 - 1$
5	31	$2^5 - 1$
6	63	$2^{6}-1$
7	127	
8	255	

n	M(n)	Patrón Oculto
1	1	$2^{1}-1$
2	3	$2^2 - 1$
3	7	$2^3 - 1$
4	15	$2^4 - 1$
5	31	$2^5 - 1$
6	63	$2^{6}-1$
7	127	$2^{7}-1$
8	255	

n	M(n)	Patrón Oculto
1	1	$2^{1}-1$
2	3	$2^2 - 1$
3	7	$2^3 - 1$
4	15	$2^4 - 1$
5	31	$2^5 - 1$
6	63	$2^{6}-1$
7	127	$2^{7}-1$
8	255	$2^8 - 1$

n	M(n)	Patrón Oculto
1	1	$2^{1}-1$
2	3	$2^2 - 1$
3	7	$2^3 - 1$
4	15	$2^4 - 1$
5	31	$2^5 - 1$
6	63	$2^{6}-1$
7	127	$2^{7}-1$
8	255	$2^8 - 1$

$$M(n)=2^n-1$$

Relación recursiva

Relación recursiva

$$M(n) = 2 \cdot M(n-1) + 1$$

- **Q** Relación recursiva $M(n) = 2 \cdot M(n-1) + 1$
- 2 ¿Aritmética?

Relación recursiva

$$M(n) = 2 \cdot M(n-1) + 1$$

2 ¿Aritmética?

No: 2, 4, 8, 16... diferencias cambian

Relación recursiva

$$M(n) = 2 \cdot M(n-1) + 1$$

- ¿Aritmética? No: 2, 4, 8, 16... diferencias cambian
- 3 ¿Geométrica?

Relación recursiva

$$M(n) = 2 \cdot M(n-1) + 1$$

2 ¿Aritmética?

No: 2, 4, 8, 16... diferencias cambian

¿Geométrica?

No: 3, 2.33, 2.14... razones cambian

- Relación recursiva $M(n) = 2 \cdot M(n-1) + 1$
- ¿Aritmética? No: 2, 4, 8, 16... diferencias cambian
- ¿Geométrica? No: 3, 2.33, 2.14... razones cambian
- Fórmula recursiva

Relación recursiva

$$M(n) = 2 \cdot M(n-1) + 1$$

2 ¿Aritmética?

No: 2, 4, 8, 16... diferencias cambian

❸ ¿Geométrica?

No: 3, 2.33, 2.14... razones cambian

Fórmula recursiva

$$M(n) = 2 \cdot M(n-1) + 1$$

Relación recursiva

$$M(n) = 2 \cdot M(n-1) + 1$$

- ¿Aritmética? No: 2, 4, 8, 16... diferencias cambian
- ¿Geométrica? No: 3, 2.33, 2.14... razones cambian
- Fórmula recursiva $M(n) = 2 \cdot M(n-1) + 1$
- Fórmula cerrada

Relación recursiva

$$M(n) = 2 \cdot M(n-1) + 1$$

2 ¿Aritmética?

No: 2, 4, 8, 16... diferencias cambian

❸ ¿Geométrica?

No: 3, 2.33, 2.14... razones cambian

Fórmula recursiva

$$M(n) = 2 \cdot M(n-1) + 1$$

Fórmula cerrada

$$M(n)=2^n-1$$

De Recursivo a Cerrado

$$M(n) = 2 \cdot M(n-1) + 1$$

De Recursivo a Cerrado

$$M(n) = 2 \cdot M(n-1) + 1$$

= $2 \cdot (2^{n-1} - 1) + 1$

De Recursivo a Cerrado

$$M(n) = 2 \cdot M(n-1) + 1$$

= 2 \cdot (2^{n-1} - 1) + 1
= 2^n - 2 + 1

De Recursivo a Cerrado

$$M(n) = 2 \cdot M(n-1) + 1$$

$$= 2 \cdot (2^{n-1} - 1) + 1$$

$$= 2^{n} - 2 + 1$$

$$= 2^{n} - 1$$

De Recursivo a Cerrado

$$M(n) = 2 \cdot M(n-1) + 1$$

$$= 2 \cdot (2^{n-1} - 1) + 1$$

$$= 2^{n} - 2 + 1$$

$$= 2^{n} - 1$$

$$M(3) = 2^3 - 1 = 8 - 1 = 7$$
 \checkmark

De Recursivo a Cerrado

$$M(n) = 2 \cdot M(n-1) + 1$$

$$= 2 \cdot (2^{n-1} - 1) + 1$$

$$= 2^{n} - 2 + 1$$

$$= 2^{n} - 1$$

$$M(3) = 2^3 - 1 = 8 - 1 = 7$$

 $M(5) = 2^5 - 1 = 32 - 1 = 31$ \checkmark

De Recursivo a Cerrado

$$M(n) = 2 \cdot M(n-1) + 1$$

$$= 2 \cdot (2^{n-1} - 1) + 1$$

$$= 2^{n} - 2 + 1$$

$$= 2^{n} - 1$$

$$M(3) = 2^3 - 1 = 8 - 1 = 7$$

 $M(5) = 2^5 - 1 = 32 - 1 = 31$
 $M(8) = 2^8 - 1 = 256 - 1 = 255$

$$M(64) = 2^{64} - 1$$

El Número de la Leyenda

$$M(64) = 2^{64} - 1$$

El Número de la Leyenda

18,446,744,073,709,551,615

$$M(64) = 2^{64} - 1$$

El Número de la Leyenda

18,446,744,073,709,551,615

La Revelación Temporal

• 1 movimiento por segundo

$$M(64) = 2^{64} - 1$$

El Número de la Leyenda

18, 446, 744, 073, 709, 551, 615

- 1 movimiento por segundo
- 584 mil millones de años

$$M(64) = 2^{64} - 1$$

El Número de la Leyenda

18, 446, 744, 073, 709, 551, 615

- 1 movimiento por segundo
- 584 mil millones de años
- Edad del universo: 13.8 mil millones

$$M(64) = 2^{64} - 1$$

El Número de la Leyenda

18, 446, 744, 073, 709, 551, 615

- 1 movimiento por segundo
- 584 mil millones de años
- Edad del universo: 13.8 mil millones
- ¡42 edades del cosmos!

Habilidades Desarrolladas

Pensamiento recursivo

Habilidades Desarrolladas

- Pensamiento recursivo
- Identificación de patrones

Habilidades Desarrolladas

- Pensamiento recursivo
- Identificación de patrones
- Demostración matemática

Habilidades Desarrolladas

- Pensamiento recursivo
- Identificación de patrones
- Demostración matemática
- Análisis de secuencias

Habilidades Desarrolladas

- Pensamiento recursivo
- Identificación de patrones
- Demostración matemática
- Análisis de secuencias

Fórmulas Dominadas

• $M(n) = 2 \cdot M(n-1) + 1$

Habilidades Desarrolladas

- Pensamiento recursivo
- Identificación de patrones
- Demostración matemática
- Análisis de secuencias

- $M(n) = 2 \cdot M(n-1) + 1$
- $M(n) = 2^n 1$

Habilidades Desarrolladas

- Pensamiento recursivo
- Identificación de patrones
- Demostración matemática
- Análisis de secuencias

Fórmulas Dominadas

- $M(n) = 2 \cdot M(n-1) + 1$
- $M(n) = 2^n 1$

¡Hemos descifrado el enigma matemático!

¡Misión Matemática Cumplida!

El secreto de las Torres ha sido revelado

¿Preguntas sobre nuestro descubrimiento?