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The model
J.C. da Mota and S. Schecter (Jr. Dyn. Diff. Eq., 18 (3), (2006)):

(a1 + biy)u), + (cru), =dif(u,y) — qlu—v) + Mg

(*) Ye = _Alf(ua Z/)
((a2 + be2)v), + (cv), = daf(v,2) — q(v — ) + AyUps
2t = —Azf(?), Z)
zeR, t>0

u = u(x,t), y = y(x,t) are the temperature and fuel concentration in one
layer and v = v(z,t), z = z(x,t) are the temperature and fuel concentration
in the other layer;

f, g are given by

E E

flu,y) =ye v, flvo,2) =ze v

(reaction rate funcions / Arrhenius’s law);

a;, by, ¢, di, A;; N\, 1=1,2, F and g are nonnegative parameters;

q is the heat transfer coefficient.



Rewriting (*):

Let uy =u, 1y =y, uz =v, yo =z, and apply product rule. Then (x)
writes

O e
i AUy + a; U1 — Uz
% i -1) y
a; + b;y; vaf () + (=1) a; + biy;
C (W) = —Aiyi f(w),

or

{ (u3)e — Liuy = fi(uy, ug, vi)
(i)t = — Ay, f (w;)

where ¢ = 1,2,

Lyu = )\Z u — —ci u
Caitby T ait by
1 )
filu, up, ys) = m((Aibiui +di) f(ui, yi) + (—1)'q(ur — U2)),



Writing the full system (x) as a reaction-diffusion system

Denoting W = (uy,y1, us, y2), the system () can be written as

W, = DW,, + MW, + F(W)

0
0

_ Cc2
az2+bay2

oS O O O
o O O O

where
A c
al +g1y1 0 0 0 T m +l§1y1
0 0 0 0 0
D = A\ , M =
0 0 a2+§2y2 0 0
0 0 0 0 0
and
(b1 Ayuy f(ur, y1) + dif(ur, y1) — q(ur — u2))/(ar + biyr)
F(W) _ _Alf(uhyl)

(baAgus f(ug,y2) + da f(ug, y2) + q(uy — u

— Ao f(uz,y2)

2))/(az + baya)

Notice that the diffusion matrix D is not strictly positive.



Invariant regions

Using the Chueh-Conley-Smoller approach®, we can easily show that the
set
Y={(u,y,v,2);0<u,0<y<1,0<0v,0<2<1}

is an invariant region for the system (x). More precisely:

Theorem. If W = (uy,y1,us,y2) is a smooth solution for (x), in the
domain x € Rt > 0, with an initial condition W (z,0) = Wy(z)such that
Wo(z) € X for all x € R and, if there are positive constants ¢ and e such that
W(x,t) € ¥ for all (z,t) such that |x| > ¢ and 0 <t < ¢, then W(x,t) € &
for all (z,t) € R x [0, 00).

* K. N. Chueh, C. C. Conley, J. A. Smoller, Positively invariant regions
for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (2)

(1977), 373-392.
or Ch.14 in

J. A. Smoller, Shock waves and reaction-diffusion equations, Second
edition, Springer-Verlag, New York (1994).



Reduced system:

Considering the concentrations functions y;, y» as known, we obtain the
system for the unknowns wu; , us:

{ (Uz)t - Lz(uz) = fi(-’%t, Ul,uz)

where

Liu = ! ) (Alu:m: - Ciua?)v

a; + biyi(x,t
(1)

! ((Aibiu; + di) f (ui, yi) + (—1)'q(ur — us)).

i 7t’ b = T N
filz b, uz) a; + biyi(x, 1)

The reaction function F' = (f, f2) is quasi-monotone nondecreasing:

df1 _ q >0
871,2 a + bly o
dfs _ q

aul as + bQZ -

F'is also Lipschitz continuous:
~ ~ q ~
1(U) = AO)] < erllyloclun = @] + U = U,

~ - q ~
£2(U) = f2(U)] < eallyallocluz — a2 + a—2lU - Ul

Besides,

A~

U =(0,0) is a lower solution.

and

U = (o(t), p(t))

is an upper solution, where

p(t) = (Il uo oo + Il v0 oo +8)e™ — 8

and

o = maX{Albl/al, A2b2/a2}7 and ﬂ = max{dl/Albl, dQ/AQbQ} .



The Cauchy problem for the reduced system/Monotone iterative method:

Write U = (uy,u2), LU = U; — (Lyu, Lyv) and consider the Cauchy
problem
LU = F(x,t,U), x € Qp
{ U(z,0) = (uo(z),v0(z)), z€R,

QOr =R x (0,T] (T > 0).

The Monotone Iterative Method!
Define the sequence of functions U*) = (u® v*)) by

LgU® = Fr(x, t,U*D)  in Qp
UM(2,0) = (uo(x),v0(z))  inR",

where Lxy =L+ K and Fx = KU + F and K is the Lipschitz constant of F.

U® is denoted by T™ if the initial iteration U© is given by U O =7
and by U® if the initial iteration U© is given by U© = U.
Monotone property:

0 < Q(k) < Q(k—i—l) < U(kﬂ) < U(k) < 7

The inequalities are understood in the componentwise sense, i.e. if U; =
(u1,v1) and Uy = (ug,ve) then Uy < Us means u; < up and v; < vy, Conse-
quently, there exist the pointwise limits

U(x,t) = lim U(k)(w,t) and U(x,t) = ]}erolog(k)(x,t)

k—o00

for each (z,t) € Qr.

LC.V. Pao: Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York and
London, (1992);

Parabolic systems in unbounded domains I. Existence and dynamics, Jr. Math. An.
Appl. 217 (1998).



The monotone property is obtained using the “Maximum principle” and
the exponential growth at infinity:

U(,1)] < Agexp(b|z]), [a] >> 1,
where Ay and b are positive constants independent of || >> 1 and ¢t € [0, 7.

i.e. Phragman-Lindelof principle™:

Let £ be a parabolic parabolic operator,

L=0—Y aj0sa, + Y bi0a +c.
j=1

7,k=1

If Lw>0inR"x (0,7), w(z,0) >0in R" and there exists a § > 0 such
that .
lim sup [e"m min{w(z,t);0 <t <T, |z| = R}]

R—o00

then w(x,t) >0 in R x (0,7).

* e.g. Protter, M. H. and Weinberger, H. F., Mazimum principles in differ-
ential equation, Springer-Verlang (1984).



Theorem. Let uy and vy be nonnegative continuous and bounded functions
defined on R. Then, given any T > 0 and nonnegative and bounded functions

y, z in C(Qr) N C%Y(Qq), where Qp = R x (0,T], the sequences U(k), U
converge to the unique solution U = (u,v) of the above Cauchy problem in
C(Qr) N C*Y(Qr) satisfying the exponential growth at infinity and

0<u, v<yp

in Qr, where @ is the upper solution defined above.
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The Cauchy problem for the full system

The Cauchy problem:

( )\Z
(ui)y — m(ui)xx +

= Y] (U; —1)
o yif (ui) + (=1)'q
(yz‘)t = _Az‘yif(ui)a
( (ui(,0), 5i(2,0)) = (uio(2), yi0(2)),
where u; o and y; o are given functions, ¢ > 0, z € R, a;,b;,¢;,d;, Ai, \i, E,
1 = 1,2, are nonnegative constants and

f(u):{ e, seu >0 ‘ 3)

0, seu <0

Uy — U2

a; + biy;’ @)

We show existence of a local solution (local in time) and global solution
if the initial temperatures are in L, for some 1 < p < oo.

Our proof is strongly based on fundamental solution properties.

11



The system can be seen in the variables uy, us only. In fact, substituting

yi(l', t) = Yi0 (x)e_Ai fot fui(z,s))ds

in the first equation, equation for u;, we see that the system is of the following
form:

{ (ui)e — alz, fy flui(z, $))ds) (w),, +b(z, [y flui(z,s))ds) (ui),
= Fy(z,u1, us, fo fui(z, s))ds)

12



Fundamental solution:

Consider the equation

ou 0%u ou
Lu= i a(x, t)@ + b(z, t)% +c(z,t)u =0, (4)

where a, b and ¢ are functions defined in Q7 = {(z,t); x € R, 0 <t < T}.
We assume that

(A1) L is uniformly parabolic in 7, i.e., there are positive constants Ag
and \; such that

Ao < a(z,t) < A, forall (z,t) € Qr, (5)

(A2) The coefficients of L are bounded and Hélder continuous functions in

Qp.

Definition 1 A fundamental solution of Lu = 0 is a function I'(x,t,£,T),

defined for all (x,t) € Qp, (&, 7) € Qp, t > T, which satisfies the following
conditions:

1. LT =0 as a function of (x,t), for each fized (&, 7) € Q.

2. For all real and continuous function f(x), if |f(z)| < Keh**, h < ﬁ,
then

t—T1 R

13



The method, called parametriz method, to prove existence of the funda-
mental solution of (4) is due to E. E. Levi (Sulle equazioni totalmente ellitche
ale derivate parziale, Rend. del Circ. Mat. Palermo, 24, (1907), 275-317.)

The method is detailed in the books:

A. Friedman Partial differential equations of parabolic type, Dover Publica-

tions, New York, (2008).

O. A. Ladyzenskaja, V. A. Solonnikov e N. N. Ural’ceva Linear and quasi-

linear equations of parabolic type.

The fundamental solution is given by

Dot 6.7) = Z(x — €, €,4.7) +/ /RZ(:v oyt )y, £, 0, 7)dydo . (6)

where for (z,t), (§,7) € Qr, 7 < t,

1 __ (z=9)?
e Aal&m-m)
(4ma(E,7)(t —7))2

Z(x,t,&,1) =

qb(xv t7 57 T) = Z(—l)m(LZ)m(ZE, t? 57 T)7

m=1

with
(LZ>m+1('r’ ta 5’ T) = / /R[LZ(JI, tv Y, U)] (LZ>m<ya g, 5’ T)dyda,

where (L2)1 = LZ = (a(6,7) — a(a, ) 55 + b3 + cZ.

14
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Representation formula

Consider the Cauchy problem

{ Lu(x,t) = f(x,t), em Rx(0,7T], (10)

u(z,0) = ug(x), em R,

where L is defined as in (4) with Hoder continuous coefficients and | f(x, t)|, |ug(x)| <
K eh$2, where K and h are positive constants, with h < ﬁ.
The following theorem gives a representation formula for the solution of

the Cauchy Problem (10) using the fundamental solution.
Theorem 1 If f(x,t) and ug(z) are continuous functions in Qp and R, re-

spectively, and, furthermore, f(x,t) is locally Hélder continuous in x (expo-
nent ), uniformly with respect to t, then the function

u(a:,t):éf(w,f,t,())uo(g)dg%—/o /Rf‘(x,f,t,T)f(f,T)dde

is the unique solution of the Cauchy problem (10) in
C>(R x (0,T]) N C(R x [0,T)), with |u(zx,t)| < " for positive k.
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Continuous dependence on the coefficients:

Definition 2 Let R, \ and « be positive real numbers, with 0 < a < 1 and
A < R. We define a vector space for coefficients of L by

B(R, )\, @) = {(a(z,t),b(x,t),c(x,1)) € (Ca,a(Qr))* : A <a, and a,b,c<
R} and for v,v € B(R, \, ), we define

_ —1€2 71152 —192
o~ Blla g = maz{la—all%%, b~ 5% e — 25 }.

To emphasize the dependence of the L operator on the coefficients (a, b, ¢) =
v, we write

_ Ou 0*u du
Lyju= i a(x, t)@ + b(a:,t)% +c(z,t)u=0, (11)

with corresponding fundamental solution

t
F[v] (iU,t,f,T) = Z[v] ($_£7€7t77—)+/ /RZ[U} (:C—y,y,t,a)(;ﬁ[v} (yaéao-z T)dydo- (12)

Lemma 1 Given v, € B(R, A\, «), we have that

s s _ 1 _o@=9?
(D3 Z1) — D3 Zg) (x — £,6,4,7)| < Klla = @ljao———gze © 7,

(t—7)%
for s =0,1,2, where C' < ﬁ 15 a positive constant and K is also a positive
constant depending only on .

Lemma 2 Let ¢y and ¢p be defined in (6), with v,v € B(R, A\, o) and
0 < B < 1. Then, we have the following inequalities,

1 (z—8)?
O

(1 = G (@ &8 7] < Kllo = Tllag ——= (13)

and

|(¢[v} (ZL’, 6, t7 T) - gb[i} (:E7 5, ta T)) - (gb[v} (ya ga t7 7—) - gb[ﬂ (y7 ga tv T))| (14)

7l - 1 _o==9? _ow=9?
SKHU—U”Z%W—ma(l h) s (€ O e ),

(t—7) 2

where C' < ﬁ and K = K(R,\,a,T) is continuous with respect to T.

16



Lemma 3 Let v,v € B(R, A\, ), 0 < 3 < 1, T’ and I'yy fundamental
solutions of Ly, = 0 and Ly, = 0, respectively. Then,

K|v—="7lae ,e-?
(Dil) — Dol (2, 6,8, 7)| £ ———57e = =, (15)
(t—r7)>2
< K([lv=0la,g + [lv =2 ,g)(mslz—Ta(m)z—Ta + (t_T)%)e and
(0L 1) — Ol w)) (¢, €, 7)) (17)
< - a —7? a L 1 _C(It:i)z
< K([|lv=la,g + [lv =2 ,5)(@75'2—%@4)2—% + (t_T)%)e ,

where s = 0,1, C' < ﬁ% and K = K(R, \, o, T') is continuous with respects to
T.

Theorem 2 Let be f,f € CL%(QT), T > 0 and ug,ug Lipschitz continuous
and bounded real functions. If u and u are, respectively, solutions of

Lyu=f, Rx(0,T], u(z,0)=uy, R, (18)

and _
L[E}u = f7 X (OvT]7 U(CL’, 0) = Up R? (19>

R
where v = (a,b,0),7 = (@,b,0) € B(R,\, 1), then
lu =l < K(flv =2l 1 + v - 5||f,% + [luo — Woll1+ (20)
T3 max{[|flly 3, L = Fllu g+ llo =lly g + o =117 1),
where K = K(R, N\, T ||uo||1) is continuous with respect to T

Corollary 1 If u is a solution of (18), then
1
ol < K lolly g el + o+ T3 masx{ g, 01y + ol +
lol?,)),
where K = K(R,\, T, |Juo||1)-
Lemma 4 Let consider v,,v € B(R,\,«) and their respective fundamental

solutions, Iy, and I'y). If v, converges pointwise to v, then I'y,,) converges
also pointwise to I'y,.

17



Local solution:

Let A be the operator defined by
A(U1, Ug) = (wl, 'lUQ), (21)

where its domain is given in Lemma 5 below, and (wq, ws) is the solution of
the problem

Loy (wi) = Fi(ur,ug,y5), R x (0,7
(Wi)e = —Agyif (i), R x(0,T] (22)
(wi(,0), yi(2,0)) = (uio(x),yio(z)), R.
Here, u;o and y; o > 0 are Lipschitz and bounded, f(u) is defined by (3),
vilus) = Gty gy 0) and

Ditditli T A e _1)i
a; + b;y; vif () +(=1)'q

U — U2
Fiy(uy,ug, yi) = P

Lemma 5 Let 0 < T < 1, K; = K(max{2:, %}, MT”OO, 1, |uipl1) @ con-

a;’ a;

stant given by Corollary (1), v; = Q(max{i—:,;:—z'_} + max {2, 9biy) M, >

Ki(@illyiolli + willyioll)” + luiolh) and ¥ = {(u1,u2) € Cy 1 (Qr) : [luily1 <
M;}. Then, if T is sufficiently small the operator A : ¥ — 3 is well defined.

We proof these results using the integral representation for the solution
given in Theorem 1 and the estimates in the last section.
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Theorem 3 If T is sufficiently small the Cauchy problem (2) has a solution
in C*(R x (0,7]) N CL%(QT).

Iterative scheme:

n n n—1 n—1
(0™, ™) = A", D)

wy 7, Wy 1 , Wo

By Arzela-Ascoli’s theorem, there exists a continuous function (uy, us) in
R x [0, 7] and a subsequence of (w%n), wén)) such that (w%"), wén)) converges
to (u1,us) uniformely in compacts sets.
By the representation formula, we have

w" (z, 1) = (23)
f F[Ui(wgn))] (ZE, &ty O)U%O(g)dg—f—fot f P[Ul(wgn))] (I, &t T)E(U}Yb), wé”)) yl(wl(")»(g, T)dde,
where
(n) Ai Ci
(% (’LUZ ) - )y’ (n)y’ 0 (24>
and .
yi(w™) (2, ) = yig(x)e A Jo S mads, (25)
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Global solution

Theorem. Let u;p, © = 1,2, be bounded lipschitzian functions on R and
in LP(R) for some p € (1,00). Assume also y;o € C* N L> and y;, € L.
Then for any T > 0 there exists a solution of (2) in

C*Y(R x (0,T]) N CL%(R x [0, T]) N L>=([0,T]; LP(R)).

On the proof:

e We define [0,7*) as the maximal interval for the local solution U =
(u1,us) and show that there exists the limit lim; 7« U(-,¢) in the
above space.

e To show that U is bounded in R x [0,7™) we use the upper solution
mentioned earlier.
e To bound U, we use the tecnique of

Oleinik, O. A. and Kruzhkov, S. N. Quasilinear second order parabolic
equations with many independent varible, Russ. Math. Surv., 16, no.5,
(1961), 105-146.
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