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An introduction to Algebraic Geometry codes

Carlos Munuera and Wilson Olaya-León

Abstract. We present an introduction to the theory of algebraic geometry
codes. Starting from evaluation codes and codes from order and weight func-
tions, special attention is given to one-point codes and, in particular, to the
family of Castle codes.

1. Introduction

Let Fq be a finite field with q elements. A linear code of length n and dimension

k over Fq, a [n, k] code for short, is a k-dimensional linear space C ⊆ F
n
q . The

minimum distance of C is by definition

d = min{d(u,v) : u,v ∈ C,u 6= v} = min{wt(u) : u ∈ C,u 6= 0}

where d stands for the Hamming distance, d(u,v) = #{i : ui 6= vi}, and wt
for the Hamming weight, wt(u) = d(u,0). A “good code” is one that optimizes
simultaneously the ratios d/n and k/n.

The problem of finding good codes is central to the theory of error correcting
codes. For many years coding theorists have addressed this problem by adding
more and more algebraic and combinatorial structure to C. In particular, codes
with excellent properties have been obtained by using techniques and resources
from algebra and algebraic geometry, the so-called algebraic geometry codes. Most
of these techniques are highly specialized and the study of the obtained codes is very
elegant but in general difficult. Indeed, given such a code, often it is not possible
to calculate its exact minimum distance, and sometimes even its dimension.

In this chapter we present a short introduction to algebraic geometry codes.
We use the order bounds on the minimum distance as a motivation to introduce
evaluation and algebraic geometry codes. Then we center our attention on one-
point codes, and later on the family of Castle codes. As a result of this orientation
we can overview quickly much of the basic theory. However we warn the reader
that many important parts and facts have been omitted. For a complete treatment
we refer to the excellent texts [27] and [45]. The canonical reference for general
error correcting codes is the very complete book [30] (although it does not contain
the theory of AG codes).

2000 Mathematics Subject Classification. Primary: 94B27; Secondary: 14G50.

1

http://arxiv.org/abs/1505.03020v1


2 CARLOS MUNUERA AND WILSON OLAYA-LEÓN

2. The order bounds on the minimum distance

2.1. Bounds. As noted above, computing the true minimum distance d of a
linear code C is in general a difficult problem (it is an NP-complete problem, see
[5]). Often we have to settle for an estimate of d based on some available lower
bound. And then evaluate the quality of our parameters by comparing them with
several upper bounds. Usually upper bounds are general, valid for all linear codes.
Let us show an important example.

Theorem 2.1 (Singleton bound). The parameters n, k, d of a linear code C
verify k + d ≤ n+ 1.

Proof. Let π : C → F
n−d+1
q be the projection obtained by deleting d− 1 fixed

coordinates. Since each codeword of C has at least d nonzero coordinates, π is an
injective linear map, hence dim(π(C)) = k and thus k ≤ n− d+ 1. �

Codes reaching equality in the Singleton bound are called maximum distance

separable (or MDS) codes.
Lower bounds on the minimum distance are designed to be applied to some

particular families or constructions of codes. Significant examples could be BCH
and Goppa bounds (BCH and algebraic geometry codes respectively). Besides
uniform ones, other interesting lower bounds are of order type. They are based on
obtaining different estimates for different subsets of codewords. Such a bound is
successful if for each subset we can find estimates better than a uniform bound for
all codewords. In this chapter we shall explain two bounds of this type.

2.2. Fq-algebras. Throughout this chapter, an Fq-algebra will be a commuta-
tive ring R with a unit, containing Fq as a subring. Then R is a vector space over Fq.
The most interesting examples of Fq-algebras are the polynomial ring inm variables
Fq[X1, . . . , Xm] and its quotients Fq[X1, . . . , Xm]/I, where I is an ideal. Other im-
portant example is Fn

q . Since Fq is naturally isomorphic to {(λ, . . . , λ)|λ ∈ Fq}, it
turns out that Fn

q is also an algebra with the coordinate wise product ∗,
(u1, . . . , un) ∗ (v1, . . . , vn) = (u1v1, . . . , unvn).

Note that (λ, . . . , λ) ∗ (u1, . . . , un) = λ(u1, . . . , un) hence the ring and vector space
structures on F

n
q are fully compatible.

2.3. The Andersen-Geil bound. Let B = {b1, . . . ,bn} be a basis of Fn
q .

We consider the linear codes C0 = (0), and for k = 1, . . . , n,

Ck = 〈b1, . . . ,bk〉.
Ck is a [n, k] code. Associated to the chain C0 = (0) ⊂ C1 ⊂ · · · ⊂ Cn = F

n
q , we

define the sorting map ρB : Fn
q → {0, . . . , n} by ρB(v) = min{r : v ∈ Cr}.

Lemma 2.2. Let v1, . . . ,vm ∈ F
n
q . Then

(1) ρB(v1 + · · ·+vm) ≤ max{ρB(v1), . . . , ρB(vm)}. If there exists j such that

ρB(vi) < ρB(vj) for all i 6= j, then equality holds.

(2) If v 6= 0 then there exist λ1, . . . , λρB(v) ∈ Fq with λρB(v) 6= 0 such that

v = λ1b1 + · · ·+ λρB(v)bρB(v).

(3) dim(〈v1, . . . ,vm〉) ≥ #{ρB(v1), . . . , ρB(vm)}. Conversely, if D ⊆ F
n
q is a

linear subspace of dimension m, then there exists a basis {u1, . . . ,um} of

D such that #{ρB(u1), . . . , ρB(um)} = m.
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Proof. (1) Both statements follow from the linear structure of our codes. (2)
follows from (1).(3) Assume #{ρB(v1), . . . , ρB(vm)} = t and ρB(v1) < · · · < ρB(vt).
If λ1v1 + · · · + λtvt = 0 then 0 = ρB(0) = ρB(λ1v1 + · · · + λtvt) = max{ρB(vi) :
λi 6= 0}. By (1) this implies λ1 = · · · = λt = 0. Conversely write Di = D ∩ Ci.
For all i = 1, . . . , n, it holds that Di = Di−1 ⊕ (D ∩ 〈bi〉), hence dim(Di−1) ≤
dim(Di) ≤ dim(Di−1) + 1 and the last inequality is an equality precisely m times.
If Di 6= Di−1, take a vector ui ∈ Di \ Di−1. Then #{ρB(u1), . . . , ρB(um)} = m
and {u1, . . . ,um} is a basis of D. �

We consider in N
2 the partial order (r, s) ≺ (i, j) if and only if r ≤ i, s ≤ j and

(r, s) 6= (i, j). A pair of nonzero vectors (u,v) is called well-behaving (with respect
to the basis B) if for any pair (br ,bs) such that (r, s) ≺ (ρB(u), ρB(v)) it holds
that ρB(br ∗ bs) < ρB(u ∗ v). For i = 1, . . . , n, define the set

Λi = {bj ∈ B : (bi,bj) is well-behaving}.
Let v ∈ F

n
q , v 6= 0. According to Lemma 2.2 (2), we can write v as a linear

combination v = λ1b1 + · · ·+ λρB(v)bρB(v) with λρB(v) 6= 0. Then, if bj ∈ ΛρB(v)

we have

ρB(v ∗ bj) = ρB(

ρB(v)
∑

i=1

λibi ∗ bj) = ρB(bρB(v) ∗ bj).

Proposition 2.3. Let v ∈ F
n
q . If v 6= 0 then wt(v) ≥ #ΛρB(v).

Proof. Consider the space V (v) = {u ∈ F
n
q : supp(u) ⊆ supp(v)} = {u ∗ v :

u ∈ F
n
q }. Then wt(v) = dim(V (v)) ≥ dim(〈v ∗ b1, . . . ,v ∗ bn〉) ≥ #{ρB(v ∗

b1), . . . , ρB(v ∗ bn)} ≥ #{ρB(v ∗ bj) : bj ∈ ΛρB(v)} = #{ρB(bρB(v) ∗ bj) : bj ∈
ΛρB(v)} = #ΛρB(v). �

This result directly leads to the following bound.

Theorem 2.4. For k = 1, . . . , n, the minimum distance of Ck satisfies

d(Ck) ≥ min{#Λr : r = 1, . . . , k}.
The inequality stated in the above theorem is called the Andersen-Geil bound

on the minimum distance of the primary code Ck, or order bound with respect to

the basis B on the minimum distance of the primary code Ck. Note that the sets
Λr depend on the basis B. So the bound depends on B as well. This bound can
be applied to an arbitrary linear code C, just by including it into any increasing
chain of codes C1 ⊂ · · · ⊂ Ck−1 ⊂ C ⊂ Ck+1 ⊂ · · · ⊂ Cn = F

n
q . However the best

results are obtained when all the codes in the chain have been obtained by the
same construction. This is the case of some types of codes arising from algebraic
geometry.

A similar bound can be stated for codes CI = 〈{bi : i ∈ I}〉 where I is an
arbitrary subset of {1, . . . , n} (without changing the order on the basis elements
nor the map ρ). We leave this generalization as an exercise to the reader (or see
[21]).

2.4. The Feng-Rao bound on the minimum distance of dual codes.

Given a linear [n, k] code C, its dual code is defined as

C⊥ = {v ∈ F
n
q : c · v = 0 for all c ∈ C}
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where · denotes the usual inner product in F
n
q

u · v =

n
∑

i=1

uivi.

Then C⊥ is a linear [n, n−k] code. By using similar ideas to those explained in the
previous subsection, we can give a bound on the minimum distance of dual codes.
Let B = {b1, . . . ,bn} be a basis of Fn

q and consider the chain of dual codes

C⊥
n = (0) ⊂ C⊥

n−1 ⊂ · · · ⊂ C⊥
0 = F

n
q .

Given a vector u ∈ F
n
q , define the syndromes of u

s1 = s1(u) = b1 · u, . . . , sn = sn(u) = bn · u
or equivalently BuT = sT , where s = (s1, . . . , sn) and B is the matrix whose rows
are the vectors b1, . . . ,bn. Then u ∈ C⊥

r \ C⊥
r+1 if and only if s1 = · · · = sr = 0 and

sr+1 6= 0. Consider also the two dimensional syndromes

sij = (bi ∗ bj) · u, 1 ≤ i, j ≤ n.

Let S be the matrix S = (sij), 1 ≤ i, j ≤ n. Note that this matrix can be written
also as S = BD(u)BT , where D(u) is the diagonal matrix with u in its diagonal.
Since B has full rank, we have rank(S) = rank(D(u)) = wt(u).

Lemma 2.5. Let u ∈ C⊥
r .

(1) sij = 0 for all (i, j) such that ρB(bi ∗ bj) ≤ r.
(2) If u 6∈ C⊥

r+1 then sij 6= 0 for all (i, j) such that ρB(bi ∗ bj) = r + 1.

Proof. As u ∈ C⊥
r we have s1 = · · · = sr = 0. (1) If ρB(bi ∗ bj) ≤ r

then, according to Lemma 2.2(2), bi ∗ bj = λ1b1 + · · · + λrbr and sij = λ1s1 +
· · · + λrsr = 0. (2) If u 6∈ C⊥

r+1 then sr+1 6= 0. When ρB(bi ∗ bj) = r + 1,
we have bi ∗ bj = λ1b1 + · · · + λrbr + λr+1br+1 with λr+1 6= 0. Then sij =
λ1s1 + · · ·+ λrsr + λr+1sr+1 = λr+1sr+1 6= 0. �

For r = 0, . . . , n− 1, define the sets

Nr = {(i, j) : (bi,bj) is well-behaving and ρB(bi ∗ bj) = r + 1}.
Let Nr = {(i1, j1), . . . , (it, jt)}. The well-behaving property implies that all i’s

in this set are distinct. Write i1 < i2 < · · · < it. By symmetry, jt = i1, . . . , j1 = it,
hence jt < · · · < j1. Let Sr be the submatrix of S

Sr =







si1,jt · · · si1,j1
...

...
sit,jt · · · sit,j1






.

Lemma 2.6. If u ∈ C⊥
r \ C⊥

r+1 then Sr has full rank.

Proof. Let (l,m) be an entry in the anti-diagonal of Sr. Then l = ih,m = jh
for some h and slm 6= 0 by Lemma 2.5(2). If (l,m) is above the anti-diagonal, then
l = ih,m < jh, hence ρB(bl ∗bm) < ρB(bih ∗bjh) = r+1. Thus slm = 0 by Lemma
2.5(1) and det(Sr) 6= 0. �

As a consequence of this lemma, if u ∈ C⊥
r \ C⊥

r+1 we have wt(u) = rank(S) ≥
rank(Sr) = #Nr. The Feng-Rao or dual order bound on the minimum distance of
C⊥
k with respect to the basis B states the following
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Theorem 2.7. For k = 0, 1, . . . , n− 1, the minimum distance of C⊥
k satisfies

d(C⊥
k ) ≥ min{#Nr : r = k, . . . , n− 1}.

As in case of primary codes, this bound depends on the choice of the basis B.

3. Evaluation codes and order domains

The theory introduced in the previous section directly leads to the problem
of finding basis B producing good codes. This subject will be addressed in this
section.

Let R be a Fq-vector space and let Φ be a linear map Φ : R → F
n
q . For every

linear subspace L ⊆ R we have a linear code

C(L) = Φ(L)

and its dual
C(L)⊥ = {v ∈ F

n
q : c · v = 0 for all c ∈ C(L)}.

If we consider a basis {f1, f2, . . . } of R, we get a chain of linear codes, Cr =
〈Φ(f1), . . . ,Φ(fr)〉, r = 1, 2, . . . . When Φ is surjective, then there exists r such that
Cr = F

n
q , and the order bounds can be applied to obtain estimates on the minimum

distance of these codes.

3.1. Evaluation codes. The most interesting case of the above construction
arises when R is a set of functions that can be evaluated at points P1, . . . , Pn

belonging to a geometrical object X . Set P = {P1, . . . , Pn} and let Φ = evP :
R → F

n
q defined by evP(f) = (f(P1), . . . , f(Pn)). The obtained codes are called

evaluation codes.

Example 3.1 (Reed-Muller codes). To give a concrete example take the Fq-
algebra R = Fq[X1, . . . , Xm] and let P be the set of all n = qm points P1, . . . , Pn

in F
m
q . The evaluation map

evP : Fq[X1, . . . , Xm] → F
n
q

evP(f) = (f(P1), . . . , f(Pn)), is linear and verifies (fg)(P ) = f(P ) ∗ g(P ), so it is a
morphisms of Fq-algebras. To see surjectivity, given a point P = (a1, . . . , am) ∈ F

m
q ,

the polynomial

fP =

m
∏

i=1

∏

α∈Fq,α6=ai

(Xi − α)

verifies fP (P ) 6= 0 and fP (Q) = 0 for all Q 6= P . Thus the vectors {evP(fP ) :
P ∈ F

m
q } span F

n
q . Consider the basis {f1, f2, . . . } of Fq[X1, . . . , Xm] consisting

of all monomials ordered according to a graded order (for example the graded
lexicographic order: first compare degrees; then apply lexicographic order to break
ties). Then we obtain an increasing chain of codes C1 ⊂ C2 ⊂ . . . , where

Ci = evP(〈f1, . . . , fi〉).
Among these codes, particular interest have the ones of the form RM(r,m) =
evP(Fq[X1, . . . , Xm](r)), where Fq[X1, . . . , Xm](r) stands for the linear space of all
polynomials of degree at most r. They are called Reed-Muller codes. The same
construction can be done by considering homogeneous polynomials and evaluat-
ing them at points in the projective space. In this case we obtain the so-called
Projective Reed-Muller codes.
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Reed Muller codes are important from both theoretical and practical reasons
and much is known about them. For example, in 1972 a Reed-Muller code was used
by Mariner 9 to transmit black and white photographs from Mars. The case m = 1
is particularly simple and interesting, so it deserves a special attention.

Example 3.2 (Reed-Solomon codes). Let R = Fq[X ] and consider the basis
{1, X,X2, . . . }. Let P be the set of points in the affine line Fq. The obtained
evaluation codes, called Reed Solomon codes, are widely used (CD players, bar
codes, etc.). Their parameters are easy to obtain: as a polynomial of degree r has
at most r roots, for r < n the code evP(〈1, X, . . . , Xr〉) has length n = q, dimension
k = r + 1 and minimum distance d = n− r (it is a MDS code).

In the above two examples, note that for all f ∈ Fq[X1, . . . , Xm] it holds that
evP(f

q) = evP(f), hence we can obtain the same codes from the quotient algebra
Fq[X1, . . . , Xm]/〈Xq

1 − X1, . . . , X
q
m − Xm〉. In general, we can take an ideal I ⊂

Fq[X1, . . . , Xm] and consider Iq = I+〈Xq
1−X1, . . . , X

q
m−Xm〉. Let P = {P1, ..., Pn}

be the set of all rational points in the zero set V = V (Iq). The evaluation map
evP : Rq = Fq[X1, . . . , Xm]/Iq → F

n
q is a vector space isomorphism. For any linear

subspace L ⊆ Rq we define the affine variety code C(I, L) = evP(L). It is known
that every linear code can be obtained in this way. Also algebraic geometry codes
from curves, which are the main subject of this chapter, are particular cases of this
construction. Affine variety codes were introduced by Fitzgerald and Lax in [14],
where the reader can find more details.

3.2. Weight functions and order domains. In previous examples we have
seen how to construct a chain of evaluation codes from an algebra R and an ordered
basis of R. The better this order, the better will be the results obtained when using
the order bounds. We formalize this idea.

Let N0 = N∪{0}. A function v : R → N0 ∪{−∞} is a weight on R if it verifies
the following properties

(W.1) v(f) = −∞ if and only if f = 0;
(W.2) v(1) = 0;
(W.3) v(f + g) ≤ max{v(f), v(g)};
(W.4) v(fg) = v(f) + v(g);
(W.5) if v(f) = v(g) then there exists an element λ ∈ F

∗
q such that v(f − λg) <

v(f).

Remark 3.3. Let v be a weight function on R. The following are simple
consequences of properties (W.1) to (W.5).
(a) For all λ ∈ F

∗
q we have v(λλ−1) = v(λ) + v(λ−1) = v(1) = 0. Then v(λ) = 0.

Conversely, if v(f) = 0 then there exists λ ∈ F
∗
q such that v(f − λ) = −∞ and

f = λ ∈ Fq.
(b) If v(f) > v(g) then v(f) = v(−g+(f + g)) ≤ max{v(g), v(f + g)} = v(f + g) ≤
v(f), hence v(f + g) = v(f).
(c) R is an integral domain. If fg = 0 with g 6= 0 then v(1) ≤ v(g). Thus
v(f) ≤ v(fg) = −∞ which implies v(f) = −∞ and so f = 0.

A Fq-algebra R with a weight function v will be called an order domain. Let
H(v) = {v(f) : f ∈ R∗} = {v1, v2, . . . } be the increasing sequence of all integers
appearing as the order of a nonzero element. For each vi ∈ H(v) let fi ∈ R be such
that v(fi) = vi and consider the ordered set F = {f1, f2, . . . }.
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Proposition 3.4. Let R be an order domain with order function v and let

F = {f1, f2, . . . } as above. Then

(1) F is a basis of R over Fq.

(2) If f =
∑

j λjfj, then v(f) = max{v(fj) : λj 6= 0}.
Proof. An iterated application of property (W.5) shows that F is a basis of

R. (2) follows from Remark 3.3 (b). �

3.3. Semigroups. A numerical semigroup is a set S ⊆ N0 such that (i) 0 ∈ S
and (ii) if a, b ∈ S then a + b ∈ S. Our interest on semigroups comes from the
following fact, which is a consequence of properties (W.2) and (W.4).

Proposition 3.5. If R is an order domain and v is a weight function on R,
then H(v) is a numerical semigroup.

The elements of S will be called pole numbers or just poles, while the elements
in N0 \S will be called gaps. We shall denote by Gaps(S) the set of gaps of S. The
number g = #Gaps(S) is the genus of S. If S has finite genus then the smallest
integer c such that a ∈ S for all a ≥ c is the conductor of S. From now on, all the
semigroups we consider will be of finite genus.

Lemma 3.6. The conductor c of a semigroup of genus g verifies c ≤ 2g.

Proof. Since c − 1 is a gap, given a pair (a, b) ∈ N
2
0 with a + b = c − 1, at

least one of these two numbers is also a gap. There are c such pairs and g gaps so
we obtain the inequality. �

When c = 2g the semigroup is called symmetric. Note that for symmetric
semigroups, given a pair (a, b) ∈ N

2
0 with a + b = c − 1, exactly one of these two

numbers is a gap and the other is a pole. Conversely, this condition ensures that
c = 2g.

From Lemma 3.6, the interval [0, 2g − 1] contains g poles and g gaps. If we
write S as an increasing enumeration of its elements S = {v1 = 0 < v2 < . . . }, then
2g = vg+1, hence vg+i = 2g+ i− 1 for all i = 1, 2, . . . . The first nonzero element of
S, v2, is the multiplicity of S. It will play an important role in forthcoming sections
of this chapter.

A set of generators of S is a set A = {a1, . . . , ar} ⊂ S such that any a ∈ S can
be written as a linear combination a = λ1a1 + · · ·+ λrar with nonnegative integer
coefficients. In this case we write S = 〈a1, . . . , ar〉. All semigroups admit a finite
set of generators. For example, the Apéry set

A(S) = {a ∈ S∗ : a− v2 6∈ S∗}.
Example 3.7 (Semigroups generated by two elements). Let a, b ∈ N, a < b.

Let δ = gcd(a, b). If δ 6= 1 then S = 〈a, b〉 ⊂ δN0 is not of finite genus. Assume
δ = 1. From Bézout theorem, every integer m can be written as m = λa + µb.
Adding and subtracting ab to both summands if necessary, we can obtain an unique
representation of this type with 0 ≤ µ < a. Then m is a pole when λ ≥ 0 and a
gap when λ < 0. In particular, the largest gap is c − 1 = −a + (a − 1)b. Let us
show that the semigroup is symmetric. Suppose the largest gap is the sum of two
gaps −a + (a − 1)b = (λ1a + µ1b) + (λ2a + µ2b) with λ1, λ2 < 0, 0 ≤ µ1, µ2 < a.
Then (−λ1 − λ2 − 1)a = (µ1 + µ2 − a + 1)b. Since −λ1 − λ2 − 1 > 0 we have
a|µ1+µ2−a+1 < a, a contradiction. Then the semigroup is symmetric and hence
c = 2g. S has genus g = (a− 1)(b − 1)/2.
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As a consequence of this example, a semigroup S has finite genus if and only
if the greatest common divisor of its nonzero elements is 1. In this case there exist
a, b ∈ S such that gcd(a, b) = 1 and 〈a, b〉 ⊆ S.

The following fact will be used several times in what follows.

Lemma 3.8. Let S be a semigroup of finite genus. If a ∈ S then

#(S \ (a+ S)) = a.

Proof. Let c be the conductor of S and m an integer. If m ≥ a + c then
m ∈ S and m ∈ a+ S. Thus S \ (a+ S) = U \ V , where U = {m ∈ S : m < a+ c}
and V = {a + m : m ∈ S, a + m < a + c} ⊆ U . Clearly #U = a + c − g
and #V = #{m ∈ S : m < c} = c − g, where g is the genus of S. Then
#(S \ (a+ S)) = #U −#V = a. �

3.4. Codes from weights. Let R be an order domain over Fq and v a weight
function on R. Let H = H(v) = {v1, v2, . . . } be the semigroup of v. If δ = gcd{a :
a ∈ H(v)∗} = 1 then the weight v is called normal. Otherwise we define the
normalization of v as the weight v′ = v/δ. From now on, all weight functions will
be normal.

For each vi ∈ H let fi ∈ R be such that v(fi) = vi. The ordered set F =
{f1, f2, . . . } is a basis of R as a vector space over Fq. For m = −1, 0, 1, . . . , we
consider the linear subspaces

L(m) = {f ∈ R : v(f) ≤ m}.
Clearly L(−1) = (0), L(0) = Fq and {fi : vi ≤ m} is a basis of L(m). Then
L(m − 1) ⊆ L(m) with equality if m is a gap of H . Since v is normal, H has a
finite number of gaps, g. So equality occurs precisely g times. If m is a pole, then
dim(L(m)) = dim(L(m− 1)) + 1.

Let Φ : R → F
n
q be a surjective morphism of Fq-algebras (for example, an

evaluation map). Then we obtain a chain of linear codes

(3.1) (0) ⊆ C(Φ, 0) ⊆ C(Φ, 1) ⊆ . . .

where C(Φ,m) = Φ(L(m)). Since Φ is surjective, the chain contains exactly n+ 1
distinct codes. We define the dimension set of this chain as

M =M(Φ, v) = {m ∈ N0 : C(Φ,m− 1) 6= C(Φ,m)}.
It is clear that M consists of n integers. Write M = {m1 = 0,m2, . . . ,mn}. The
name “dimension” set of M is justified by the following fact.

Proposition 3.9. uer dim(C(Φ,mk)) = k. If m is a nonnegative integer then

dim(C(Φ,m)) = max{r : mr ≤ m}.
Proof. The first statement is clear. For the second one, if mk = max{r :

mr ≤ m} then C(Φ,m) = C(Φ,mk). �

Let m be an integer. If m 6∈ H then L(m) = L(m − 1) hence m 6∈ M . If
m ∈ H , take f ∈ R such that v(f) = m. Then L(m) = L(m − 1) + 〈f〉 so
C(Φ,m) = C(Φ,m− 1) + 〈Φ(f)〉. Then m ∈M if and only if Φ(f) 6∈ C(Φ,m− 1).

The conditions of being Φ a morphism and v a weight, allow us to give estimates
on the parameters of C(Φ,m). The ideal (f) generated by f is a linear subspace of
R, hence we can consider the quotient ring R/(f) as a vector space over Fq.
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Lemma 3.10. Let f ∈ R be a nonzero element. If v is a weight function on R
then dim(R/(f)) = v(f).

Proof. The weight v maps the ideal (f) into the set v(f)+H . Let f1, f2, . . . ∈
R be such that v(fi) = vi and fi ∈ (f) when vi ∈ v(f) +H . Then {f1, f2, . . . } is a
basis of R and {fi + (f) : vi 6∈ v(f) +H} is a basis of R/(f). Thus dim(R/(f)) =
#(H \ (v(f) +H)) = v(f) by Lemma 3.8. �

Lemma 3.11. If m < n then L(m) ∩ ker(Φ) = (0).

Proof. Let f ∈ ker(Φ), f 6= 0. Then (f) ⊆ ker(Φ) and we have a well defined,
linear, surjective map Φ : R/(f) → F

n
q . Thus dim(R/(f)) ≥ n and Lemma 3.10

implies v(f) ≥ n, hence f 6∈ L(m). �

Proposition 3.12. Let m < n be a nonnegative integer.

(1) m ∈M if and only if m ∈ H.

(2) The code C(Φ,m) has dimension k = dim(L(m)) = max{i : vi ≤ m}
and minimum distance d ≥ n −m. If the semigroup H has genus g and

2g ≤ m < n, then k = m+ 1− g.

Proof. If m < n then the map Φ : L(m) → F
n
q is injective by Lemma 3.11.

Then m ∈ M if and only if L(m − 1) 6= L(m) that is if and only if m ∈ H . So
k = dim(L(m)) = max{i : vi ≤ m}. Since H has g gaps, its conductor verifies
c ≤ 2g, so when m ≥ 2g we have m = vm+1−g implying k = m + 1 − g. Let us
prove the statement about the minimum distance d. Let c = Φ(f), f ∈ L(m),
be a codeword of C(Φ,m) with weight d. Let I = {1, . . . , n} \ supp(c) be the set
of zero coordinates of c and π : Fn

q → F
n−d
q be the projection on the coordinates

of I. The map π ◦ Φ : R → F
n−d
q is a surjective morphism of algebras. Since

f ∈ L(m)∩ker(π◦Φ), Lemma 3.11 implies m ≥ n−d or equivalently d ≥ n−m. �

The inequality d(C(Φ,m)) ≥ n − m is the Goppa bound on the minimum
distance of C(Φ,m).

3.5. The order and dual order bounds. Besides the Goppa bound, we
can apply to C(Φ,m) and its dual C(Φ,m)⊥ the bounds of Theorems 2.4 and 2.7
respect to the sequence C0 = (0) ⊂ C1 ⊂ · · · ⊂ Cn, obtained from the chain of
equation 3.1 after deleting repeated codes. Since dim(Ck) = k, the map ρB defined
in Section 2.3 can be written as

ρ(v) = min{dim(C(Φ,m)) : v ∈ C(Φ,m)}.
Lemma 3.13. Let f ∈ R∗.

(1) ρ(Φ(f)) ≤ dimC(Φ, v(f)) with equality if v(f) ∈M .

(2) If v(f) 6∈M then v(fh) 6∈M for all h ∈ R∗.

Proof. (1) The first statement is clear since f ∈ L(v(f)) and hence Φ(f) ∈
C(Φ, v(f)). If v(f) ∈M then Φ(f) ∈ C(Φ, v(f)) \ C(Φ, (v(f) − 1)) and ρ(Φ(f)) =
dimC(Φ, v(f)). (2) If v(f) 6∈ M then Φ(f) ∈ C(Φ, v(f) − 1) hence there exists
ψ ∈ L(v(f) − 1) such that Φ(f) = Φ(ψ). If v(fh) ∈ M then dimC(Φ, v(fh)) =
ρ(Φ(fh)) = ρ(Φ(ψh)) ≤ dimC(Φ, v(ψh)). Since v(fh) > v(ψh) we get the equality
C(Φ, v(fh)) = C(Φ, v(ψh)), contradicting our assumption v(fh) ∈M . �

The equality ρ(Φ(f)) = dimC(Φ, v(f)) is not true in general. Let H̄ = H \M .
Lemma 3.13(2) implies H̄ +H ⊆ H̄ , or equivalently M ⊆ H \ (H̄ +H).
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Corollary 3.14. M ⊆ H \ (qH∗ +H).

Proof. Let m ∈ H , m 6= 0, and let f ∈ R be such that v(f) = m. Then
v(f q) = qv(f) > v(f). Since Φ is a morphism, we have Φ(f q) = Φ(f) ∗ · · · ∗
Φ(f)(q times) = Φ(f). Thus qm 6∈M . This proves qH∗ ⊆ H̄ , so qH∗+H ⊆ H̄+H
and M ⊆ H \ (H̄ +H) ⊆ H \ qH∗ +H). �

For i = 1, . . . , n, let φi ∈ R be such that v(φi) = mi. The set B = {Φ(φ1), . . . ,
Φ(φn)} is a basis of Fn

q and the sequence of codes (Ck) is given by

Ck = 〈Φ(φ1), . . . ,Φ(φk)〉 = C(Φ,mk), k = 1, . . . , n.

Proposition 3.15. If vr + vs = mt ∈ M then vr, vs ∈ M and (Φ(fr),Φ(fs))
is a well-behaving pair with ρ(Φ(fr) ∗ Φ(fs)) = t.

Proof. If vr + vs ∈ M , Lemma 3.13(2) implies vr, vs ∈ M . Write vr =
mi, vs = mj , so φi = fr and φj = fs. We have

ρ(Φ(φi) ∗ Φ(φj)) = ρ(Φ(φiφj)) = dimC(Φ, v(φiφj)) = dimC(Φ,mi +mj).

If (a, b) ≺ (i, j) then v(φaφb) < v(φiφj) and hence ρ(Φ(φa)∗Φ(φb)) = ρ(Φ(φaφb)) <
dimC(Φ,mi +mj) = ρ(Φ(φi) ∗ Φ(φj)). �

From Proposition 3.15 we can derive a new version of the order bounds on
the minimum distance of C(Φ,m) and C(Φ,m)⊥ as follows. For r = 1, . . . , n,
s = 0, . . . , n− 1, consider the sets

Λ∗
r = {(r, j) : mr +mj ∈M} , N∗

s = {(i, j) : mi +mj = ms+1}
Define

dORD(k) = min{#Λ∗
r : r = 1, . . . , k}

d⊥ORD(k) = min{#N∗
s : s = k, . . . , n− 1}.

By applying the bounds of Theorems 2.4 and 2.7 with respect to the basis {Φ(φ1), . . . ,
Φ(φn)}, we get the following result.

Theorem 3.16. For a non-negative integer m, we have

d(C(Φ,m)) ≥ dORD(dim(C(Φ,m)))

d(C(Φ,m)⊥) ≥ d⊥ORD(dim(C(Φ,m))).

The inequalities stated in this theorem are the order (or Feng-Rao) bounds
on the minimum distances of the primary code C(Φ,m) and its dual C(Φ,m)⊥,
respectively. They do not depend on the basis B but only on the dimension set M .

3.6. Bibliographical notes. Order domains and evaluation codes were in-
troduced and studied by T. Høholdt, J.H. van Lint and R. Pellikaan, [27]. The
purpose was to simplify the theory of algebraic geometry codes and to formulate
the order bound on the minimum distance in this language. This bound was first
suggested by G.L. Feng and T.N.T. Rao in [13] for the duals of one-point algebraic
geometry codes. At the same time, R. Matsumoto and S. Miura independently de-
veloped many of the same ideas for duals of one-point codes. They also formulated
the Feng-Rao bound for any linear code defined by means of its parity check matrix,
[35]. Another generalization to all linear codes described by means of generator
matrices, was given by Andersen and Geil, [1]. That paper is primarily devoted
to linear codes, but also the cases of codes from order domains and affine variety
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codes are treated. This is the bound we have stated in Theorem 2.4. Many works
have been devoted to study the relations between these bounds and to generalize
them, see [21] and the references therein.

Our presentation of order domains follows closely [27]. In our exposition
we have limited ourselves to consider weights v whose semigroup H(v) is a sub-
semigroup of N0. If more general semigroups are allowed (for example, subsemi-
groups of Nr

0 for some r), then the family of obtained codes is very enlarged. See
[19, 21].

4. Codes from Algebraic Geometry

Some of the most interesting examples of evaluation codes are obtained from
algebraic curves. This section is devoted to developing a basic introduction to
algebraic geometry codes.

4.1. Algebraic curves. It is not our intention here to explain the theory of
algebraic curves, which can be found in many excellent books (eg. [15, 27, 45]).
Therefore we assume a certain familiarity of the reader with algebraic geometry
and we simply recall the basic ingredients we need to cook our codes.

An algebraic curve X over Fq is an absolutely irreducible algebraic variety of
dimension one over Fq. The set of rational points of X is denoted X (Fq). Algebraic
geometry codes will be obtained through evaluation of rational functions of X at
(some) points in X (Fq), so we always refer to curves with X (Fq) 6= ∅. Let Fq(X ) be
the field of rational functions of X . Among all curves having Fq(X ) as a function
field, there is (up to isomorphism) one nonsingular projective curve. We shall use
this one for our code construction. Thus, in what follows, the word curve means
an algebraic, projective, absolutely irreducible, nonsingular curve (although we
eventually use singular plane models of such a curve for our computations).

Points on X correspond to valuation rings in its function field. Given a function
f 6= 0, the order of f at a point P of X is the integer vP (f), where vP is the discrete
valuation corresponding to the valuation ring of P . If vP (f) < 0 then P is a pole

and if vP (f) > 0 then P is a zero of f . The divisor of f is div(f) =
∑

P∈X vP (f)P .
Given a rational divisor G of X , we consider the vector space of functions

having zeros and poles specified by G

L(G) = {f ∈ Fq(X ) : div(f) +G ≥ 0} ∪ {0}.

The dimension of this space is denoted by ℓ(G). Riemann-Roch theorem states that
there is a constant g (the genus of X ) such that ℓ(G) = deg(G)+ 1− g+ ℓ(W −G),
whereW is a canonical divisor. Since canonical divisors have degree 2g−2, it holds
that ℓ(G) = deg(G) + 1− g when deg(G) > 2g − 2.

Two divisors G and G′ are linearly equivalent, denoted G ∼ G′, if there is ratio-
nal function φ with div(φ) = G−G′. In this case L(G) and L(G′) are isomorphic
via the map f 7→ φf .

The gonality of the curve X over Fq is the smallest degree γ of a non-constant
morphism from X to the projective line. Equivalently γ is the smallest degree of a
rational divisor G such that ℓ(G) > 1. More generally, the gonality sequence of X ,
GS(X ) = {γi : i = 1, 2, . . .}, is defined by

γi = min{deg(G) : ℓ(G) ≥ i}.
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Then γ1 = 0 and γ2 is the usual gonality. Since ℓ(G) ≤ deg(G) + 1 when deg(G) ≥
0, we have γi ≥ i − 1. Conversely, from Riemann-Roch theorem it follows that
γi ≤ i − 1 + g with equality for i > g. The gonality sequence GS(X ) verifies a
symmetry property (similar to the symmetry property for semigroups): for every
integer r, it holds that r ∈ GS(X ) if and only if 2g − 1 − r 6∈ GS(X ), cf. [37]. In
general, computing GS(X ) is a difficult task but for plane curves this sequence is
entirely known and depends only on the degree of X , see [43].

4.2. Algebraic geometry codes. Let X be a curve of genus g over Fq and
let P = {P1, . . . , Pn} be a set of n distinct rational points on X . Let G be a rational
divisor of nonnegative degree and support disjoint from D = P1 + · · · + Pn. The
algebraic geometry code (or AG code) C(X , D,G) is the image of the evaluation
map

evP : L(G) → F
n
q evP(f) = (f(P1), . . . , f(Pn)).

evP is a linear map whose kernel is L(G − D). The dimension of this kernel a =
ℓ(G−D) is the abundance of C(X , D,G). In particular, if deg(G) < n then a = 0
and hence C(X , D,G) ∼= L(G). The parameters of this code are as follows.

Theorem 4.1. The code C(X , D,G) has dimension k = ℓ(G)− ℓ(G−D) and
minimum distance d ≥ n−deg(G)+γa+1. In particular, when 2g−2 < deg(G) < n,
then k = deg(G) + 1− g and d ≥ n− deg(G).

Proof. The statements about the dimension follow from the definition of
C(X , D,G) and the Riemann-Roch theorem. To see the bound on the minimum
distance, let c be a codeword of weight d > 0. Let D′ ≤ D be the divisor ob-
tained as the sum of points in P corresponding to the n − d zero coordinates of
c. There exist a function f ∈ L(G −D′) \ L(G −D) such that c = evP(f). Then
ℓ(G − D′) ≥ ℓ(G − D) + 1 = a + 1 hence, by definition of gonality sequence,
γa+1 ≤ deg(G−D′) = deg(G) − (n− d). �

The weaker bound d ≥ dG(C(X , D,G)) = n−deg(G) is often called the Goppa

bound on the minimum distance. Note that it is similar to the bound on the
minimum distance of Reed-Solomon codes seen in Example 3.2 and the Goppa
bound for codes coming from order domains. The bound on d stated in Theorem
4.1, d ≥ n− deg(G) + γa+1, is sometimes referred as the improved Goppa bound.

Proposition 4.2. d(C(X , D,G)) = n − deg(G) if an only if there exists a

divisor D′, 0 ≤ D′ ≤ D such that G ∼ D′.

Proof. As in the proof of Theorem 4.1, d = n − deg(G) if an only if there
exists a divisor D′, 0 ≤ D′ ≤ D such that ℓ(G−D′) > 0. Since G and D′ have the
same degree, this happens if and only if G ∼ D′. �

From Theorem 4.1, the parameters of C(X , D,G) verify k+d ≥ ℓ(G)−deg(G)+
n. According to Riemann-Roch theorem, a simple computation shows that this
inequality implies

(4.1) n+ 1− g ≤ k + d ≤ n+ 1

where the right-hand inequality is the Singleton bound. The number n+ 1− k− d
is the Singleton defect of C(X , D,G). Recall that n+1− k− d ≤ g and that codes
of Singleton defect 0 are MDS.



AN INTRODUCTION TO ALGEBRAIC GEOMETRY CODES 13

Example 4.3. Take X = P
1 the projective line over Fq. Let Q be the point

at infinity and P the set of n = q affine points. Then C(P1, D,mQ), 1 ≤ m ≤ q, is
precisely the Reed-Solomon code of dimension k = m+1. Since g = 0, it is a MDS
code.

Thus AG codes can be seen as generalizations of RS codes: instead of the
projective line P

1, consider an arbitrary curve X over Fq. Note that Reed-Solomon
codes have excellent parameters k and d, but too small length (consider the case
q = 2). According to the Hasse-Weil bound, cf. [45], we have

|#X (Fq)− (q + 1)| ≤ 2g
√
q

hence longer codes can be obtained by using curves of higher genus, although then
the Singleton defect increases. From equation 4.1, the relative parameters verify

k

n
+
d

n
≥ 1− g

n
so one way to get better codes from curves of high genus is to take n large with
respect to g. This strategy requires curves with many points respect to its genus.

Example 4.4 (Codes on the Klein Quartic). Let us consider the curve X
defined over F8 by the projective equation X3Y + Y 3Z + Z3X = 0. X is called
the Klein quartic. It is a nonsingular plane curve, hence its genus is 3 by Plücker’s
formula. A direct inspection shows that X has 24 rational points, which is the
maximum possible number allowed by the Serre’s improvement on the Hasse-Weil
bound,

|#X (Fq)− (q + 1)| ≤ g⌊2√q⌋.
Consider the points Q0 = (1 : 0 : 0), Q1 = (0 : 1 : 0), Q2 = (0 : 0 : 1) ∈ X (F8)
and the divisor G = m(Q0 + Q1 + Q2), for m = 2, . . . , 6. Let P be the set of 21
rational points different from Q1, Q2, Q3 and let D be the sum of all these points.
The algebraic geometry code C(X , D,G) was first studied in [25]. According to
Theorem 4.1 it has dimension k = 3m − 2 and minimum distance d ≥ 21 − 3m.
Note that for other values ofm the parameters of the obtained codes are much more
difficult to estimate (try it!). For m = 3, 4, no codes are known improving these
parameters, see [34]. Take, for example, m = 4. Then ℓ(4(Q0 + Q1 + Q2)) = 10.
The following ten functions

X3

T
,
X2Y

T
,
X2Z

T
,
XY 2

T
,
XY Z

T
,
XZ2

T
,
Y 3

T
,
Y 2Z

T
,
Y Z2

T
,
Z3

T
,

where T = XY Z, belong to L(4(Q0+Q1+Q2)) and are linearly independent, hence
they form a basis of L(4(Q0 + Q1 + Q2)). A generator matrix of C(X , D, 4(Q0 +
Q1 +Q2)) is obtained by evaluating these functions at all points of P .

4.3. Isometric codes. An isometry of Fn
q is a linear map l : Fn

q → F
n
q leaving

the Hamming metric invariant, d(u,v) = d(l(u), l(v)). Thus an isometry is an
isomorphism. Two codes C, C′ of length n are isometric if there is an isometry
l such that l(C) = C′. Clearly isometric codes have equal parameters n, k, d and
similar properties.

Let x = (x1, . . . , xn) be a n-tuple of nonzero elements of F
n
q and σ ∈ Sn,

the symmetric group on n elements. The maps x : v 7→ x ∗ v and σ : v 7→
(vσ(1), . . . , vσ(n)) are isometries. Conversely, it can be proved (and it is left as an
exercise to the reader) that any isometry l can be written as l = x ◦ σ, where
x ∈ (F∗

q)
n and σ ∈ Sn.
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Proposition 4.5. Let σ ∈ Sn and Dσ = Pσ(1) + · · ·+ Pσ(n). Let G,G′ be two

rational divisors such that supp(G) ∩ P = supp(G′) ∩ P = ∅. If G ∼ G′ then the

codes C(X , D,G) and C(X , Dσ , G
′) are isometric.

Proof. If G ∼ G′ then there exists a rational function φ such that G−G′ =
div(φ) and L(G) = {φf : f ∈ L(G′)}. Thus C(X , D,G) = evP(φ) ∗ C(X , D,G′) =
evP(φ) ∗ σ−1(C(X , Dσ, G

′)). �

A converse of Proposition 4.5 is also true under some supplementary conditions
on n, see [36].

4.4. Duality. The dual of an algebraic geometry code is again an AG code.

Theorem 4.6. There exists a differential form ω with simple poles and residue

1 at every point Pi ∈ P. If W is the divisor of ω, then

C(X , D,G)⊥ = C(X , D,D +W −G).

Proof. (Sketch) The existence of such form ω is guaranteed by the indepen-
dence of valuations, see [45], Chapter I. The map L(D +W − G) → Ω(G − D),
φ 7→ φω is a well defined isomorphism of vector spaces. Furthermore

φ(Pi) = φ(Pi)resPi
(ω) = resPi

(φω)

where resP (η) denotes the residue at P of the differential form η. Let u ∈ C(X , D,G),
v ∈ C(X , D,D +W −G) and write u = evP(f),v = evP(φ). Then

u · v =

n
∑

i=1

f(Pi)φ(Pi) =

n
∑

i=1

f(Pi)resPi
(φω) =

n
∑

i=1

resPi
(fφω).

Since div(f) ≥ −G and div(φω) ≥ G−D, we have div(fφω) ≥ −D, so fφω has no
poles outside sop(D). Then

n
∑

i=1

resPi
(fφω) =

∑

P∈X

resP (fφω) = 0

where the right-hand equality follows from the Residue theorem ([45], Corollary
IV.3.3). Finally, since dim(C(X , D,G)) + dim(C(X , D,D +W −G)) = n, we get
the result. �

4.5. One-point codes and Weierstrass semigroups. If G is a multiple of
a single rational point Q of X and P is the set of rational points on X different
from Q, then the code C(X , D,mQ) is called one-point. These codes are, in general,
easier to study than the others.

The space L(mQ) is the set of rational functions with poles only at Q of order
at most m. The set of rational functions with poles only at Q

L(∞Q) =

∞
⋃

m=0

L(mQ)

is an Fq-algebra. The evaluation map evP is thus a morphism of Fq-algebras. As the
dimension of C(X , D, (n+2g−1)Q) is k = l((n+2g−1)Q)−l((n+2g−1)Q−D) = n,
we have C(X , D, (n + 2g − 1)Q) = F

n
q and evP is surjective. On the other hand,

from the properties of valuations it follows that −vQ is a weight function on L(∞Q)
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and this algebra becomes an order domain. So the theory developed in Section 3.4
can be applied. In particular, the chain of codes stated in equation 3.1, becomes

(0) ⊆ C(X , D, 0) ⊆ C(X , D,Q) ⊆ C(X , D, 2Q) ⊆ · · · ⊆ C(X , D,mQ) ⊆ · · ·

For simplicity we shall write v instead −vQ and ev instead evP whenever the point
Q and the set P are fixed. Also in order to simplify the exposition

from now on we shall assume n ≥ 2g

(otherwise we must distinguish several cases, which makes the exposition very cum-
bersome). The semigroup associated to the weight v,

H(v) = {v(f) : f ∈ L(∞Q), f 6= 0}

is now denoted H(Q) and called the Weierstrass semigroup of Q. As it happens for
general weight functions, m ∈ H(Q) iff l(mQ) 6= l((m − 1)Q) (and thus l(mQ) =
l((m−1)Q)+1). Then, whenm is a gap we have C(X , D,mQ) = C(X , D, (m−1)Q).
From Riemann-Roch theorem it holds that l(2gQ) = g+1 hence H(Q) has the same
genus g as the curve X . Since l((2g − 1)Q) = g, then H(Q) is symmetric when
l((2g − 2)Q) = g, that is when (2g − 2)Q is a canonical divisor.

Example 4.7 (Hermitian curves). Consider the curve H defined over the field
Fq2 by the affine equation

yq + y = xq+1.

H is called the Hermitian curve. Codes arising from this curve are the most studied
among all AG codes. H is a nonsingular plane curve, hence its genus is g =
q(q − 1)/2. Let us compute its rational points. H has exactly one point at infinity
Q = (0 : 1 : 0), which is the common pole of x and y. The map β 7→ βq + β is
the trace map from Fq2 to Fq and hence it is Fq-linear and surjective. Let α ∈ Fq2 .
Since αq+1 ∈ Fq, we deduce that the polynomial T q + T = αq+1 has q different
roots β in Fq2 . Then the line x = α intersects H at q different affine points, which
are rational over Fq2 . In terms of divisors

div(x− α) =
∑

β∈F
q2

,βq+β=αq+1

Pα,β − qQ

where Pα,β = (α : β : 1). A similar reasoning proves that when βq+β 6= 0, we have

div(y − β) =
∑

α∈F
q2

,αq+1=βq+β

Pα,β − (q + 1)Q.

In particular, from the first equality and since we have q2 choices for α, we deduce
that H has q3 rational affine points, that is q3 + 1 rational points in total. Then
H has the maximum possible number of rational points according to its genus as it
achieves the Hasse-Weil upper bound. It is a maximal curve.

Let us compute the Weierstrass semigroup H(Q). Once the divisors div(x−α)
and div(y − β) are known, we deduce that q and q + 1 are pole numbers, hence
〈q, q + 1〉 ⊆ H(Q). According to Example 3.7, the semigroup 〈q, q + 1〉 has genus
g = q(q − 1)/2 = g(H). Then we get equality H(Q) = 〈q, q + 1〉. In particular this
semigroup is symmetric.
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Example 4.8 (Hermitian codes). One-point codes over Fq2 coming from Her-
mitian curves are called Hermitian codes. Let Q be the point at infinity and P be
the set of all n = q3 affine points on H. Hermitian codes are the AG codes

C(H, D,mQ) = ev(L(mQ))

m = 0, 1, 2, . . . . To describe these codes explicitly we must determine the spaces
of rational functions L(mQ) and L(∞Q). The Weierstrass semigroup can be a
useful tool to accomplish this task. Write H(Q) = {v1 = 0, v2 . . . } as an increasing
enumeration of its elements. A basis of L(∞Q) is a set of functions {fi : i ∈ N}
such that v(fi) = vi, see Proposition 3.4. If m ∈ H(Q) then m can be written as a
linear combination m = λq+ µ(q+1), where λ and µ are nonnegative integers and
µ < q. Then v(xλyµ) = m. It follows that a basis of L(∞Q) is

{xλyµ : 0 ≤ λ, 0 ≤ µ < q}

and a basis of L(mQ) is

{xλyµ : 0 ≤ λ, 0 ≤ µ < q, λq + µ(q + 1) ≤ m}.

The parameters of these codes can be estimated from the arithmetic of H. For
example, let us show that for small values of m ∈ H , the minimum distance of
C(H, D,mQ) attains the Goppa bound. Let α ∈ F

∗
q2 and let α1, . . . αq+1 be the

roots of T q+1 = αq+1. These roots belong to Fq2 and are pairwise distinct, so
we can write Fq2 = {α1, . . . , αq+1, αq+2, . . . , αq2}. Let β1, . . . , βq be the roots of
T q+T = αq+1. Then for i > q+1, the affine points (αi, βj) are not in H(Fq2). Let
λ, µ be two integers such that 0 ≤ λ < q2 − q, 0 ≤ µ < q and let m = λq+µ(q+1).
Then m ∈ H,m < n and the function

f =

λ
∏

i=1

(x− αq+1+i)

µ
∏

j=1

(y − βj)

verifies div(f) = D′ −mQ, with 0 ≤ D′ ≤ D. Then, according to Proposition 4.2,
the code C(H, D,mQ) attains the Goppa bound, d(C(H, D,mQ)) = n−m. Since
all poles m ∈ H such that m < n− q2 can be written in the form m = λq+µ(q+1)
with 0 ≤ λ, 0 ≤ µ < q, we deduce that all Hermitian codes C(H, D,mQ) attain the
Goppa bound for m < n− q2. The same happens when m < n is a multiple of q,
m = λq. To see that it is enough to consider the function

f =

λ
∏

i=1

(x− αi).

We shall compute the minimum distances of all nonabundant Hermitian codes later,
seeing them as particular cases of Castle codes.

The same reasoning as in the above example shows that for an arbitrary curve X
the ring L(∞Q) is a finitely generated Fq-algebra. Take a generator set {a1, . . . , ar}
of H(Q) and functions ψ1, . . . , ψr such that v(ψi) = ai for i = 1, . . . , r. Then every
element inH(Q) is a combination of a1, . . . , ar with nonnegative integer coefficients,
hence L(∞Q) = Fq[ψ1, . . . , ψr].
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4.6. The dimension set and the order bound on the minimum dis-

tance. Keeping the notation of previous sections, let X be a curve of genus g
defined over the finite field Fq and let X (Fq) = {Q,P1, . . . , Pn} be the ratio-
nal points in X . Let P = {P1, . . . , Pn}. Consider the chain of one-point codes
(0) ⊆ C(X , D, 0) ⊆ · · · ⊆ C(X , D, (n + 2g − 1)Q) = F

n
q .

The dimensions of these codes can be obtained from the dimension set M =
{m1, . . . ,mn}. Let H = H(Q) = {v1 = 0 < v2 < . . . } be the Weierstrass semigroup
of Q and let Gaps(H) = {l1, . . . , lg} be the set of gaps of H . Let us remember that

M = {m ∈ N0 : C(X , D,mQ) 6= C(X , D, (m− 1)Q)}.
Proposition 4.9. M = {m ∈ H : ℓ(mQ−D) = ℓ((m− 1)Q−D)}.
Proof. If m ∈ M then ℓ(mQ) 6= ℓ((m− 1)Q) and m ∈ H . The kernel of the

evaluation map restricted to L(mQ) is L(mQ−D), so when m < n this evaluation
is injective and hencem ∈M if and only ifm ∈ H . Whenm ≥ n thenm−1,m ∈ H
which implies ℓ(mQ) = ℓ((m− 1)Q) + 1. Thus C(X , D,mQ) 6= C(X , D, (m− 1)Q)
if and only if both kernels are equal. �

Thus, for all nonnegative integers m < n we have m ∈M if and only if m ∈ H .
Then, once H is known, the problem of calculating M is reduced to determine its
last g elements. Since C(X , D, (n + 2g − 1)Q) = F

n
q we deduce that g elements of

{n, . . . , n+ 2g − 1} belong to M while the other g elements do not.

Proposition 4.10. If the divisors D and nQ are linearly equivalent, D ∼ nQ,

then M ∩ {n, . . . , n+ 2g − 1} = {n+ l1, . . . , n+ lg}.
Proof. If D ∼ nQ then n 6∈ M and n + v1, . . . , n + vg 6∈ M by the remark

after Lemma 3.13. The statement follows by cardinality reasons. �

Example 4.11 (Hermitian codes). As seen in Example 4.16, we have D ∼ nQ.
Then Proposition 4.10 gives M .

We can obtain estimates on the minimum distance of one-point codes by using
the order bound stated in Theorem 3.16:

d(C(X , D,mQ)) ≥ dORD(dim(C(X , D,mQ))).

This bound improves the classical Goppa bound d(C(X , D,mQ)) ≥ dG(C(X , D,
mQ)) = n−m as the next result shows. Let π be the smallest element in H̄ = H\M .
Note that π ≥ n. The sets Λ∗

i can be rewritten as Λ∗
i = {mj ∈M : mi +mj ∈M}

or, since H̄ + H ⊆ H̄ as noted after Lemma 3.13, as Λ∗
i = {m ∈ M : m −mi ∈

H} = (mi +H) ∩M .

Proposition 4.12. For all i = 1, . . . , n, we have dORD(dim(C(X , D,miQ))) ≥
dG(C(X , D, miQ)). If mi < π − lg then equality holds.

Proof. For the first statement it suffices to show that #(M \Λ∗
i ) ≤ mi for all

i. Since Λ∗
i = (mi+H)∩M , we have M \Λ∗

i ⊆ H \ (mi+H) and this follows from
the fact that #(H \ (mi +H)) = mi, stated in Lemma 3.8. If mi + lg < π, then all
elements in H \ (mi+H) are smaller than π and hence M \Λ∗

i = H \ (mi+H). �

Example 4.13 (Codes on the Suzuki curve). The Suzuki curve S is character-
ized as being the unique curve over Fq, with q = 2q20 , and q0 = 2r ≥ 2, of genus
g = q0(q− 1) having q2 +1 Fq-rational points, see [16]. Without going into details,
which would lead us too long, a plane singular model of S is given by the equation
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yq−y = xq0(xq−1). Thus, there is just one point Q over x = ∞ which is Fq-rational.
The Weierstrass semigroup of Q is known to be H(Q) = 〈q, q+q0, q+2q0, q+2q0+1〉
(see [26, 32]).

Let us consider the particular case q = 8. In this case the Suzuki curve has
genus g = 14 and 65 rational points. A plane model of S is given by the equation
y8z2−yz9 = x2(x8−xz7). This model is non-singular except at the point (0 : 1 : 0).
Being this singularity unibranched, the unique point Q lying over (0 : 1 : 0) is
rational. Let us consider the codes C(S, D,mQ), where D is the sum of all 64
rational points of S except Q. The Weierstrass semigroup at Q is

H = 〈8, 10, 12, 13〉
= {0, 8, 10, 12, 13, 16, 18, 20, 21, 22, 23, 24, 25, 26, 28,→}.

Then

qH∗ +H = {qvi + vj : vi, vj ∈ H, vi 6= 0}
= {64, 72, 74, 76, 77, 80, 82, 84, 85, 86, 87, 88, 89, 90, 92,→}.

By Corollary 3.14, M ⊆ H \ (qH∗ +H), so we obtain

M ⊆ {0, 8, 10, . . . (same as H) . . . , 63,

65, 66, 67, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 91}.

Since both sets have cardinality n = 64 we conclude that they are equal. An
straightforward computation gives the sequence (#Λ∗

i , 1 ≤ i ≤ 64): (64, 56, 54, 52,
51, 48, 46, 44, 43, 42, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30, 29, 28, 28, 26, 25,
24, 23, 22, 21, 20, 21, 18, 19, 16, 17, 16, 13, 12, 14, 10, 13, 8, 12, 10, 9, 8, 8, 6, 8,
7, 4, 5, 4, 4, 4, 5, 4, 3, 2, 2, 2, 2, 1). We find 14 nonabundant codes (m < 64) for
which the Goppa bound is improved (plus all the abundant ones). Specifically those
corresponding to the values mi ∈ {37, 45, 47, 49, 50, 53, 55, 57, 58, 59, 60, 61, 62, 63}.
In particular we find four codes [64, 37,≥ 16], [64, 58,≥ 4], [64, 62,≥ 2] and [64, 63,≥
2] achieving the best known parameters, see [34].

4.7. Duals of one-point codes. The dual of an one-point code is not one-
point in general. According to Proposition 4.6 we have C(X , D,mQ)⊥ = C(X , D,
D +W −mQ), where W is the divisor of a differential form ω with simple poles
and residue 1 at all points Pi ∈ P . Then we have the following result.

Proposition 4.14. If there exist a differential form ω with simple poles and

residue 1 at all points Pi ∈ P, such that div(ω) = (n + 2g − 2)Q − D then

C(X , D,mQ)⊥ = C(X , D, (n+ 2g − 2−m)Q).

In this case, the dual of an one-point code C(X , D,mQ) is again an one-point
code, C(X , D,mQ)⊥ = C(X , D, (n + 2g − 2 − m)Q). Thus we get two order
bounds on the minimum distance of this code, namely dORD(dimC(X , D,mQ))
and d⊥ORD(dimC(X , D, (n+ 2g − 2−m)Q)). Both bounds give the same result.

Proposition 4.15. If there exist a differential form ω with simple poles and

residue 1 at all points Pi ∈ P, such that div(ω) = (n + 2g − 2)Q − D, then

dORD(dimC(X , D,mQ)) = d⊥ORD(dimC(X , D, (n + 2g − 2−m)Q)).

The proof of this result can be found in [22].
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Example 4.16 (Duals of Hermitian and Suzuki codes). Consider the Hermitian
curve H over Fq2 . The function

f =
∏

α∈F
q2

(x− α)

has divisor div(f) = D − q3Q, where D is the sum of all n = q3 rational affine
points on H. Then div(f) = D− nQ. It can be proved (see [44]) that div(df/f) =
(n+2g−2)Q−D. Thus C(H, D,mQ)⊥ = C(H, D, (n+2g−2−m)Q). Analogously,
for the Suzuki curve S over Fq, the function

f =
∏

α∈Fq

(x− α)

verifies div(f) = D− nQ and div(df/f) = (n+2g− 2)Q−D. Then the dual of an
one-point Suzuki code is one-point too.

4.8. Improved codes. By choosing suitable functions f to be evaluated, in
some cases we can slightly change one-point codes improving their parameters. Let
δ be an integer, 0 < δ ≤ n. Let X ,P , Q as in the previous sections. Given functions
φ1, . . . , φn such that φi ∈ L(∞Q) and v(φi) = mi, we define the improved code

C(D,Q, δ) = 〈{ev(φi) : #Λ∗
i ≥ δ}〉.

From Proposition 2.3 it is clear that the minimum distance of C(D,Q, δ) is at
least δ. The sequence (Λ∗

i ) is said to be monotone for δ if for every i, j such that
#Λ∗

i ≥ δ and #Λ∗
j < δ we have that i < j. If (Λ∗

i ) is monotone for δ then

C(D,Q, δ) is an usual one-point code, so improved codes only improve one-point
codes for those δ for which the sequence is not monotone. In this case the code
C(D,Q, δ) depends on the choice of φ1, . . . , φn. In fact, if #Λ∗

i = δ and #Λ∗
j < δ

for some j < i, then v(φi + φj) = v(φi) but in general ev(φj) 6∈ C(D,Q, δ), hence
ev(φi+φj) 6∈ C(D,Q, δ). Thus we have a collection of improved codes with designed
distance δ, depending on the collection of sets {φ1, . . . , φn}.

Example 4.17 (Improved Suzuki codes). Let us consider the Suzuki curve S
over F8 of Example 4.13. In that example we computed the sequence (#Λ∗

i ). This
sequence is monotone for δ = 3, 5, 6, 9, 13, 14, 18, 20, 21. For example the one-point
code C(S, D, 70Q) has dimension 55 and distance at least 4 (that is dORD(55) = 4),
whereas C(D,Q, 4) has the same distance and dimension 57.

4.9. Bibliographical notes. Algebraic geometry codes (also called geometric
Goppa codes) were introduced by V.D. Goppa in in the seventies, [23, 24], as a
generalization of another family of codes previously invented by himself, that of
classical Goppa codes. AG codes became famous when M. Tsfasman, S.G. Vladuts
and T. Zink showed in the early eighties, that there exist infinite families of these
codes exceeding the Gilbert-Varshamov bound, [46]. The enormous interest aroused
by these codes has encouraged the study of the theoretical tools supporting them,
mainly algebraic geometry over finite fields.

Codes coming from many interesting curves have been studied in detail. For
what it is referring to the two main examples discussed in this chapter, Hermitian
codes were first studied by Stichtenoth, [44], and later by many authors. Their
minimum distances were computed in [47] and their complete weight hierarchies in
[2]. Suzuki codes were introduced by J. P. Hansen and H. Stichtenoth, [26]. The
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true minimum distances of codes on this curve are known in many cases, but not
always.

Besides one-point codes, which are the ones mainly discussed in this chapter,
codes over more than one point (two, three or more) have been also studied, [7, 28,
33]. The interested reader can find multiple-point codes on the Hermitian curve
[31], the Suzuki curve [32], or the Norm-Trace curve [41].

Many works have been devoted to the study of the order bound for AG codes.
In its original formulation this bound applies to the duals of one-point codes. A nice
generalization to arbitrary AG codes was given by P. Beelen [3] and later improved
by I. Duursma, R. Kirov and S. Park in a sequence of articles [9, 10, 11]. The
application of Andersen-Geil bound to one-point codes treated in this chapter is
due to O. Geil, C. Munuera, D. Ruano and F. Torres, [22].

5. Castle curves and Castle codes

As seen above, curves with many points with respect to its genus provide codes
with good parameters. This observation has led in recent years to an intensive
research in order to determine good bounds on the number of rational points of
a curve and to find curves with many points. For our purposes in this chapter is
relevant one of these bounds, due to Lewittes. This bound has the particularity
of being proved by using one-point codes. It links the number of points on the
curve to the Weierstrass semigroup of one of them. This fact makes the bound
particularly interesting for coding theory because the properties of this semigroup
strongly affect the parameters of the obtained codes.

5.1. The Lewittes bound on the number of rational points of an al-

gebraic curve. Let X be a curve over Fq and write X (Fq) = {Q,P1, . . . , Pn},
P = {P1, . . . , Pn}. Consider the one-point codes C(X , D,mQ). Let H = {v1 =
0, v2, . . . } be the Weierstrass semigroup of Q and v2 its multiplicity.

Theorem 5.1 (Lewittes-Geil-Matsumoto bound). Let X be a curve over Fq,

Q a rational point and H be the Weierstrass semigroup of Q. Then

#X (Fq) ≤ #(H \ (qH∗ +H)) + 1 ≤ qv2 + 1

where v2 is the multiplicity of H.

Proof. Let X (Fq) = {Q,P1, . . . , Pn}, P = {P1, . . . , Pn}, and consider the
one-point codes C(X , D,mQ). Then #X (Fq) = n = #M . By Corollary 3.14,
M ⊆ H \ (qH∗ +H). Taking cardinalities we obtain the first inequality. To see the
second one, note that qv2 + H ⊆ qH∗ +H and according to Lemma 3.8 we have
#(H \ (qv2 +H)) = qv2. �

The bound #X (Fq) ≤ #(H\(qH∗+H))+1 was stated by Geil and Matsumoto,
[20], improving the previous result #X (Fq) ≤ qv2 + 1 obtained by Lewittes, [29].

5.2. Castle curves. Let X be a curve over Fq. X is called Castle is there
exists a rational point Q ∈ X (Fq) such that:

(1) the Weierstrass semigroup of Q, H(Q) is symmetric; and
(2) the number of rational points on X reaches the Lewittes bound #X (Fq) =

qv2(Q) + 1

where v2(Q) is the multiplicity of H(Q).
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Example 5.2. Some of the curves previously discussed in this chapter are
Castle.
(1) A rational curve is clearly a Castle curve.
(2) The Hermitian curveH over Fq2 is a Castle curve. Let Q be the point at infinity.
The Weierstrass semigroup H = 〈q, q + 1〉 is symmetric of multiplicity v2 = q and
#X (Fq2) = q3 + 1.
(3) The Suzuki curve S is Castle. Let Q be the point over x = ∞. The Weierstrass
semigroup of Q, H(Q) = 〈q, q+q0, q+2q0, q+2q0+1〉 is telescopic (see [27]), hence
symmetric of multiplicity v2 = q. Since S has q2 + 1 rational points, it is a Castle
curve.

Many of the most interesting curves for Coding Theory purposes are Castle.
Let us see other examples.

Example 5.3. Let X be a hyperelliptic curve and Q a hyperelliptic rational
point. X is Castle if and only if Q is the only rational hyperelliptic point on X and
X attains equality in the hyperelliptic bound #{rational nonhyperelliptic points}+
2#{rational hyperelliptic points} ≤ 2q + 2.

Example 5.4 (The Norm-Trace curve). Let us consider the curve defined over
Fqr by the affine equation

x(q
r−1)/(q−1) = yq

r−1

+ yq
r−2

+ . . .+ y

or equivalently byNFqr |Fq
(x) = TFqr |Fq

(y), where the mapsN and T are respectively

the norm and trace from Fqr to Fq. This curve has 22r−1 + 1 rational points and
the Weierstrass semigroup at the unique pole Q of x is given by

H(Q) = 〈qr−1, (qr − 1)/(q − 1)〉 .
Since every semigroup generated by two elements is symmetric, this is a Castle
curve. Codes on these curves have been studied by Geil in [18], where the reader
can find proofs and details.

Example 5.5 (Generalized Hermitian curves). For r ≥ 2 let us consider the
curve Xr over Fqr defined by the affine equation

yq
r−1

+ . . .+ yq + y = x1+q + . . .+ xq
r−2+qr−1

or equivalently by sr,1(y, y
q, . . . , yq

r−1

) = sr,2(x, x
q , . . . , xq

r−1

), where sr,1 and sr,2
are respectively the first and second symmetric polynomials in r variables. Note
that X2 is the Hermitian curve. These curves were introduced by Garcia and
Stichtenoth in [17]. They have q2r−1 + 1 rational points. Let Q be the only pole
of x. Then H(Q) = 〈qr−1, qr−1 + qr−2, qr + 1〉. This semigroup is telescopic and
hence symmetric (see e.g. [27]). Therefore, Xr is a Castle curve. AG-codes based
on these curves were studied in [6] (binary case) and [40] (general case).

The next proposition states a fundamental property of Castle curves.

Proposition 5.6. Let X be a Castle curve with respect to a point Q ∈ X (Fq).
Write X (Fq) = {Q,P1, . . . , Pn} and let D = P1 + · · ·+ Pn.

(1) Let f ∈ L(∞Q) be such that v(f) = v2. For every a ∈ Fq we have

div(f − a) = Da − v2Q with 0 ≤ Da ≤ D.

(2) D ∼ nQ.
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Proof. (1) The morphism f : X → P
1 has degree v2 hence #f−1(a) ≤ v2 for

all a ∈ Fq. Since #X (Fq) = qv2 we conclude that #f−1(a) = v2. Then there exist
exactly v2 points P ∈ X (Fq) such that f(P ) = a. (2) Consider the one-point codes
C(X , D,mQ) and the function φ = f q − f . v(φ) = qv2 = n and φ(Pi) = 0 for all
Pi. Then φ ∈ L(nQ −D) hence D ∼ nQ. �

Corollary 5.7. Let X be a Castle curve of genus g with respect to a point Q ∈
X (Fq). Let X (Fq) = {Q,P1, . . . , Pn} and D = P1+· · ·+Pn. Then (n+2g−2)Q−D
is a canonical divisor.

Proof. (n+2g−2)Q−D ∼ (2g−2)Q. Since H is symmetric this is a canonical
divisor. �

Remark 5.8. Let φ be the function defined in the proof of Proposition 5.6. It
can be proved that the differential form ω = dφ/φ has simple poles and residue 1
at all points Pi. So ω is the differential form for which we asked in Proposition 4.6.

Let us remember that by γr we denote the r-th gonality of X over Fq.

Proposition 5.9. Let X be a Castle curve with respect to a point Q ∈ X (Fq)
with Weierstrass semigroup H = {v1 = 0, v2, . . . }. If the multiplicity at Q satisfies

v2 ≤ q + 1, then

(1) γi ≤ vi for all i = 1, 2, . . . .
(2) γ2 = v2.
(3) γi = vi for i ≥ g − γ2 + 2.

Proof. (1) Follows from the definition of gonality. (2) There is a non-constant
morphism of degree γ2 from X to the projective line. Then qv2 + 1 = #X (Fq) ≤
γ2(q+ 1), so (qv2 + 1)/(q+ 1) = v2 − (v2 − 1)/(q+ 1) ≤ γ ≤ v2. By our hypothesis
v2 ≤ q + 1, it holds that (v2 − 1)/(q + 1) < 1 and we get the equality. (3) The
statement about the gonalities of high order follows from the fact that both, the
semigroup H and the set of gonalities GS(X ) = (γr)r≥1 verify the same symmetry
property: for every integer t, it holds that t ∈ H (resp. t ∈ GS(X )) if and only if
2g − 1− t 6∈ H (resp. 2g − 1− t 6∈ GS(X )). �

5.3. Codes on Castle curves. Let X be a Castle curve of genus g over
Fq with (n + 1) Fq-rational points, X (Fq) = {Q,P1 . . . , Pn}. A Castle code is
a one-point code C(X , D,mQ) constructed from X and P = {P1, . . . , Pn}. Let
H = H(Q) = {0 = v1 < v2 < . . .} be the Weierstrass semigroup of Q. The
dimension set M can be easily obtained: by Propositions 4.10 and 5.6, M = {m ∈
H : m < n}∪{n+l1, . . . , n+lg} = H \(n+H). Define the function ι = ιQ : N0 → N

by ι(m) = max{i : vi ≤ m}. Note that ι(m) = ℓ(mQ).

Proposition 5.10. Let m be a nonnegative integer. The Castle code C(X , D,

mQ) has dimension k = ι(m)− ι(m− n) and abundance ι(m− n).

We now turn to the minimum distance.

Proposition 5.11. Let C(X , D,mQ) be a Castle code. Then

(1) for 1 ≤ m < n, C(X , D,mQ) reaches Goppa bound if and only if C(X , D,

(n−m)Q) does.
(2) For 1 ≤ r ≤ q − 1, d(C(X , D, rv2Q) = n− rv2.
(3) For n− v2 ≤ m ≤ n, d(C(X , D,mQ) = v2.
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Proof. (1) As seen in Proposition 4.2, C(X , D,mQ) reaches equality in the
Goppa bound if and only if then there exists D′, 0 ≤ D′ ≤ D such that mQ ∼ D′.
Let D′′ = D−D′. Thus mQ ∼ D−D′′ ∼ nQ−D′′, hence (n−m)Q ∼ D′′ and the
code C(X , D, (n−m)Q) also reaches equality in the Goppa bound. (2) Follows from
Propositions 4.2 and 5.6(1). (3) v2 = d(C(X , D, (n − v2)Q) ≥ d(C(X , D,mQ) ≥
d(C(X , D, nQ) ≥ v2. The first equality comes from item (2) of this proposition and
the last inequality is the improved Goppa bound on the minimum distance. �

Example 5.12. The bound dORD was computed for codes on the Suzuki curve
over F8 in Example 4.13. In particular we found the result d(C(S, D, 62Q)) ≥
d(C(S, D, 63Q)) ≥ 6. By using Proposition 5.11 we get now d(C(S, D, 62Q)) =
d(C(S, D, 63Q)) = 8. So this last one is a [64, 50, 8] code and again we the get
a code with the best known parameters according to [34]. Furthermore this fact
shows that the bound dORD does not always improve on the improved Goppa bound
d(C(X , D,mQ)) ≥ n− deg(G) + γa+1.

The cardinalities #Λ∗ can be now computed in a simple way.

Lemma 5.13. For Castle codes it holds that M = {m ∈ H : n+2g−1−m ∈ H}.
As a consequence, mn−r+1 = n+ 2g − 1−mr for r = 1, . . . , n.

Proof. Letm ∈ H . From Riemann-Roch theorem, ℓ(mQ−D) = m−n+1−g+
ℓ((n+2g−2−m)Q), hence ℓ(mQ) = ℓ((m−1)Q) if and only if ℓ((n+2g−2−m)Q) =
ℓ((n + 2g − 1 −m)Q), that is if and only if n + 2g − 1 −m ∈ H . The conclusion
mn+1−r = n+ 2g − 1−mr is clear. �

For i = 1, . . . , n, let Li = mi +Gaps(H) = {mi + l1, . . . ,mi + lg}.
Proposition 5.14. For Castle codes, #Λ∗

i = n− i+ 1−#(Li ∩M).

Proof. Since M = {m ∈ H : m < n}∪ {n+ l1, . . . , n+ lg} = H \ (n+H) and
H is symmetric, we have M = {0, . . . , n + 2g − 1} \ L, where L = {l1, . . . , lg, n +
2g − lg − 1, . . . , n+ 2g − l1 − 1}. For i = 1, . . . , n, let

Ui = {mj ∈M : mi +mj < n+ 2g,mi +mj 6∈M},
Vi = {mj ∈M : mi +mj ≥ n+ 2g}.

Clearly #Λ∗
i = #{mj : mi + mj ∈ M} = #(M \ (Ui ∪ Vi)) = n − #Ui − #Vi.

Since M ⊂ H , we have Ui = {mj ∈ M : mi + mj ∈ L} = {n + 2g − 1 − lg −
mi, . . . , n+ 2g − 1− l1 −mi} ∩M . According to Lemma 5.13, #Ui = #(Li ∩M).
Besides #Vi = i− 1. In fact, if mi +mj ≥ n+ 2g, from Lemma 5.13, we can write
mj = n+ 2g− 1−mt with t = n− j + 1. Then n+ 2g− 1 +mi −mt > n+ 2g− 1
if and only if mi > mt and there exists i− 1 such choices for mt. �

Then for Castle codes we have

d(C(X , D,mkQ)) ≥ dORD(k) = min{n− r + 1−#(Lr ∩M) : r ≤ k}.
Example 5.15 (Hermitian codes). The minimum distances of Hermitian codes

C(H, D,mQ) were computed in Example 4.8 for m in the range 0 ≤ m ≤ n− q2.
We shall study now the case n− q2 < m < n. Note that all m in this range are pole
numbers and n−m ≤ n− q2. Write m = n−aq− b with 0 ≤ a, b < q. If b ≤ a then
n −m ∈ H hence Proposition 5.11(1) and Example 4.8 ensure that C(H, D,mQ)



24 CARLOS MUNUERA AND WILSON OLAYA-LEÓN

reaches the Goppa bound, d(C(H, D,mQ)) = dG(C(H, D,mQ)) = n−m = aq+ b.
If b > a, then

d(C(H, D, (n − aq − a− 1)Q)) ≤ d(C(H, D, (n− aq − b)Q)

≤ d(C(H, D, (n− (a+ 1)q)Q)) = (a+ 1)q.

A straightforward computation using Proposition 5.14 shows that

dORD(C(H, D, (n− aq − a− 1)Q)) = (a+ 1)q

so we get equality, d(C(H, D, (n − aq − b)Q)) = (a+ 1)q.

Finally we sate a duality property of Castle codes. As a consequence of Propo-
sitions 4.5, 4.14 and Corollary 5.7, we have the following.

Proposition 5.16. For Castle codes, there exist x ∈ (F∗
q)

n such that C(X , D,

mkQ)⊥ = x ∗ C(X , D, (n+ 2g − 2−mk)Q) for all k = 1, . . . , n.

Codes verifying the duality relation of the above proposition are called isometry

dual. Let B = {b1, . . . ,bn} be a basis of Fn
q such that C(X , D,mrQ) = 〈b1, . . . ,br〉,

r = 1, . . . , n. A vector x ∈ (F∗
q)

n providing the isometries stated in the proposition
can be explicitly obtained from the duality relations, which lead to the system of
linear equations (bi ∗ bj) · x = 0, i+ j ≤ n.

Since isometric codes have equal minimum distance, we can obtain estimates
on the minimum distance of Castle codes by using both the order and dual order
bounds. It can be proved that both bounds give the same result.

Proposition 5.17. For Castle codes we have #N∗
n−r = #Λ∗

r, r = 1, . . . , n. As
a consequence

dORD(C(X , D,mkQ)) = min{#N∗
r : r = n− k, . . . , n− 1}.

Proof. According to Lemma 5.13, for Castle codes it holds that mn+1−r =
n+ 2g − 1−mr. Then

#N∗
n−r = #{(i, j) : mi +mj = mn−r+1}

= #{(i, j) : mr +mj = mn−i+1}
= #{(r, j) : mr +mj ∈M}
= #Λ∗

r .

The conclusion is clear. �

5.4. Bibliographical notes. Castle curves and codes were introduced in [38]
and generalized in [39]. The computation of dORD for some Castle codes (including
all Hermitian and Suzuki codes) can be found in the article [42]. For Hermitian
codes this bound provides the true minimum distance of C(H, D,mQ) for all m,
see [27]. Such distances were first computed by K. Yang and P.V. Kumar in [47]
(without using order bounds).

6. Feng-Rao decoding

In this section we show a very general decoding method for codes Ck belonging
to chains, as those treated in Section 2. Keeping the notations used in that section,
let B = {b1, . . . ,bn} be a basis of Fn

q and Cr = 〈b1, . . . ,br〉, r = 1, . . . , n. By using
the information given by the whole chain C0 = (0) ⊂ C1 ⊂ · · · ⊂ Cn = F

n
q we can

decode Ck.
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If these codes are one-point AG codes, Cr = C(X , D,mrQ), then we take the
basis vectors b1 = ev(φ1), . . . ,bn = ev(φn), where v(φr) = mr, as treated in
previous sections.

6.1. Preparation step. Our decoding algorithm works for dual codes. hence
we first consider a dual basis D = {h1, . . . ,hn} of Fn

q verifying

bi · hj =

{

0 if i+ j < n+ 1
6= 0 if i+ j = n+ 1

where · stands for the usual inner product in F
n
q . These conditions imply the duality

relations

〈h1, . . . ,hn−r〉 = C⊥
r = 〈b1, . . . ,br〉⊥

or equivalently 〈h1, . . . ,hr〉⊥ = Cn−r for all r = 1, . . . , n. If the chain C0 = (0) ⊂
C1 ⊂ · · · ⊂ Cn = F

n
q verifies a duality relation C⊥

r = Cn−r, r = 0, . . . , n, then we take

hi = bi. If the chain verifies an isometry-dual relation C⊥
r = x ∗ Cn−r, r = 0, . . . , n

(the case of Castle codes), then we take hi = x ∗ bi, i = 1, . . . , n.
Once the basis D has been fixed, we consider the dual chain

C⊥
n = (0) ⊂ C⊥

n−1 ⊂ · · · ⊂ C⊥
k+1 ⊂ C⊥

k ⊂ · · · ⊂ C⊥
0 = F

n
q

and let ρD : Fn
q → {0, . . . , n} be the sorting map relative to the basis D, defined by

ρD(v) = min{i : v ∈ 〈h1, . . . ,hi〉} if v 6= 0. A pair of basis vectors (hr,hs) is well-
behaving with respect to D if for all (i, j) ≺ (r, s) we have ρD(hi∗hj) < ρD(hr ∗hs).
Remember that for r = 0, 1, . . . , n− 1, we define the sets

Nr = {(i, j) : (hi,hj) is well-behaving with respect to D and ρD(hi ∗ hj) = r + 1}.
All these sets are precomputed in the preparation step. The dual order bound
with respect to D, stated in Theorem 2.7, ensures that the minimum distance of
Ck = 〈h1, . . . ,hn−k〉⊥ satisfies d(Ck) ≥ δ = min{#Nr : r = n − k, . . . , n − 1}. We
can decode Ck up to (δ − 1)/2 errors by using majority voting.

When we consider one-point AG codes then we can manage the sets N∗
r in-

stead of Nr. If these codes are Castle, Proposition 5.17 implies that the Feng-Rao
algorithm corrects errors of weight up to one half the order bound.

6.2. Syndromes. Let u = c + e be a received word, where c ∈ Ck and e is
the error vector. Assume wt(e) ≤ (δ − 1)/2. To decode u we shall compute the
syndromes

s1 = h1 · e, . . . , sn = hn · e.
Consider the matrix H whose rows are the vectors h1, . . . ,hn. H has full rank n
and HeT = sT , where s = (s1, . . . , sn). Once all one-dimensional syndromes si
are known we can deduce the error vector by solving a system of linear equations.
Note that s1, . . . , sn−k can be derived from u: as C⊥

k = 〈h1, . . . ,hn−k〉, for i =
1, . . . , n− k, we have

hi · u = hi · (c+ e) = hi · e = si.

In order to compute sn−k+1, . . . , sn, we shall use two-dimensional syndromes

srt = (hr ∗ ht) · e, 1 ≤ r, t ≤ n.

Let S be the matrix S = (srt), 1 ≤ r, t ≤ n. As seen in Section 2.4, this matrix
can be written also as S = HD(e)HT , where D(e) is the diagonal matrix with e
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in its diagonal. Since H has full rank, we have rank(S) = rank(D(e)) = wt(e). For
1 ≤ i, j ≤ n let us consider the submatrix of S

S(i, j) = (srt), 1 ≤ r ≤ i, 1 ≤ t ≤ j.

An entry (i, j) is a discrepancy of S if rank(S(i − 1, j − 1)) = rank(S(i − 1, j)) =
rank(S(i, j− 1)) and rank(S(i− 1, j− 1)) 6= rank(S(i, j)). Clearly the total amount
of discrepancies in S is rank(S) = wt(e).

6.3. Computing unknown syndromes. Assume that s1, . . . , sl are known
and sl+1 is the smallest unknown syndrome. Let (i, j) ∈ Nl. The well-behaving
property implies that for each (r, t) ≺ (i, j) we have ρD(hr ∗ ht) < ρD(hi ∗ hj) =
l + 1. Then there exist λ1, . . . , λl such that hr ∗ ht = λ1h1 + · · · + λlhl and
srt = λ1s1+ · · ·+λlsl. Thus the matrices S(i−1, j−1),S(i−1, j) and S(i−1, j−1)
are known. If these three matrices have equal rank, then (i, j) is called a candidate.
Let K be the number of discrepancies in the known part of S. If (r, t) is a known
discrepancy, then all entries (r, t′) and (r′, t) with r′ > r, t′ > t are noncandidates.
Conversely, if (i, j) ∈ Nl is not a candidate then there exists a known discrepancy
in its same row or column. Thus the number of pairs (i, j) ∈ Nl which are not
candidates is at most 2K. If wt(e) ≤ (#Nl − 1)/2, then

number of candidates ≥ #Nl − 2K ≥ #Nl − 2wt(e) > 0

and there always exist candidates. Let (i, j) be one of them. There is a unique value
s′ij of entry (i, j) such that rank(S(i−1, j−1)) = rank(S(i, j)). The candidate (i, j)
is called true if s′ij = sij and false if s′ij 6= sij . Since sl+1 is unknown, then so is
sij and we cannot check in advance whether a candidate is true or false. However,
a candidate (i, j) is false if and only if it is a discrepancy, hence there are at most
wt(e) false candidates in S. As wt(e) is ’small’, most candidates will be true. Let
us formalize this idea.

Let T and F be respectively the number of true and false candidates in Nl.
Since a false candidate is a discrepancy and the total number of discrepancies is
wt(e), we have K + F ≤ wt(e) ≤ (#Nl − 1)/2. Combining this inequality with

#Nl = #candidates + #noncandidates ≤ (T + F ) + 2K

we obtain F < T and the majority of candidates are true.
For each candidate (i, j), compute s′ij and suppose sij = s′ij . This assumption

leads to a predicted value s′l+1 of sl+1 as above: since ρD(hi ∗ hj) = l + 1, we can
write hi∗hj = λ1h1+· · ·+λl+1hl+1 with λl+1 6= 0. Then sij = λ1s1+· · ·+λl+1sl+1.

Define the vote of (i, j) as s′l+1 = λ−1
l+1(s

′
ij − λ1s1 − · · · − λlsl).

Compute the votes of all candidates (i, j) ∈ Nl. Since the majority of candi-
dates are true, we can derive the correct value of sl+1 as the most voted among all
candidates.

Once this value is known we proceed to the next unknown syndrome. If
wt(e) ≤ (δ − 1)/2 then wt(e) ≤ (#Nl − 1)/2 for all l = n − k, . . . , n − 1 and
all syndromes sn−k+1, . . . , sn can be computed. Assuming that all these sets Nl

have been precomputed, the complexity of this algorithm is that of solving a linear
system of n equations in n unknowns, that is O(n3).

6.4. Bibliographical notes. The idea of using majority voting for unknown
syndromes is due to G.L. Feng and T.N.T. Rao [12] and I. Duursma, [8]. The
original algorithm was designed for duals of primary AG codes. A full and nice
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description for duals of codes coming from order domains can be found in [27]. A
generalization to a broad class of codes, including primary codes, was done in [21].
Our presentation is a mixture of these two works.

Decoding AG codes is a very active area of research today. General AG codes
C(X , D,G) can be decoded by several methods. Here we just cite the nice report
[4] by Beelen and Høholdt, which is close to the ideas presented in this chapter.

6.5. An example. Let us consider the Hermitian curve H : y2 + y = x3

defined over the field F4 = {0, 1, α, α2}, where 1+α = α2. H has genus 1 and nine
rational points, namely Q = (0 : 1 : 0) and the eight affine points

P1 = (0, 0), P3 = (1, α), P5 = (α, α), P7 = (α2, α),
P2 = (0, 1), P4 = (1, α2), P6 = (α, α2), P8 = (α2, α2).

Let P = {P1, . . . , P8} and consider the codes C(H, D,mQ), m = 0, . . . , 9. The
Weierstrass semigroup of Q is H = 〈2, 3〉 = {0, 2, 3,→}, and the dimension set is
M = {0, 2, 3, 4, 5, 6, 7, 9}. Then, a basis B of F8

4 is then given by the vectors

b1 = evP(1) = (1, 1, 1, 1, 1, 1, 1, 1)
b2 = evP(x) = (0, 0, 1, 1, α, α, α2, α2)
b3 = evP(y) = (0, 1, α, α2, α, α2, α, α2)
b4 = evP(x

2) = (0, 0, 1, 1, α2, α2, α, α)
b5 = evP(xy) = (0, 0, α, α2, α2, 1, 1, α)
b6 = evP(x

3) = (0, 0, 1, 1, 1, 1, 1, 1)
b7 = evP(x

2y) = (0, 0, α, α2, 1, α, α2, 1)
b8 = evP(x

3y) = (0, 0, α, α2, α, α2, α, α2)

In view of the duality property of Hermitian codes we can take D = B. Consider
the code C = C(H, D, 3Q) of dimension 3. A direct computation gives

Λ∗
1 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8)}

Λ∗
2 = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 7)}

Λ∗
3 = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 6)}

N∗
5 = {(1, 6), (2, 4), (3, 3), (4, 2), (6, 1)}

N∗
6 = {(1, 7), (2, 5), (3, 4), (4, 3), (5, 2), (7, 1)}

N∗
7 = {(1, 8), (2, 7), (3, 6), (4, 5), (5, 4), (6, 3), (7, 2), (8, 1)}

hence both, the order and dual order bounds, ensure d(C) ≥ 5, which is the true
minimum distance of C according to Example 4.8. Then it can correct up to 2
errors.

Since k = 3, the code C allows us to encode 3-tuples z ∈ F
3
4 by 8-tuples

c ∈ C. Suppose we want to transmit the message z = (1, 1, 1). It is encoded
as c = 1b1 + 1b2 + 1b3 = (1, 0, α, α2, 1, 0, 0, 1). Suppose we receive the word
u = (0, 0, α, 1, 1, 0, 0, 1) with error e = (1, 0, 0, α, 0, 0, 0, 0). To decode c we first
compute the known one-dimensional syndromes of e

s1 = b1 · e = α2, s2 = b2 · e = α, s3 = b3 · e = 1, s4 = b4 · e = α, s5 = b5 · e = 1.
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The smallest unknown syndrome is s6. Using the information given by s1, . . . , s5
and N∗

5 , the known part of S is

S =

























α2 α 1 α 1 ∗
α α 1 ∗
1 1 ∗
α ∗
1
∗

























where the entries in N∗
5 are marked with ∗. Since rank(S(2, 2)) = 2 there is a

unique candidate: (3, 3). As s′3,3 = α2 and b3 ∗ b3 = b3 + b6, it votes for s6 =

s′3,3 − s3 = α2 + 1 = α.
Once this syndrome is known let us compute s7. We first update the matrix

S =

























α2 α 1 α 1 α ∗
α α 1 α ∗
1 1 α2 ∗
α α ∗
1 ∗
α
∗

























.

As above, the entries in N∗
6 are marked with ∗. Candidates are (3, 4) and (4, 3).

A simple computation gives s′3,4 = 1, s′4,3 = 1, and both vote for s7 = 1. Let us
compute s8. The current form of S is

S =

























α2 α 1 α 1 α 1 ∗
α α 1 α 1 α ∗
1 1 α2 1 α2 ∗
α α 1 α ∗
1 1 α2 ∗
α α ∗
1 ∗
∗

























.

Candidates are (3, 6), (4, 5), (5, 4) and (6, 3). We get s′3,6 = 1, s′4,5 = 1, s′5,4 =
1, s′6,3 = 1. All of them vote for s8 = 1.

Once all one-dimensional syndromes are known, we deduce the error vector e
by solving the system s1 = b1 · e, . . . , sn = bn · e. In our case, as expected, e =
(1, 0, 0, α, 0, 0, 0, 0), hence c = u − e = (0, 0, α, 1, 1, 0, 0, 1)− (1, 0, 0, α, 0, 0, 0, 0) =
(1, 0, α, α2, 1, 0, 0, 1). Finally we write c as a linear combination of b1,b2,b3, ob-
taining c = b1 + b2 + b3. The original message was z = (1, 1, 1).
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