

Parte 1. Diga si las afirmaciones siguientes son falsa o verdadera. Si es falsa de un contraejemplo y si es verdadera haga la respectiva demostración. En los siguientes ejercicios asuma que los espacio vectoriales son de dimensión finita. Escoja cinco (5) de los siete (7) puntos.

- 1. Si $T: \mathbb{R}^2 \to \mathbb{R}^2$ es una transformación lineal entonces $\mathbb{R}^2 = N(T) \oplus Im(T)$.
- 2. Si V es un espacio vectorial y W_1, W_2, U , son subespacios de V con $U \oplus W_1 = U \oplus W_2$ entonces $W_1 = W_2$.
- 3. Si F_1 y F_2 son subespacios vectoriales de E tal que $dim\ F_1 + dim\ F_2 = dim\ E$, entonces existe una transformación lineal $T: E \to E$ tal que $Nu(T) = F_1$ y $ImT = F_2$.
- 4. Si $S \subseteq V$ donde V es un espacio con producto interno entonces $S^{\perp \perp} = S$.
- 5. Si $T:V\to W$ es una transformación lineal inyectiva y S es un subespacio de V entonces $\dim T(S)$ es igual a $\dim S$.
- 6. Si A es una matriz cuadrada tal que $A^2 + 2A + I = 0$, entonces A es invertible.
- 7. AB y BA tienen los mismos autovalores.

Parte 2. Resuelva los siguientes puntos. Justifique adecuadamente sus respuestas. Escoja cuatro (4) de los siete (7) puntos.

- 1. Analice la convergencia o no, de la sucesión $(a)^{1/n}$ siendo a un real positivo.
- 2. Demuestre que toda sucesión acotada de números reales admite una subsucesión convergente.
- 3. Sea r > 1. Demuestre que la serie $\sum_{n=1}^{\infty} \frac{1}{n^r}$ converge.
- 4. Sea $f: I \to \mathbb{R}$ una función continua e inyectiva, definida en un intervalo I. Demuestre que si f es monótona, entonces su imagen J = f(I) es un intervalo y la inversa $f^{-1}: J \to \mathbb{R}$ es continua.
- 5. Demuestre que $\lim_{x\to\infty} \frac{p(x)}{e^x} = 0$, siendo p cualquier polinomio con coeficientes en \mathbb{R} .
- 6. Sea $f:[a,b]\to\mathbb{R}$ continua. Demuestre que existen infinitas funciones $F:[a,b]\to\mathbb{R}$ tales que F'=f. ¿Puede describir el conjunto de tales funciones F?
- 7. De un ejemplo de una función acotada $f:[a,b]\to\mathbb{R}$ integrable, que posea un conjunto infinito numerable de puntos de discontinuidad.