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Overview:

• The model

• Monotone Iterative Method

• Fundamental solution

• Cauchy problem for the full system
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The model

J.C. da Mota and S. Schecter (Jr. Dyn. Di↵. Eq., 18 (3), (2006)):

(⇤)

8
>><

>>:

�
(a1 + b1y)u

�
t

+ (c1u)
x

= d1f(u, y)� q(u� v) + �1uxx

y

t

= �A1f(u, y)�
(a2 + b2z)v

�
t

+ (c2v)
x

= d2f(v, z)� q(v � u) + �2vxx

z

t

= �A2f(v, z)

x 2 R, t > 0

u = u(x, t), y = y(x, t) are the temperature and fuel concentration in one
layer and v = v(x, t), z = z(x, t) are the temperature and fuel concentration
in the other layer;
f, g are given by

f(u, y) = y e

� Ẽ

u

, f(v, z) = z e

� Ẽ

v

(reaction rate funcions / Arrhenius’s law);

a

i

, b

i

, c

i

, d

i

, A

i

, �

i

, i = 1, 2, Ẽ and q are nonnegative parameters;

q is the heat transfer coe�cient.
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Rewriting (⇤):

Let u1 = u, y1 = y, u2 = v, y2 = z, and apply product rule. Then (⇤)
writes
8
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>>>>>:
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xx
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x

=
b

i

A

i
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i

+ d

i

a

i

+ b

i

y

i

y

i

f(u
i

) + (�1)iq
u1 � u2

a

i

+ b

i

y

i

,

(y
i

)
t

= �A

i

y

i

f(u
i

),

or

⇢
(u

i

)
t

� L

i

u

i

= f

i

(u1, u2, yi)
(y

i

)
t

= �A

i

y

i

f(u
i

)

where i = 1, 2,

L

i

u =
�

i

a

i

+ b

i

y

i

u

xx

� c

i

a

i
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i
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i

u

x

,

f

i

(u1, u2, yi) =
1

a

i

+ b

i

y

i

�
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i

b

i

u

i

+ d

i

)f(u
i

, y

i

) + (�1)iq(u1 � u2)
�
,
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Writing the full system (⇤) as a reaction-di↵usion system

Denoting W = (u1, y1, u2, y2), the system (⇤) can be written as

W

t

= DW

xx

+MW

x

+ F (W )

where

D =

0

BB@

�1
a1+b1y1

0 0 0
0 0 0 0
0 0 �2

a2+b2y2
0

0 0 0 0

1

CCA , M =

0

BB@

� c1
a1+b1y1

0 0 0
0 0 0 0
0 0 � c2

a2+b2y2
0

0 0 0 0

1

CCA

and

F (W ) =

0

BB@

(b1A1u1f(u1, y1) + d1f(u1, y1)� q(u1 � u2))/(a1 + b1y1)
�A1f(u1, y1)

(b2A2u2f(u2, y2) + d2f(u2, y2) + q(u1 � u2))/(a2 + b2y2)
�A2f(u2, y2)

1

CCA .

Notice that the di↵usion matrix D is not strictly positive.
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Invariant regions

Using the Chueh-Conley-Smoller approach⇤, we can easily show that the
set

⌃ = {(u, y, v, z) ; 0  u, 0  y  1, 0  v, 0  z  1 }

is an invariant region for the system (⇤). More precisely:

Theorem. If W = (u1, y1, u2, y2) is a smooth solution for (⇤), in the
domain x 2 R, t > 0, with an initial condition W (x, 0) = W0(x)such that
W0(x) 2 ⌃ for all x 2 R and, if there are positive constants c and ✏ such that
W (x, t) 2 ⌃ for all (x, t) such that |x| > c and 0 < t < ✏, then W (x, t) 2 ⌃
for all (x, t) 2 R⇥ [0,1).

⇤ K. N. Chueh, C. C. Conley, J. A. Smoller, Positively invariant regions
for systems of nonlinear di↵usion equations, Indiana Univ. Math. J. 26 (2)
(1977), 373–392.

or Ch.14 in

J. A. Smoller, Shock waves and reaction-di↵usion equations, Second
edition, Springer-Verlag, New York (1994).
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Reduced system:

Considering the concentrations functions y1, y2 as known, we obtain the
system for the unknowns u1 , u2:

�
(u

i

)
t

� L

i

(u
i

) = f

i

(x, t, u1, u2)

where

L

i

u =
1

a

i

+ b

i

y

i

(x, t)

�
�1uxx

� c

i

u

x

�
,

(1)

f

i

(x, t, u1, u2) =
1

a

i

+ b

i

y

i

(x, t)

�
(A

i

b

i

u

i

+ d

i

)f(u
i

, y

i

) + (�1)iq(u1 � u2)
�
.

The reaction function F = (f1, f2) is quasi-monotone nondecreasing:

@f1

@u2
=

q

a1 + b1y
� 0

@f2

@u1
=

q

a2 + b2z
� 0.

F is also Lipschitz continuous:

|f1(U)� f1(Ũ)|  c1ky1k1|u1 � ũ2|+
q

a1
|U � Ũ |,

|f2(U)� f2(Ũ)|  c2ky2k1|u2 � ũ2|+
q

a2
|U � Ũ |.

Besides,

Û = (0, 0) is a lower solution.

and
Ũ = ('(t),'(t))

is an upper solution, where

'(t) =
�
k u0 k1 + k v0 k1 +�

�
e

↵t � �

and

↵ = max
�
A1b1/a1, A2b2/a2

 
, and � = max

�
d1/A1b1, d2/A2b2

 
.
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The Cauchy problem for the reduced system/Monotone iterative method:

Write U = (u1, u2), LU = U

t

� (L1u, L2v) and consider the Cauchy
problem ⇢

LU = F (x, t, U), x 2 ⌦
T

U(x, 0) =
�
u0(x), v0(x)

�
, x 2 R,

⌦
T

:= R⇥ (0, T ] (T > 0).

The Monotone Iterative Method1

Define the sequence of functions U (k) = (u(k)
, v

(k)) by

⇢
L

K

U

(k) = F

K

(x, t, U (k�1)) in ⌦
T

U

(k)(x, 0) = (u0(x), v0(x)) in Rn

,

where L
K

= L+K and F

K

⌘ KU +F and K is the Lipschitz constant of F .

U

(k) is denoted by U

(k)
if the initial iteration U

(0) is given by U

(0) = Ũ

and by U

(k) if the initial iteration U

(0) is given by U

(0) = Û .
Monotone property:

Û  U

(k)  U

(k+1)  U

(k+1)  U

(k)  Ũ

The inequalities are understood in the componentwise sense, i.e. if U1 =
(u1, v1) and U2 = (u2, v2) then U1  U2 means u1  u2 and v1  v2. Conse-
quently, there exist the pointwise limits

U(x, t) ⌘ lim
k!1

U

(k)
(x, t) and U(x, t) ⌘ lim

k!1
U

(k)(x, t)

for each (x, t) 2 ⌦
T

.

1
C.V. Pao: Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York and

London, (1992);

Parabolic systems in unbounded domains I. Existence and dynamics, Jr. Math. An.

Appl. 217 (1998).
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The monotone property is obtained using the “Maximum principle” and
the exponential growth at infinity:

|Ũ(x, t)|  A0 exp(b|x|2), |x| >> 1,

where A0 and b are positive constants independent of |x| >> 1 and t 2 [0, T ].

i.e. Phragman-Lindelöf principle⇤:

Let L be a parabolic parabolic operator,

L = @

t

�
nX

j,k=1

a

jk

@

x

j

x

k

+
nX

j=1

b

j

@

x

j

+ c.

If Lw � 0 in Rn ⇥ (0, T ), w(x, 0) � 0 in Rn and there exists a � > 0 such
that

lim sup
R!1

h
e��R

2
min{w(x, t); 0  t  T, |x| = R}

i

then w(x, t) � 0 in Rn ⇥ (0, T ).

⇤ e.g. Protter, M. H. and Weinberger, H. F., Maximum principles in di↵er-
ential equation, Springer-Verlang (1984).
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Theorem. Let u0 and v0 be nonnegative continuous and bounded functions
defined on R. Then, given any T > 0 and nonnegative and bounded functions

y, z in C(⌦
T

) \ C

0,1(⌦
T

), where ⌦
T

⌘ R ⇥ (0, T ], the sequences U

(k)
, U (k)

converge to the unique solution U ⌘ (u, v) of the above Cauchy problem in
C(⌦

T

) \ C

2,1(⌦
T

) satisfying the exponential growth at infinity and

0  u, v  '

in ⌦
T

, where ' is the upper solution defined above.

10



The Cauchy problem for the full system

The Cauchy problem:

8
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>>>>>:
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xx
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i
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i
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i
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=

=
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i
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i
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i
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i
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i
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i
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i

y

i

f(u
i

) + (�1)iq
u1 � u2

a

i

+ b

i

y

i

,

(y
i

)
t

= �A

i

y

i

f(u
i

),
(u

i

(x, 0), y
i

(x, 0)) = (u
i,0(x), yi,0(x)),

(2)

where u

i,0 and y

i,0 are given functions, t > 0, x 2 R, a
i

, b

i

, c

i

, d

i

, A

i

,�

i

, E,
i = 1, 2, are nonnegative constants and

f(u) =

⇢
e

�E

u

, se u > 0
0, se u  0

. (3)

We show existence of a local solution (local in time) and global solution
if the initial temperatures are in L

p, for some 1 < p < 1.

Our proof is strongly based on fundamental solution properties.
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The system can be seen in the variables u1, u2 only. In fact, substituting

y

i

(x, t) = y

i,0(x)e
�A

i

R
t

0 f(u
i

(x,s))ds

in the first equation, equation for u
i

, we see that the system is of the following
form:
⇢

(u
i

)
t

� a(x,
R

t

0 f(ui

(x, s))ds) (u
i

)
xx

+ b(x,
R
t

0 f(ui

(x, s))ds) (u
i

)
x

= F

i

(x, u1, u2,
R

t

0 f(ui

(x, s))ds)
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Fundamental solution:

Consider the equation

Lu ⌘ @u

@t

� a(x, t)
@

2
u

@x

2
+ b(x, t)

@u

@x

+ c(x, t)u = 0 , (4)

where a, b and c are functions defined in ⌦
T

= {(x, t); x 2 R, 0  t  T}.
We assume that
(A1) L is uniformly parabolic in ⌦

T

, i.e., there are positive constants �0

and �1 such that

�0  a(x, t)  �1, for all (x, t) 2 ⌦
T

, (5)

(A2) The coe�cients of L are bounded and Hölder continuous functions in
⌦

T

.

Definition 1 A fundamental solution of Lu = 0 is a function �(x, t, ⇠, ⌧),
defined for all (x, t) 2 ⌦

T

, (⇠, ⌧) 2 ⌦
T

, t > ⌧ , which satisfies the following
conditions:

1. L� = 0 as a function of (x, t), for each fixed (⇠, ⌧) 2 ⌦
T

.

2. For all real and continuous function f(x), if |f(x)|  Ke

hx

2
, h  1

4�1T
,

then

lim
t!⌧

Z

R
�(x, t, ⇠, ⌧)f(⇠)d⇠ = f(x).
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The method, called parametrix method, to prove existence of the funda-
mental solution of (4) is due to E. E. Levi (Sulle equazioni totalmente ellitche
ale derivate parziale, Rend. del Circ. Mat. Palermo, 24, (1907), 275–317.)

The method is detailed in the books:

A. Friedman Partial di↵erential equations of parabolic type, Dover Publica-
tions, New York, (2008).

O. A. Ladyzenskaja, V. A. Solonnikov e N. N. Ural’ceva Linear and quasi-
linear equations of parabolic type.

The fundamental solution is given by

�(x, t, ⇠, ⌧) = Z(x� ⇠, ⇠, t, ⌧) +

Z
t

⌧

Z

R
Z(x� y, y, t, �)�(y, ⇠, �, ⌧)dyd� , (6)

where for (x, t), (⇠, ⌧) 2 ⌦
T

, ⌧ < t,

Z(x, t, ⇠, ⌧) =
1

(4⇡a(⇠, ⌧)(t� ⌧))
1
2

e

� (x�⇠)2

4a(⇠,⌧)(t�⌧)
, (7)

�(x, t, ⇠, ⌧) =
1X

m=1

(�1)m(LZ)
m

(x, t, ⇠, ⌧), (8)

with

(LZ)
m+1(x, t, ⇠, ⌧) =

Z
t

⌧

Z

R
[LZ(x, t, y, �)](LZ)

m

(y, �, ⇠, ⌧)dyd�, (9)

where (LZ)1 = LZ = (a(⇠, ⌧)� a(x, t))@
2
Z

@x

2 + b

@Z

@x

+ cZ.
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Representation formula

Consider the Cauchy problem
⇢

Lu(x, t) = f(x, t), em R⇥ (0, T ],
u(x, 0) = u0(x), em R, (10)

where L is defined as in (4) with Höder continuous coe�cients and |f(x, t)|, |u0(x)| 
Ke

hx

2
, where K and h are positive constants, with h <

1
4�1T

.
The following theorem gives a representation formula for the solution of

the Cauchy Problem (10) using the fundamental solution.

Theorem 1 If f(x, t) and u0(x) are continuous functions in ⌦
T

and R, re-
spectively, and, furthermore, f(x, t) is locally Hölder continuous in x (expo-
nent ↵), uniformly with respect to t, then the function

u(x, t) =

Z

R
�(x, ⇠, t, 0)u0(⇠)d⇠ +

Z
t

0

Z

R
�(x, ⇠, t, ⌧)f(⇠, ⌧)d⇠d⌧

is the unique solution of the Cauchy problem (10) in
C

2,1(R⇥ (0, T ]) \ C(R⇥ [0, T ]), with |u(x, t)|  e

kx

2
for positive k.
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Continuous dependence on the coe�cients:

Definition 2 Let R, � and ↵ be positive real numbers, with 0 < ↵  1 and
� < R. We define a vector space for coe�cients of L by
B(R,�,↵) = {(a(x, t), b(x, t), c(x, t)) 2 (C

↵,

↵

2
(⌦

T

))3 : � < a, and a, b, c <

R} and for v, v 2 B(R,�,↵), we define
kv � vk

↵,

↵

2
= max{ka� ak⌦T

↵,

↵

2
, kb� bk⌦T

↵,

↵

2
, kc� ck⌦T

↵,

↵

2
}.

To emphasize the dependence of the L operator on the coe�cients (a, b, c) ⌘
v, we write

L[v]u ⌘ @u

@t

� a(x, t)
@

2
u

@x

2
+ b(x, t)

@u

@x

+ c(x, t)u = 0 , (11)

with corresponding fundamental solution

�[v](x, t, ⇠, ⌧) = Z[v](x�⇠, ⇠, t, ⌧)+

Z
t

⌧

Z

R
Z[v](x�y, y, t,�)�[v](y, ⇠,�, ⌧)dyd�. (12)

Lemma 1 Given v, v 2 B(R,�,↵), we have that

|(Ds

x

Z[v] �D

s

x

Z[v])(x� ⇠, ⇠, t, ⌧)|  Kka� ak1
1

(t� ⌧)
s+1
2

e

�C

(x�⇠)2

(t�⌧)
,

for s = 0, 1, 2, where C <

1
4R is a positive constant and K is also a positive

constant depending only on �.

Lemma 2 Let �[v] and �[v] be defined in (6), with v, v 2 B(R,�,↵) and
0  �  1. Then, we have the following inequalities,

|(�[v] � �[v])(x, ⇠, t, ⌧)|  Kkv � vk
↵,

↵

2

1

(t� ⌧)
3�↵

2

e

�C

(x�⇠)2

t�⌧

, (13)

and

|(�[v](x, ⇠, t, ⌧)� �[v](x, ⇠, t, ⌧))� (�[v](y, ⇠, t, ⌧)� �[v](y, ⇠, t, ⌧))| (14)

 Kkv � vk�
↵,

↵

2
|x� y|↵(1��) 1

(t� ⌧)
3��↵

2

(e�C

(x�⇠)2

t�⌧ + e

�C

(y�⇠)2

t�⌧ ) ,

where C <

1
4R and K = K(R,�,↵, T ) is continuous with respect to T .
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Lemma 3 Let v, v 2 B(R,�,↵), 0 < � < 1, �[v] and �[v] fundamental
solutions of L[v] = 0 and L[v] = 0, respectively. Then,

|(Ds

x

�[v] �D

s

x

�[v])(x, t, ⇠, ⌧)| 
Kkv � vk

↵,

↵

2

(t� ⌧)
s+1
2

e

�C

(x�⇠)2

t�⌧

, (15)

|(@
xx

�[v] � @

xx

�[v])(x, t, ⇠, ⌧)| (16)

 K(kv � vk
↵,

↵

2
+ kv � vk�

↵,

↵

2
)( 1

|x�⇠|
2�↵

2 (t�⌧)
2�↵

2
+ 1

(t�⌧)
3
2
)e�C

(x�⇠)2

t�⌧ and

|(@
t

�[v] � @

t

�[v])(x, t, ⇠, ⌧)| (17)

 K(kv � vk
↵,

↵

2
+ kv � vk�

↵,

↵

2
)( 1

|x�⇠|
2�↵

2 (t�⌧)
2�↵

2
+ 1

(t�⌧)
3
2
)e�C

(x�⇠)2

t�⌧

,

where s = 0, 1, C  1
4R and K = K(R,�,↵, T ) is continuous with respects to

T .

Theorem 2 Let be f, f 2 C1, 12
(⌦

T

), T > 0 and u0, u0 Lipschitz continuous
and bounded real functions. If u and u are, respectively, solutions of

L[v]u = f, R⇥ (0, T ], u(x, 0) = u0, R, (18)

and
L[v]u = f, R⇥ (0, T ], u(x, 0) = u0 R, (19)

where v = (a, b, 0), v = (a, b, 0) 2 B(R,�, 1), then

ku� uk1, 12  K(kv � vk1, 12 + kv � vk�
1, 12

+ ku0 � u0k1+ (20)

T

1
2 max{kfk1, 12 , 1}(kf � fk1, 12 + kv � vk1, 12 + kv � vk�

1, 12
)),

where K = K(R,�, T, ku0k1) is continuous with respect to T .

Corollary 1 If u is a solution of (18), then
kuk1, 12  K(kvk1, 12 +kvk�

1, 12
+ku0k1+T

1
2 max{kfk1, 12 , 1}(kfk1, 12 +kvk1, 12 +

kvk�
1, 12

)),

where K = K(R,�, T, ku0k1).

Lemma 4 Let consider v

n

, v 2 B(R,�,↵) and their respective fundamental
solutions, �[v

n

] and �[v]. If v
n

converges pointwise to v, then �[v
n

] converges
also pointwise to �[v].
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Local solution:

Let A be the operator defined by

A(u1, u2) = (w1, w2), (21)

where its domain is given in Lemma 5 below, and (w1, w2) is the solution of
the problem

8
<

:

L[v(u
i

)](wi

) = F

i

(u1, u2, yi), R⇥ (0, T ]
(y

i

)
t

= �A

i

y

i

f(u
i

), R⇥ (0, T ]
(w

i

(x, 0), y
i

(x, 0)) = (u
i,0(x), yi,0(x)), R.

(22)

Here, u
i,0 and y

i,0 � 0 are Lipschitz and bounded, f(u) is defined by (3),
v

i

(u
i

) = ( �

i

a

i

+y

i

(u
i

) ,
c

i

a

i

+y

i

(u
i

) , 0) and

F

i

(u1, u2, yi) =
b

i

A

i

u

i

+ d

i

a

i

+ b

i

y

i

y

i

f(u
i

) + (�1)iq
u1 � u2

a

i

+ b

i

y

i

.

Lemma 5 Let 0 < T  1, K
i

= K(max{�

i

a

i

,

c

i

a

i

}, �

i

a

i

+b

i

ky
i,0k1 , 1, |u

i,0|1) a con-

stant given by Corollary (1), ⌫

i

= 2(max{�

i

a

i

,

c

i

a

i

} + max{�

i

b

i

a

2
i

,

c

i

b

i

a

2
i

}), M

i

>

K

i

(⌫
i

ky
i,0k1+(⌫

i

ky
i,0k1)�+ku

i,0k1) and ⌃ = {(u1, u2) 2 C1, 12
(⌦

T

) : ku
i

k1, 12 
M

i

}. Then, if T is su�ciently small the operator A : ⌃ ! ⌃ is well defined.

We proof these results using the integral representation for the solution
given in Theorem 1 and the estimates in the last section.
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Theorem 3 If T is su�ciently small the Cauchy problem (2) has a solution
in C

2,1(R⇥ (0, T ]) \ C1, 12
(⌦

T

).

Iterative scheme:

(w(n)
1 , w

(n)
2 ) = A(w(n�1)

1 , w

(n�1)
2 )

By Arzelà-Ascoli’s theorem, there exists a continuous function (u1, u2) in

R ⇥ [0, T ] and a subsequence of (w(n)
1 , w

(n)
2 ) such that (w(n)

1 , w

(n)
2 ) converges

to (u1, u2) uniformely in compacts sets.
By the representation formula, we have

w

(n+1)
i

(x, t) = (23)
R
�
[v

i

(w(n)
i

)]
(x, ⇠, t, 0)u

i,0(⇠)d⇠+
R

t

0

R
�
[v

i

(w(n)
i

)]
(x, ⇠, t, ⌧)F

i

(w(n)
1 , w

(n)
2 , y

i

(w(n)
i

))(⇠, ⌧)d⇠d⌧,

where

v

i

(w(n)
i

) =

 
�

i

a

i

+ y

i

(w(n)
i

)
,

c

i

a

i

+ y

i

(w(n)
i

)
, 0

!
(24)

and
y

i

(w(n)
i

)(x, t) = y

i,0(x)e
�A

i

R
t

0 f(w(n)
i

(x,s))ds
. (25)
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Global solution

Theorem. Let u
i,0, i = 1, 2, be bounded lipschitzian functions on R and

in L

p(R) for some p 2 (1,1). Assume also y

i,0 2 C

2 \ L

1 and y

0
i,0 2 L

1.
Then for any T > 0 there exists a solution of (2) in

C

2,1(R⇥ (0, T ]) \ C1, 12
(R⇥ [0, T ]) \ L

1([0, T ];Lp(R)).

On the proof:

• We define [0, T ⇤) as the maximal interval for the local solution U ⌘
(u1, u2) and show that there exists the limit lim

t!T

⇤
U(·, t) in the

above space.

• To show that U is bounded in R⇥ [0, T ⇤) we use the upper solution
mentioned earlier.

• To bound U

x

we use the tecnique of

Oleinik, O. A. and Kruzhkov, S. N. Quasilinear second order parabolic
equations with many independent varible, Russ. Math. Surv., 16, no.5,
(1961), 105-146.
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