This is page i
Printer: Opaque this

The Computational Complexity of The
Abelian Sandpile Model

Juan Andres Montoya, Carolina Mejia

June 2011

ii

ABSTRACT This is the first volume of a series of studies related to the
complexity theoretical analysis of statisitical mechanics. In this first work
we have considered some predicting tasks arising in statistical mechanics.
Predicting the evolution of dynamical systems is one of the foundational
tasks of natural sciences. Statistical mechanics is mainly concerned with
finite dynamical systems, which are more easy (from the conceptual point
of view) of analyzing. We have chosen to work with one specific system of
statisitical mechanics: The Abelian Sandpile Model.

This is page iii
Printer: Opaque this

Contents
0.1 Organization of the work vi
0.2 Acknowledgements L. vi
1 Basics vii
1.1 Lattices vii
1.2 Complexity theory viii
1.2.1 Parallel complexity viii
1.3 Exercises X
2 The Complexity of Predicting xi
2.1 Prediction problems and Boltzmann systems xi
2.2 Prediction problems and PSPACE xii
2.3 Exercises Lo xvi
3 The Abelian Sandpile Model xvii
3.1 Exerciseso XXVi
4 Algorithmic problems xxvii
4.1 The algorithmic problems xxvii
4.2 The relative hardness of sandpile prediction problems . . . xxix
4.3 EXerciseso xxxiii
5 Statistics of critical avalanches XXXV
5.1 Exercises xli

6 Dimension 1 x1iii

Contents

6.1 GC[L4] belongs to logDCFL
6.2 SPA[Ly]is TC%hard
6.3 A long remark: one-dimensional critical avalanches
6.4 ExXercises

Dimension 2

xlvi
xlviii
xlix

li

7.1 The hardness of two-dimensional sandpile prediction problems li

7.2 Two-dimensional critical avalanches
7.3 Exercises

Dimension 3

8.1 RR[Lg]is P-complete
8.2 Strict P-completeness of SPP[Ls]
8.3 Three dimensional critical avalanches
84 Exercises

Open problems
9.1 Directed sandpiles
9.2 The complexity of two-dimensional sandpiles

References

liii

Iv
Iv
Ivii
Ix
Ixii
Ixiii
Ixiii
Ixv

Ixvii

Preface

Predicting the evolution of dynamical systems is one of the main tasks of
natural science. Can we always predict? Chaos theory claims that there
are dynamical systems which are unpredictable. In this work we are in-
terested in analyzing the predictability of finite dynamical systems, which
are predictable. We are interested in a strong notion of predictability: a
dynamical system S is strongly-predictable if and only if we can predict the
evolution of § without parsimoniously simulating its dynamics. We focus
our attention on The Abelian Sandpile Model. Also, we consider the fol-
lowing technical question: Can we predict the evolution of a finite sandpile
in polylogarithmic parallel time? or, do prediction problems related to The
Abelian Sandpile Model belong to NC?

Our work is close related to the work of Moore and Machta (see for in-
stance [MMG], [Mo]), which is concerned with the algorithmic complexity
of simulating finite dynamical systems. In this work we study some predic-
tion problems related to The Abelian Sandpile Model, which can be con-
sidered as a class of finite cellular automata (Boltzmann Systems). There
are many works dealing with the algorithmic and physical complexity of
Sandpile Prediction Problems (see for instance [BTW], [D], [M], [Mo]).

In this work we prove that prediction problems belong to PSPACE,
we prove that the general prediction problem for Boltzmann Systems is
PSPACE complete, and we prove lower bounds for the restriction of The
Sandpile Prediction Problem to low-dimensional lattices. Furthermore, we
believe that we are defining the basis of a research project concerned with
the analysis of the short term dynamics of finite cellular automata.

This is page v
Printer: Opaque this

vi Contents

0.1 Organization of the work

0.2 Acknowledgements

Authors would like to thanks all the people that contribute with the writ-
ing of this booklet. We apologize if we forget to mention someone of our
co-workers, friends, students and supporters. We want to thanks the grad-
uate students that have taken part in our seminar (Computational Com-
plexity of Statistical Mechanics), special thanks go to Sergio Andres Mon-
toya, Francisco Javier Gutierrez and Sterling Castaneda. Thanks go also
to our co-workers Carlos Arturo Rodriguez and Rafael Isaacs, and to our
sandpile-friend Anahi Gajardo. This work would not see the light of day
without the financial support of VIE-UIS and Colciencias research project
111518925292.

Bucaramanga, Enero de 2011.

1

Basics

In this chapter we introduce some of the notation that will be used along
the work, and some of the mathematical concepts that we will use in some
places of this work. Furthermore, we will introduce some basic facts, and
some basic concepts of complexity theory. We will focus our attention on
parallel complexity, which provide us with a conceptual machinery that can
be used to analyze the algorithmic hardness of most sandpile prediction
problems.

1.1 Lattices

Lattice graphs are discrete versions of the euclidean space, because of this
they have played an important role in statistical mechanics: lattices are the
underlying graphs of most of the graphical models of statistical mechan-
ics. We will focus our attention on the restriction of the abelian sandpile
model to low-dimensional lattices, specifically we will consider the restric-
tion of the abelian sandpile model to linear lattices, square lattices and cu-
bic lattices (one-dimensional, two-dimensional and three-dimensional cubic

lattices).
Given n > 1, we use the symbol G} to denote the linear lattice of order
n, whose vertex set is equal to [n|, where [n] = {1,...,n} and the edge

relation is the nearest neighbor relation. We use the symbol £ to denote
the linear sandpile lattice of order n, which is obtained from G} by adding
a node s which is called the sink. Furthermore, given v, a node on the

This is page vii
Printer: Opaque this

viii 1. Basics

border of G}, there are one edge in £ connecting v and s. Note that given
v € V(LL) — {s}, we have that deg(v) = 2. We use the symbol L; to
denote the class {£} :n >1}.

We use the symbol G2 to denote the square lattice of order n, whose
vertex set is equal to [n] x [n]. We use the symbol £2 to denote the square
sandpile lattice of order n, which is obtained from G2 by adding a node s
which is called the sink. Furthermore, given v a node on the border of G2,
there are 4 — degg» (v) edges in L2 connecting v and s. Note that given
v € V(£2) — {s}, we have that deg(v) = 4. We use the symbol L5 to
denote the bounded class {£2 :n >1}.

Finally, we use the symbol G3 to denote the cubic lattice of order n,
whose vertex set is equal to [n] x [n] x [n] . We use the symbol £3 to denote
the cubic sandpile lattice of order n, which is obtained from G3 by adding
a node s called the sink. Furthermore, given v a node on the border of G2,
there are 6 — deggs (v) edges in L3 connecting v and s. Note that given
v € V(L£3) — {s}, we have that deg(v) = 6. We use the symbol L3 to
denote the bounded class {£3 :n > 1}

1.2 Complexity theory

In this section we introduce some basic facts (and concepts) of Complexity
Theory. Complexity Theory analyzes algorithmic problems with respect to
their intrinsic hardness. The final goal of Complexity Theory is to determine
the exact amount of computational resources required to solve a given
problem. A very good introduction to the field is the reference [P].

1.2.1 Parallel complexity

We will analyze problems that can be solved in polynomial time. Let L be a
computational problem, knowing that L is polynomial time solvable is not
the last word, some additional questions can be stated: Can L be solved
using logarithmic space? Can L be solved in polylogarithmic time using a
polynomial number of processors? Actually, these are the questions that
we consider when analyzing the predicting tasks associated to The Abelian
Sandpile Model. Because of this, we want to use this preliminary chapter
to introduce the basic ideas of Parallel Complexity, which is a complexity
theory well suited for dealing with the kind of questions we are considering.

First at all we introduce the classes NC?, where i belongs to N. These
classes can be introduced via uniform families of circuits with some specific
constraints related to size, depth, fan in and fan out. We will introduce
those classes from a pragmatic point of view as the classes of problems
that can be solved in polylogarithmic time using a polynomial number of
Processors.

1.2 Complexity theory ix

Definition 1 Given i > 1 we have that NC' is the class of problems that
can be solved in time O (logl (n)) using a polynomial number of processors.

A fundamental notion of parallel complexity is the notion of NC-reduction,
intuitively NC' reductions are Turing reductions that can be computed in
polylogarithmic time.

Definition 2 Given L and II two problems, we say that L is NC* reducible
to Il if and only if there exists a Turing reduction of L in I1 which can be
computed in time O (log" (n)) using a polynomial number of processors.

There are some other polylogarithmic classes which will play an impor-
tant role in our work.

Definition 3 (further polylogarithmic classes)

1. L is the class of problems that can be solved using a logarithmic space
bounded deterministic Turing Machine.

2. NL is the class of problems that can be solved using a logarithmic
space bounded nondeterministic Turing Machine.

3. A logspace reduction is a Turing reduction which can be computed
using logarithmic space.

4. logDCFL is the class of problems which are logspace reducible to a
deterministic context free language.

5. TCY is the class of problems which can be solved using a polynomial
size uniform family of circuits of bounded depth defined on the logical
basis {A\,V,~}.

6. We say that L is TC® hard if and only if the majority function is
constant depth reducible to L, that is: L is TCY hard if and only if
there exists a reduction of Maj, the problem consisting in computing
the majority function, in L which can be computed using a polynomial
size uniform family of circuits of constant depth.

Remark 4 The definition of TC° hardness is based on Hastad-Sipser the-
orem, which says that Maj doesn’t belong to TC®. Note that given L an
algorithmic problem, if L is TC® hard we have that L ¢ TC°, the problem
L requires unbounded depth.

It is known that
TC’ c NC' ¢ L c NL ClogDCFLC NC?*C..c NC'c NC*'c..cP

Also, we have a hierarchy of complexity classes, and our goal is to find
the right place, within this hierarchy, of each one of the problems that we
want to analyze.

X 1. Basics

A last concept is the important concept of P-completeness. Intuitively,
a P-complete problem is a ptime solvable problem which is very hard to
be solvable in polylogarithmic parallel time.

Definition 5 Given L € P, we say that L is P-complete if and only if
given ¥ € P there exists a NC reduction of ¥ in L.

Teorema 6 Let NC = U NC*?, and let L be a P-complete problem. We
i>1

have that NC' = P if and only if L € NC.

The proof of last theorem is straightforward. Last theorem says that if L
is P-complete, then it is very unlikely that L € NC, since it is very unlikely
that P = NC.

Let M CV P the problem defined by

Problem 7 (MCV P; monotone circuit value problem,)

e Input: (C,), where C is a monotone, synchronous boolean circuit of
fan in 2 and fan out 2.

e Problem: Decide if C (u) = 1.

Teorema 8 (Cook’s Reduction)
The problem MCV P is P-complete.

A proof of last theorem can be found in [P]. It is very easy to prove that
given L,II € P, if L is P-complete and L is NC reducible to II, then II
is P-complete. Also, the problem MCV P can be used (and actually it is
used) as a pivot in P-completeness proofs.

1.3 Exercises

1. Prove theorem 6.
2. Prove that MCV P is P-complete.

3. Let L be a problem in P. Prove that if MCV P is NC reducible to
L, then L is P-complete.

2
The Complexity of Predicting

Finite dynamical systems are predictable, because the evolution operator
is computable. Given S a finite dynamical system, given f an initial con-
figuration and given ¢, we can compute the configuration reached by S at
time ¢, without observing the evolution of S. The important question is
the following one: Can we predict the configuration reached by S at time ¢
in less than ¢ time units? or, can we predict the configuration reached by
S at time ¢t in O (logi (t)) time units for some i > 17

2.1 Prediction problems and Boltzmann systems

Our aim is to analyze the computational complexity of some prediction
tasks related to the dynamics of some classes of finite dynamical systems.
To begin, we define the dynamical systems that we want to study. We call
Boltzmann Systems to those systems

A Boltzmann system is a triple (G, Q,T) such that

e (5 is a finite digraph.
e () is a finite set.

o T:QV(® - QV(is a function which satisfies the following (conti-
nuity) condition

Given v € V (G) and given fy, fo € QV(®)
iff f1 [n@w)= f2 In@), then (T'(f1)) (v) = (T (f1)) (v)

This is page xi
Printer: Opaque this

xii 2. The Complexity of Predicting

where N (v) denotes the neighborhood of v. The elements of QV(%)
are called configurations.

Let C be a class of Boltzmann systems. We use the symbol pred[C] to
denote the prediction problem defined by.

Problem 9 (The Prediction Problem)
o Input: (M, f,t), where M =(G,Q,T) € C; f € QV®) is a configu-

ration and t > 0.

e Problem: Compute the configuration reached by M after t iterations
of the operator T.

Suppose that (G, Q,T) is a Boltzmann system. Note that the set QV(©
of possible configurations has a size which is upperbounded by |Q|W(G)| .

It implies that after at most |Q||V)| iterations the system either reachs

a fixed point or enters into a periodic trajectory. We can classify the
classes of Boltzmann systems into two types: fixed point classes and periodic
classes. So, we can consider two types of prediction problems. If C is a
class of fixed point systems, given (G,Q,T) € C, given f a configuration

and given ¢ 2 |Q|‘V(G)| we have T®) (f) = Q™) (f). We say that

(1) (f) is the fixed point of f. Because of this, if we are dealing with
a class of fixed point systems we can focus our attention on the following
problem: let C be a class of fixed point systems

Problem 10 (FSP|[C], Final State Prediction)
o Input: ((G,Q,T), f), where (G,Q,T) € C and f is a configuration.
e Problem: Computes the fixed point of f.

If C is not a fixed point class but a periodic class, we can to restrict our
attention to small values of ¢, that is: we restrict the problem pred[C] to

instances ((G,Q,T), f,t) such that t < |Q||V(G

Problem 11 (PSP |[C], Periodic Systems Prediction)
o Input: (G,Q,T), f,t), where (G.Q,T)., f,t) € C and t <|Q|'V .
e Problem: Computes the configuration T® (f).

2.2 Prediction problems and PSPACE

In this section we study the complexity of F'SP[C] for some classes C of
fixed point systems. First at all we establish the PSPACE completeness
of the problem F'SP, (F'SP denotes the problem FSP [C] with C equal to
the class of all the fixed point Boltzmann systems).

2.2 Prediction problems and PSPACE xiii

Teorema 12 FSP is PSPACE complete.

Proof. First at all we have to define the way by which we measure the
size of F'SP’s instances. Let (G,Q,T) an instance of FSP. We define
[(G,Q,T)|, the size of (G,Q,T), as |V (G)||Q|, where V (G) is the set of
nodes of G. Note that we can codify a configuration f on (G,Q,T) as
a vector vy such that vy has |V (G)| entries and each one of its entries
corresponds to a number in the interval {1,...,|Q|}. So, we can codify
the configuration f using O (|V (G)|log (|Q|)) space. It is clear that we
can compute the fixed point of f by simulating the evolution of (G,Q,T),
when we begin with the configuration f. To this end we can use a naive
simulation algorithm which saves, at any stage, the actual configuration (i.e.
at any stage of the computation we save one and only one configuration:
the last configuration reached by the system (G, Q,T)). Also, we can solve
FSP using O(|V (G)|log (]Q])) space (using polynomial space).

Let M be a polynomial space bounded Turing machine and let z =
Z1...T, be an input of M. We suppose that M is a decision machine. We
can think of the pair (M, z) as a Boltzmann system (Gatq, QM2 Tr.z)
in the following way:

Suppose that p (X) is a polynomial such that for any input z of size n, the
machine M uses at most p (n) work cells. We define (G4, Qim.z,TM.2)
as follows

e G, is a graph constituted by two connected components, the first
one, which we call Inq,, is the linear graph with universe {1,...,n},
the second one, which we call Wy 4, is the linear graph with universe

{1,...,p(n)}.

¢ Qmz, = Zm x {0,1} X Qaq, where 3y is the alphabet of M and
Qam is the set of inner states of M.

Now we define the notion of feasible configuration. Given f € QX,S,C;M‘””)

it is a feasible configuration if and only if:
1. For any i € Irq, we have that f (i) = (z4,¢,q), with e € {0,1}.
2. There is exactly one i € Inq, such that mo (f () = 1.
3. There exists exactly one j € Wy, such that mo (f (j)) = 1.

4. There exists ¢ € Qaq such that for any ¢ € Iag,, U Way e, we have
that w3 (f (2)) = q.

Note that the set of feasible configurations of (G, Qm,z, T z) corre-
sponds to the set of configurations which can be reached by M during its
computation on input z.

xiv 2. The Complexity of Predicting

o The definition of Tr,, depends on the definition of daq : Qaq X X aq X
Sm = Qumx T x {—=,—, 0} x {—, —, $}, the transition function
of M. Let f = (v1,...,Un, w1, ..., W) be a feasible configuration and
let ¢ and j be the positions for which the second component of the
pairs v; and w; is equal to 1. T, (f) = (v, ..., v5, wi,...,w},) is
defined as follows:

1. For any k € Irq we have that w1 (v}) = 2.

2. Given k € Ir , we have that 7o (v)) =1 if and only if
either k =7 —1 and

T3 (O (73 (1), w1 (03) s w1 (wy))) =
or k=1 and

w3 (O (3 (01), 1 (vi) , w1 (w5))) = &
ork=14+1and

3 (O (3 (v1) , 7m0 (vi) 71 (wy))) =— -

3. Given k € Waq, we have that mo (wj) = 1 if and only if either
k=j7—1and

T (S (3 (01) 71 (vi) , 71 (w5))) =—
or k=1 and

T4 (Op (73 (v1) 71 (03) 71 (w;)) = ¢
or k=141 and

T (O (3 (01), 71 (03) , w1 (w5))) =—

4. mp (w}) = m2 (G (73 (01) , 71 (vi) , 71 (wy))) -

5. For any k € Irq,, we have that

73 () = 1 (O (73 (v1) 71 (03) , 1 (w;)))
6. For any k € W, we have that

T3 (wi) = m1 (6 (73 (v1) 71 (v3) , ™1 (w5)))

Consider the algorithmic problem

2.2 Prediction problems and PSPACE XV

e Input: (M, x), where M is a polynomial space bounded Turing Ma-
chine and x is an input of M.

e Problem: Decides if M accepts x.

It is clear that last problem is PSPACE hard. Now we will show that
we can can reduce this problem to F.'SP. The reduction is defined in the
following way.

Given (M, z), we compute ((Gat,z, Q@m.e,Tma) s fo), where fy is the
feasible configuration determined by x, then we compute F'P (f,) the fixed
point of f,. Suppose that FP (f;) = (v1, ..., Un, W1, ..., Wy,) , We compute
73 (v1). If w3 (v1) is an accepting state of M we accept (M,), otherwise
we reject.

It is easy to verify that last reduction is sound and polynomial time
bounded. Therefore we have that FSP is PSPACE hard m

Remark 13 Note that for any periodic class C the problem PSP [C] be-
longs to PSPACE. It implies that PSP is PSPACE complete, since
FSP is a subproblem of PSP. Note that any fized point system is a peri-
odic system and given ((G,Q,T), f) an instance of FSP, it corresponds to

the instance ((G,Q,T) iy |Q\|V(G)‘) of PSP.

Remark 14 [t is important to remark that last reduction, which is a logspace
reduction, can be adapted to prove that given C CPSPACE a complexity
class containing a complete problem, there exists a class D of Boltzmann
systems such that F'SP D] is C complete.

One of the main topics of our research is the following one: Given C
a fixed point class, can we solve the problem F'SP[C] in polylogarithmic
parallel time? We know that, it is not always possible to solve F'SP [C] in
polylogarithmic parallel time.

Teorema 15 F'SP doesn 't belongs to NC.

Proof. We know that FSP is PSPACE complete, let f be a sublinear
function (i.e. n ¢ O (f)), The Space hierarchy Theorem implies that F'SP ¢
SPACE (f), also we have that FSP ¢ NC m

Some of the most interesting (and applicable) prediction problems belong
to P, and some of them belongs to NC. Let PD be the class of pushdown
automata, and let F'SP [PD] be the algorithmic problem defined by

Problem 16 (FSP[PD]; predicting Pushdown Automata)

o Input: (M, x), where M is a pushdown automaton and x is an input

of M.

e Problem: compute the final state of the computation of M on input
T.

xvi 2. The Complexity of Predicting

Teorema 17 The problem FSP[PD] can be solved in time O (log2 (n))
using a polynomial number of processors.

Proof. First at all we note that in order to compute the final state of the
system (M, x) it is sufficient to decide if M accepts z. It is the case, since
we know that, at the end of the computation the head of the pushdown tape
will be placed at the right end of the tape, the content of the tape will be
equal to the content at the beginning of the computation and the pushdown
stack will become empty. Also, in order to determine the final configuration
of the system it is sufficient to determine its final state, that is: it is sufficient
to determine if the automaton M accepts x. This problem (determining if
x € L(M)) is a subproblem of the parsing problem for L (M), which can
be solved in time O (log2 (n)) using a polynomial number of processors. m

The theorems above show that there are predictable (polylogarithmic
time predictable) an unpredictable classes of Boltzmann systems. We are
interested in classes of Boltzmann systems coming from statistical mechan-
ics. There are many interesting examples of Boltzmann systems coming
from statistical mechanics, some of them are The Abelian Sandpile Model
[BTW], The Eulerian Walkers Model and Langton’s Ant [GGM], The Ising
Automaton [GM] and The Flipping Ising Dynamics [Mo/. In the following
we will analyze The complexity of prediction problems associated to The
Abelian Sandpile Model, which is the toy model of Self-organized Criticality
and which is our toy model for the development of a complexity theoretical
analysis of prediction problems.

2.3 Exercises

1. Prove that the prediction problem for linear bounded automata is
PSPACE complete.

2. Define a class of Boltzmann systems such that the prediction problem
associated to it is NC-computable.

3. Define a class of Boltzmann systems such that the prediction problem
associated to it is N P-complete.

This is page xvii
Printer: Opaque this

3
The Abelian Sandpile Model

In this section we introduce the basic definitions and some basic facts con-
cerning The Abelian Sandpile Model.

Definition 18 A sandpile graph is a pair (G,s), where G is a connected
graph and s € V (G).

Given (G, s) a sandpile graph, the node s will be called the sink. Most
of the time we will say that G is a sandpile graph and that s is the sink
of G. From now on, we will use the symbol G to denote the pair (G, s).
The symbol V (G)* will denote the set V (G) — {s}. A configuration on
G is a function g : V (G)" — N. Given g a configuration on G and given
v €V (G)" we will say that v is g-stable if and only if g (v) £ deg (v), and
we will say that g is an stable configuration if and only if for all v € V (G)",
we have that v is g-stable.

Definition 19 Given G a sandpile graph, the sandpile automaton on G is
the graph automaton SP (G) defined by

1. The set of configurations of SP (G) is the set

{g: g is a configuration on G}

2. Given g a configuration of SP(G) and given v a cell, the state of v
under g is equal to g (v) .

8. Given g a configuration, the set of possible transitions from g is given
by the following transition rule:

xviii 3. The Abelian Sandpile Model

Given v € V (G)", if g (v) > deg (v), then we have that g — g, is a
possible transition, where g, is the configuration on G defined by

g(v) —deg(v), fw=v
go (W) :=< g(w)+1, if v is a neighbor ancestor of w
g (w) if v is not a neighbor of w

Any transition of SP (G) is called a firing or a toppling. So, given g
a configuration, the transition ¢ — g, is a firing, and if such a transition
occurs, we say that the node v was fired (toppled) or we say that a firing
(toppling) at v has occurred.

Given G a sandpile graph and given ¢ an initial configuration, we can
choose an unstable node, fire it and obtain a new configuration. Note that
we can choose any unstable node to produce a firing, in this sense sandpile
automata are nondeterministic. A sequence of firings g1 — g2 — ... — gp,
is called an avalanche of length n with initial configuration g, and we
say that it is an avalanche from ¢ to g,. If g, is stable we say that g,
is a stabilization or a relazation of g. If we fix a configuration g on V,
we can consider the following three sets: Aval (G, g) , the set of avalanches
whose initial configuration is g; Avalys (G, g) the set of maximal avalanches
beginning in g (A is maximal if and only if A can not be extended, that is:
A is maximal if and only if its final configuration is stable); st (G, g) the
set of relaxations of g.

Furthermore, given GG, g and

A=g—g1— ... = gn

an avalanche, the score vector of A, which we denote SCy, is equal to
(tv)pev () » where for any v € V (G)" the entry t, is equal to the number
of times node v was fired during the occurrence of A.

Teorema 20 (The fundamental theorem of sandpiles)
Let G be a sandpile graph and let g be a configuration, we have.

1. Any avalanche beginning in g is finite.
2. |st(G,g)| =1
3. Given A,B € Avaly (G, g), we have that SCy = SCp.

Proof.

e (proof of item 1) We can prove something stronger, we can prove
that given G a sandpile graph and given f a configuration on G, the
length of the maximal avalanches triggered by f is upperbounded by
[V (] If]ld(G), where d(G) denotes the diameter of G and | f||
denotes the quantity Z f (v). We will use the symbol L (f) to

veV(G)*

3. The Abelian Sandpile Model xix

denote the length of the maximal avalanches triggered by f (item 3
implies that all the maximal avalanches triggered by f have the same
length), the inequality

L(f) <V (@IIFId(G)

Is known as Tardos’ bound.

Let v be a node and let ¢t < L (f) be a positive integer, we use the
symbol s (v,t) to denote the number of firings occurred at v up to
time ¢.

Claim. Given v, w two nodes and given ¢t < L (f) we have that
[s (v, 8) = s (w,)] < [|f]

(proof of the claim) Let v, w be two nodes such that s (v,t) £ s (w,t).
We define A as the set {u: s (w,t) < s(v,t)} and we define B as the
set {u:s(v,t) 5 s(u,t)}. We observe that up to time ¢, all the nodes
of B have been fired more than all the nodes of A. Also, we have that
the number of chips on B has been increased, the total increase is
equal to

I= Z (s(r,t) — s (u,t))

u€A,reB:{u,r}€E(G)

we observe that I < ||f]|, and it implies that for all u € A and for
all r € B the inequality s (u,t) — s (r,t) < | f]| holds. Thus, we have
that for any pair z,y € V (G)" and for any t < L (f)

s (z,t) = s (g,)] < || £

Given u € V (G) we use the symbol d(u,s) to denote the distance
from w to the sink. We have that s doesn’t fire, the claim above
implies that if d (v, s) = 1, then v can fire a most || f|| times. We can
inductively prove that if d (v,s) = k, then v can fire at most k|| f||
times. Thus we have that any node of G can fire at most d (G) || f||
times. Therefore, we have that

L(f) <V(GIIFl (@)

(proof of item 2) Given G a sandpile graph and given v a node we
define the first order toppling operator T, as follows: given g a config-
uration on G we have that T, (f) = f,. We observe that the equation

T, (Tu (f)) =T, (Tv (f))

XX

3. The Abelian Sandpile Model

holds, for all v, w and f. Let C (G) be the infinite digraph whose vertex
set is the set of configurations on G and whose accessibility relation
is the relation given by

f—ygifand only if Jv € V(G) (9 = Ty (f))

We observe that the set of maximal avalanches triggered by f cor-
responds to the set of maximal C (G)-paths beginning in f. Further-
more, we observe that C(G) has the confluence property, that is:
given f,g,h € V(C(Q)) if f — g and f — h, there exists ¢ such
that ¢ — ¢ and h — t. We have that any digraph satisfying the
confluence property holds the following property: any pair of maxi-
mal paths beginning at the same node have the same final node [To].
Thus, we have that any pair of maximal avalanches beginning at the
same configuration have the same final configuration.

(proof of item 3) Given G a sandpile graph, we suppose that V (G) =
{1,...,n,n+ 1}, and we suppose that n + 1 is the sink of G, the
reduced laplacian of G is the matrix L (G) = [ay]; ;,, defined by
—deg (i), ifi = j
Qjj = aijzl, 1fz7éjand {’L,j}EE(G)
0, otherwise

Suppose that g is a configuration on G, we can think of g as an element
of N™. If node v fires, we obtain a new configuration g,. Note that
gv = g+ L, (G), where L, (G) is the v-th row of L (G). Thus, we
have that for any configuration g and for any maximal avalanche A
triggered by g the equality

stc (9) = g+ (L(G))" (SCa)

holds, where (L (G))" is the transposition of L (G) . We call last equa-
tion the motion equation of sandpiles. This equation has many impor-
tant consequences. Given A one of the maximal avalanches triggered
by g, the vector SCy is a solution of the system

sta (9) — 9= (L(G)" X [Sys. 1]

Kirchhoff’s Matriz Theorem [To] says that |det (L (G))] is equal to
the number of spanning trees of G. We note that this quantity is not
zero, since G is connected, also L (G) is nonsingular. Then, we have
that given A and B two maximal avalanches SC4 and SCg are equal
to the unique solution of the system /[Sys. 1].

3. The Abelian Sandpile Model xxi

]

Theorem 20 says many things about sandpile automata. Item 1 says that
sandpile automata are terminating. Item 2 says that sandpile automata
are confluent, i.e. the input (the initial configuration) determines an unique
output (its stabilization). Item 3 says that, though there are many com-
putation paths, sandpile automata are strongly deterministic, since given
SP (G) a sandpile automaton and given two computation paths of SP (G)
on input g, the second path is simply a permutation of the first, and as a
consequence they have the same length.

Given C (G) = NV(©)" the set of all the configurations on G and given
st (G) the set of all the stable configurations on G, we can define two
functions stg : € (G) — st(G) and SCq : C(G) — C(G) in the following
way:

1. stg (g) := the stabilization of g.
2. SC¢ (g) := SC4, where A is any element of Avalys (G,g) .

Note that, for any sandpile graph G, the functions stg and SCq are
computable, since the avalanches are always finite. given g a configuration
on G, if one wants to compute either st (g) or SCq (g), one only has to
simulate the computation of the automaton SP (G) on input g.

Notation 21 Given g € C(G) we will use the symbol SC, to denote the
vector SCq (g) .

Next theorem follows easily from the invariance of the score vector.

Teorema 22 Given G a sandpile graph and given f1, fo and f3 three con-
figurations, we have that

1. stg (fr + fo+ f3) = sta (sta (fi + f2) + f3) -
2. stq (f1 + f2) = sta (sta (f2) + sta (f1)) -

Proof. It follows easily from the invariance of the score vector m

Last theorem allow us to associate to any sandpile graph a sandpile
monoid. To this end we define a binary operation @ : st (G)* — st (G) in
the following way

feg=stc(f+9)

The pair (st (G),®) is a finite commutative monoid. We will use the
name Sandpile Monoid of G to denote the pair M (G) = (st (G),®). It is
known that the kernel, (that is: the intersection of all the ideals), of a finite
commutative monoid is an abelian group (see reference [To]). We use the
symbol K (G) to denote the abelian group

(Ker M(G)),® r(Ker(M(G)))2>

which we call the critical group (or the sandpile group) of G.

xxii 3. The Abelian Sandpile Model

Remark 23 Given f,g € C(G) we can define f & g either as stg (f + g)
or as st (st (f) + sta (g9)). Note that

sta (f +9) = sta (f) @ sta (9)

The elements of K (G) are called critical (recurrent) configurations, which
encode the long term behavior of the sandpile dynamics on G [BG]. We
finish this chapter with Dhar’s theorem which can be used to characterize
(and recognize) the set of critical configurations. We begin by stating a
theorem which characterizes the set of critical configurations, but which is
not very useful from the algorithmic point of view.

Teorema 24 Given G a sandpile graph and given f a stable configuration
on G, we have that f is critical if and only if there exists a configuration
g # 0 such that f Hg=f.

A proof of this theorem can be found in [To].

Notation 25 Given G a sandpile graph, we use the symbol 6 (G) to denote
the set
{weV(G) :{w,s} € E(G)}

We use the symbol es(q) to denote the configuration defined by

es(a) (v) = number of edges connecting v with s

Lemma 26 Given f a stable configuration on G and given v € V (G)" we
have that
SCf+56(G) (’U) <1

Proof. Let A be a maximal avalanche triggered by f +es5(g). We can think

of A as a sequence UL - VL (fhese) of nodes such that, node v; is the

node fired at time ¢ during the occurrence of A. Let ¢ < L (f + 65(G)),
we use the symbol f(*) to denote the configuration obtained after the ith
toppling (we suppose that we have chosen one of the maximal avalanches
triggered by f + es(a)). We will prove, using induction on 4, that for any
1< L (f+ €§(G)) the following two facts hold:

1. For any j,k <4, if j # k then v; # vy.
2. For all j < 4, the inequality f((vj) 5 deg (vj) holds.
e (i =1) We only have to check item 2. We observe that

fPw) =) +esq (v) - deg(v)
and esq) (v) < deg(v)

Then, we have that f) (v) < f (v) < deg(v), since f is stable.

3. The Abelian Sandpile Model xxiii

e (Inductive hypothesis) For all j, k < i if j # k, then v; # vj. Fur-
thermore, given j < i the inequality f*) (v;) £ deg (v;) holds.

o (i+1)Let j,k <i+1,if j,k <iand j # k then v; # vi. Suppose
that k < j =4+ 1. Then

f(i+1) (vit1) = f(viz1) — 2deg (vi11) + Tyt

where T;11 is equal to the number of times the neighbors of v;41 have
been fired. The inductive hypothesis implies that no node was fired
more than once before time 4. Also, all the neighbors of v; 1 have
been fired at most once. It implies that T; < deg (v;4+1) and it implies
that

fUD (vig1) < f (vig1) — deg (vig1) 0

Now, we pick [< i+ 1. We have that
FU () = f (vr) — deg () + Epita

where Ej ;11 is equal to the number of times the neighbors of v; have
been fired before time i 4 1. We already know that any node has been
fired at most once, also deg (v;) > Ej ;+1 and it implies that

FED () < f () < deg (un)

Teorema 27 (Dhar’s Theorem) Let G be a sandpile graph and let f be a
stable configuration, we have

1. f is critical if and only if f ® esq) = f-
2. f is critical if and only if for anyv € V (G)* we have that SCicse (V) =
1.

3. f is critical if and only if there not exists A C V (G)" such that for
any v € A the inequality f (v) < degy (v) holds, where deg, (v) is
equal to the number of edges connecting v with a node in A.

Proof.

o (item 1). If f D es() = f, we have that f is critical since ej(¢) is not
null. Given v € V (G)* we define the second order topplig operator
G, as follows: given f € K (G) we have that G, (f) = f @ e,, where
ey is the configuration

(w) = lifw=w
€ W= 0 otherwise

XXiv

3. The Abelian Sandpile Model

We observe that given v,w € V (G)" the equation G,G, = GG,
holds. We define T' = H Gﬂeg(” and H = H G7v, where

veV(G)* veV(G)”
n, = deg (v) — 1y, and r, is equal to the number of edges connecting
v with the sink. Note that id = TH =[] G ™", Also,
veV(G)*

H G = id. We observe that given f € I (G) the equality
veV(G)*

II G| =roesc

VeV (G)*

holds. Thus, we have that f = id (f) = f @ e5).

(item 2) If SCf ey, (v) =1 for all v € V(G)", then given v a node
of G we have that the number of chips that v gets from its neighbors
is equal to the number of chips v gives to its neighbors, (we can think
that each one of the nodes located at distance 1 from the sink get
from s as many nodes as the number of edges connecting them with
the sink, since at the beginning we add the configuration es(¢)). Also,
all the nodes of G end with the same amount of chips they had at the
beginning of the process (which process? Add es(g) and then relax).
Thus, we have that f©esq) = f and it implies that f is critical since
es5(@) is not null.

On the other hand if f is critical we have that f @ e5) = f, more-
over we know that for any v the inequality SCfc; ., (v) < 1 holds.
Suppose that there exists v such that SCy ., (v) = 0. Then, there
exists v such that SCfe;) (v) =0 and SCyie; ., (w) =1 for some
w neighbor of v. It implies that (f @ es)) (v) Z f(v), but it is
clearly a contradiction.

(item 3) Suppose that f is not critical, then the set A defined by
A={u: SCfiese (V) = 0}

is nonempty. Suppose that there exists v € A such that f(v) >
deg 4 (v) . We have that deg (v) — deg4 (v) neighbors are fired during
the relaxation of f + e5(q). Also, when the relaxation process comes
to an end, there are f (v) + deg (v) — degy (v) chips at v. It is clear
that

f(v) + deg (v) — degy (v) > deg (v)

Then, we have that node v becomes unstable, but it is impossible
since after the relaxation any node of v become stable.

3. The Abelian Sandpile Model XXV

Now, we will suppose that there exists A such that for all v € A the
inequality f (v) £ degy (v) holds. We will prove that for all v € A it
follows that SCf e, ., (v) = 0.

Let v be anode in A and let t < L (f + 65(G)) be a positive integer.
We use induction on ¢ to prove that for all t < L (f + e(;(G)) and for
all v € A, node v is not fired before time ¢ + 1.

— (t = 0) Node v can not be fired before ¢ = 1, since f(v) =
deg 4 (v).

— (1 <'t) We suppose the claim true for all ¢ < ¢.
_ 1)

(t+ 1) Let B =V (G)" — A. The inductive hypothesis implies
that

FO () < f () + deg (v)

Then
FO (v) £ deg (v) + deg (v) = deg (v)

Thus, we have that at time ¢ node v is stable, then it can not
be fired at time ¢ + 1.

Corollary 28 If f is a critical configuration, then given v,w two nodes
such that {v,w} € E (G) we have that either f (v) #0 or f (w) # 0.

Proof. This fact is a consequence of the third item of the theorem above.
Suppose that there exist v,w € V (G)” such that {z,y} € E (G) and f (v) =
f(w) =0. Let A = {x,y}, we have that f(z),f(y) £ 1 = degy (x) =
deg, (y) w

We can use item 1 as the basis of a linear time (real time with respect to
the size of G) algorithm which recognizes the set of critical configurations,
this algorithm is called The Burning Test (BT for short) and works as
follows:

On input (G, f), (where G is a sandpile graph and f is an stable config-
uration on), algorithm BT performs the computation described below

do
1. BT computes f + es(q)-
2. BT simulates the relaxation process of f + es5q)-

3. BT counts the number of times each node was fired during the relax-
ation.

4. If all the nodes were fired exactly once BT accepts, otherwise BT
rejects.

xxVi 3. The Abelian Sandpile Model

We can use the burning test as well, to prove that there exists a bijection
between the set of critical configurations on G and the set of spanning
trees of G, that is: we can use the burning test to prove that |[K (G)| =
|det (L (G))] [Ba).

3.1 Exercises

1. Prove theorem 24.
2. Prove that | (G)| = |det (L (GQ))].

3. Define a directed version of The Abelian Sandpile Model, and check
which of the basic properties of The Abelian Sandpile Model hold in
the directed case.

4
Algorithmic problems

In this chapter we introduce the algorithmic problems (predicting tasks)
that we want to analyze. Moreover, we study the relative hardness of those
problems.

4.1 The algorithmic problems

The Sandpile Prediction Problem, is the algorithmic problem defined by:

Problem 29 (SPP, sandpile prediction)

o Input: (G,g), where G is a sandpile graph and g € C(G).
e Problem: Compute st (g) -

Remark 30 Tardos’ bound [?] implies that SPP, and each one of the algo-
rithmic problems introduced below, can be solved in polynomial time, because
of this we will analyze the relative complexity of those problems using the
notion of NC'-Turing reducibility.

A Second problem is M C, which corresponds to the computation of the
monoid operation @.

Problem 31 (MC, monoid computations)

e Input: (G, f,q), where G is a sandpile graph and f,g € M (G).

This is page xxvii
Printer: Opaque this

xxviii 4. Algorithmic problems

e Problem: Compute f D g.

We know of the existence of a special set of configurations: the set of
critical configurations. Can we recognize critical configurations?

Problem 32 (RR, recognition of critical configurations)
o Input: (G, f), where G is a sandpile graph and f € C(G).
e Problem: Decide if f belongs to K (G).

Now, we introduce the problem GC which is the restriction of SPP to
critical configurations.

Problem 33 (GC, group computations)
o Input: (G, f,g), where G is a sandpile graph and f,g € K (G).
e Problem: Compute f @ g.

Problem 34 (MC*, mized computations)

o Input: (G, f,g), where G is a sandpile graph, f € K(G) and g €
M(G).

e Problem: Compute f & g.

Problem 35 (CSV, computation of score vectors)
e Input: (G, f), where G is a sandpile graph and f € C (G).
e Problem: Compute the vector SCY.

It is clear that the problem C'SV is equivalent to the counting problem
consisting in computing the number of times an input-node is toppled dur-
ing the relaxation of a input-configuration. We introduce a related problem
which seems to be easier than C'SV.

Problem 36 (SPA, Sandpile Accessibility)

o Input: (G, f,v), where G is a sandpile graph, f € C(G) and v €
V(G)"

e Problem: decide if SCy (v) 2 0.

Given G a sandpile graph, we use the symbol ex () to denote the identity
of K (G).

Problem 37 (IC, computation of identities)

o Input: G, where G is a sandpile graph.

4.2 The relative hardness of sandpile prediction problems XXix

o Problem: Compute ex(q)-

Remember that given V € (G)", we use the symbol e, to denote the
configuration
e (w) = lifv=w
v 1 0, otherwise
Let eq : V (G)" — K (G) be the function defined by eq (v) = ex(c) @ €y
Problem 38 (EC, computation of e)
e Input: (G,v), where G is a sandpile graph and v € V (G)".
e Problem: Compute e (v).

Remark 39 (measuring the size of the instances)

1. Given (G, f) an instance of either SPP or CSV we measure its size
as |G| + (| f]] -

2. Given (G, f,g) an instance of either MC, MC* or GC we measure
its size as |G| .
3. Given (G, f) an instance of RR we measure its size as |G| .

4. Given (G, f,v) an instance of SPA, we measure its size as |G|+ f]| -

4.2 The relative hardness of sandpile prediction
problems

Given C a class of sandpile graphs and given £ one of the algorithmic prob-
lems defined above, we will use the symbol £ [C] to denote the restriction
of L to the class C. We are mainly interested in classes of low dimensional
sandpile lattices. We will begin our work from a very general point of view:
we will consider a large family of well-behaved sandpile classes, which we
call bounded classes.

Definition 40 A bounded class is a class C of sandpile graphs such that

1. There exists De > 2 such that for any G € C and for allv € V (G)"
we have that 2 < deg (v) < De.

2. Given G € C, there not exists a pair (A,v) such that A C V (G)",
v € A, |A|l > 2 and for all w € A we have that any path connecting
w with the sink of G visits the node v, (that is: the elements of C are
free of bottlenecks).

Teorema 41 Let C be a bounded class

XXX

e e

5.

4. Algorithmic problems

SPPIC] and CSV [C] are NC?-Turing equivalent.
SPP|C] and MC[C] are NC*-Turing equivalent.
MC'[C] is NC? reducible to MC*[C].

MC*[C] can be solved in time O (log2 n) using a polynomial number
of processors, if oracle access to GC [Cland EC [C] is provided.

EC|C] is NC? reducible to GC'[C].

Proof.

1.

2.

(proof of item 1) It follows easily from the proof of the third item of
theorem 20.

(proof of item 2) It is clear that MC [C] is NC'-Turing reducible
to SPP|C], also we prove that SPP [C] is NC!-Turing reducible to
MC'[C]. We can suppose, without loss of generality, that there exists
m such that ||f]] = 2™. We can express the configuration f as a sum
Z fi such that for any i < 2™ we have || f;|| < 1 (hence, all the
i<am

configurations f; are stable). Theorem 22 implies that

sta(f)=sta | > fi| =sta| Y (foi-1® fai)

,L'SQm iSQm—l
So, instead of computing st (f) , we compute {f2¢71 D fo; 11 < 2”“1},

and then we compute stg Z (f2i—1 ® f2;) | - Furthermore, we
i<om—1

can iterate this procedure reducing to the half the number of sum-

mands in each iteration. If we perform m iterations, we obtain a pair

91,92 € M (G) such that stg (f) = g1 ® g2 Then, we can compute

ste (f) in time O (log (|| f]1)) , using O (|| f||) processors and asking at

most log (|| f|l) queries to the M C-oracle

(proof of item 3) Let G € C and let f,g be two stable configura-
tions, we show that we can compute the score vector of the maximal
avalanches triggered by f + g in time O (log? (|V (G)| + || f| + lgll))
if oracle access to M C* [C] is provided. Given f a stable configuration
we use the symbol f* to denote the configuration wg — f. We observe
that:

SC(f+g,[*)=8C(f,9)+5C(f®g,[*).
SC(f+g,9°)=SC(f,9) +SC(f®©g,9g).

4.2 The relative hardness of sandpile prediction problems XxXXi
- SCEB(f+g)+we fr+g7)=35C(f,9)+SC(f &g, f)+SC(f®g,9")+
SC (wn @ g, wn @ f)+S5C (wn, 2wy @ f ® g)+5C Bun © f D g, f D g).

. We can compute SC (f + g, f*) since stg (f + g+ f*) = wg P g and
we have oracle access to MC* [C].

. We can compute SC (f + g, g*) since stg (f + g+ g*) = we @ f.
. We can compute SC (3 (f + g) + wg, f* + g*) since

sta B(f+9)+we+ T +9") =we®B(f+9)+ [+77)
and we can also compute SC (3wg ® f ® g, f ® g) since

we® fOgDfDg=we® (2(wa+f+g))

Thus we can compute three vectors X,Y and Z such that

X = SC(f,g9)+SC(f®g,f)
Y SC(f,9)+SC(f®g,9%)
Z = 35C(f,9)+SC(feg f)+5C(fog,9)

Note that the matrix
1 1 0
1 0 1
311

is nonsingular. It implies that we can compute SC (f, g) and st¢ (f + g) =
f @ g in polylogarithmic time. If we suppose that we have oracle ac-
cess to MC*[C], we can run the algorithm defined above in time

O (log> (IV (G)| + || £l + llg]l)) using a polynomial number of proces-
sors

(proof of item 4) Let G € C, let v € V (G)" and let w, = wg —
ey. We claim that w, is a critical configuration. It is easy to check
that there not exists A C V (G)" such that for any u € A we have
that deg, (u) 2 wy (uw). Theorem ?7?7 implies that w, is a critical
configuration. Now, we observe that

e (v) = e, Dexa) =ew® (w, Dw,")

= (e @wy) Qw, ' =wgdw,"

Thus, if one wants to compute eg (v), it is sufficient to compute
wg ® w, L. Note that wg,w, ! € K (G).

We can compute w; ! in time O (log” (|V (G)| + || f]| + |lg]l)) if oracle
(wy

\’C(G)*l

access to GC'[C] is provided because w; ! = and it is

known that |K (G)| is equal to |det (L* (G))] < Dlv

XXxii

1.

3.
4.

4. Algorithmic problems

If we put all the pieces together we can define an algorithm N, which
has oracle access to GC[C], and which compute the function ec in

time O (log” (|V (G)| + || £]| + |lg])) using O (\V (G)|2> ProCessors.

On input (G,v) algorithm N works in the following way:

N computes |det (L* (G))], in time O (log? (|V (G)])) using O (|v (G)|2)
processors.

Using fast exponentiation and a GC' [C]-oracle, algorithm A" computes
(w,)14t EEDI= 4y time O (log (|V (G)])) -

N computes wg & w, L.

N prints wg & w; L.

(proof of item 5) Let (G, f, g) be an instance of M C* [C]. We observe
that

f@g:f@g@en(g)@...@elqg)

lgll-times

If we express g as Z Mye, We get
vEV(G)*

feg=rfo| @ mec@)

veV(G)*

Also, we can use |V (G)"| processors to compute {m,eq ()} evcy

this computation takes O (log® (|V (G)| + || f]|)) time units, since we
are supposing that we have oracle access to GC'[C]. We can use the

same |V (G)"| processors to compute f @ @ myeg (v) | in
veV(G)*

time O (log (|V (G)| + ||f1])) - Thus, we have proven that MC*[C] is

NC2-Turing reducible to GC [C]

Corollary 42 Let C be a bounded class of sandpile graphs, the problems
SPP[C],CSV[C], MC|C], MC*[C], EC[C] and GC'[C] are NC?-Turing
equivalent.

Proof. It is clear that GC[C] is NC?-Turing reducible to SPP[C], since
GC'[C] is a restriction of SPP[C] m

Proposition 43 (The hardness of the easiest problems)

4.3 Exercises xxxiii

1. IC[C] is NC? reducible to GC[C] .
2. RR[C] is NC! reducible to SPA|[C].
3. SPA[C] is NC* reducible to CSV [C].

Proof.

e (proof of item 1) It is clear that ex(q) = (wg)lK(G)l = (wg)ldet(Li(G))‘ .

Also, we can compute ex(g) in time O (1og2 (|G|)) if oracle access to
GC'[C] is provided.

e (proof of item 2) We observe that (G, f) € RR|[C] if and only if f is
stable and for any v € V (G)" we have that SCfiese (v) 2 0. We
can check these two properties in time O (log (|G])) if oracle access
to SPA|C] is provided.

e (proof of item 3) It is clear that SPA[C] is NC2-Turing reducible to
csvic.

Corollary 44 Let C be a bounded class of sandpile graphs, the problems
SPPI[C], CSV[C], MC|[C], MC*[C], EC|C], GC[C], I[C], SPAIC] and
RR|C] are ptime computable.

Proof. Tardos’ bound implies that SPP [C] is ptime computable ®

4.3 Exercises

1. Is it the Abelian Sandpile Model a class of Boltzmann Systems? Can
be the Abelian Sandpile Model turned into a class of Boltzmann
Systems?

2. Prove that £q, £5 and L3 are bounded classes.

3. Prove that given C a bounded class, given G € C and given v €
V (G)", the configuration w, = wg — e, is a critical one.

XXXiv 4. Algorithmic problems

This is page xxxv
Printer: Opaque this

D

Statistics of critical avalanches

We will use the term critical avalanches to denote the avalanches triggered
by the addition of two critical configurations. In this section we study the
length of critical avalanches, that is: we establish upper and lower bounds
on the possible length of critical avalanches.

Given f, g € K (G) we will use the symbol L (f, g) to denote the length of
the critical avalanches triggered by f + g. Given f, g two configurations on
G, we use the symbol f < g to denote that for allv € V (G)" the inequality
f (v) < g (v) holds. Note that

1. If f<gand h <7, then L(f,h) < L(g,r).
2. For any f,g9 € K(G) we have L(f,g) < L (wg,wg) .

From now on we will use the symbol C to denote an arbitrary bounded
class of sandpile graphs. First at all we prove that all the critical avalanches
are long, that is: we prove that the length of a critical avalanche can not
be sublinear.

Teorema 45 (Critical configurations can only generate long avalanches)
Given G € C and given f € K (G) we have

Vg € K (G) (L(ﬁg) . [V©) |27ch 5(G)|>

Proof. Let H (G) = Z (deg (v) —1). A configuration f is recurrent
veV(G)*
if and only if

XXXVi 5. Statistics of critical avalanches
1. for any v € V (G)" we have SCj ., ., (v) = 1.

2. sta (f +es) = 1-

Suppose that we run the avalanche triggered by f + es5g) and for any
v € V(G)" we count the number of grains on v just before the node v
is toppled. Let a be equal to the result of our counting. Note that o >
H(G)+ |V (G)"|. On the other hand, it is easy to verify that we count
twice the grains which remain on V (G)" after the avalanche, and we count
once the lost grains. So we have

2|[fll + Deld (G)| = H(G) + |V (G)']

Thus, we have that

1l > <H<G>+ ([V (6| - De |6<G>|)>
- 2

Now, given f,g € K (G) we have that
£l +1lgll = H(G) + ([V(G)"| = Delé (G)])

and it implies that, when we begin with the configuration f + g, we have
to throw at least (|V (G)"| — D¢ |6 (G)|) grains. We can throw at most D
grains per toppling, and it implies that

L O DeB(G)

Corollary 46 Suppose that for any G € C we have that K > |6 (G)], then
for any f,g € K(G)

|V (G)"| = DcK

L(fg) > Do

ceQ (V@)

)

Now, we will establish an upper bound on avalanche length. Let G be
an element of C whose sink is equal to s, remember that the symbol d (G)
denotes the quantity max,cy(g)* {dg (v, s)}, where dg (v, 5) is the distance
from v to the sink.

Teorema 47 L (wg,wg) € O (’V (G)7| d(G)2> .

Proof. Note that d(G) € O(|V(G)]). Given i < d(G), we use the
symbol N; (G) to denote the set {v: dg (v,s) =i}. Note that V (G)" =

5. Statistics of critical avalanches xxxVvii

|_| N; (G) |, (where the symbol LI denotes that the union is a dis-
1<i<d(G)
joint union). If we define u; as the number of topplings occurred on N; (G)
during the relaxation process, we have that

L(wg,wa) = Y u;

i<d(Q)
We observe that for any i < d (G) the inequality

Pi — pip1 < 2D¢ ‘V (G)°

holds, (where, by convention, 1441 = 0). Thus, we have

Lwa,we) = Y = > (D omj—
) \i=i

i<d(@) i<d(G

IN

=2D¢ |V (G)”

> Zzpe vV (G)

i<d(G) i<d(G)

Note that

e [vV(@)| Y i) eo([ver|aey)

i<d(G)

Thus, we have proven that L (wg,wg) € O (V (@) d(G)2)]

Remark 48 It is important to remark that the best, already established,
upper bound for avalanche length on general graphs is Tardos s bound (see
reference [T]). Tardos’s bound implies that for any sandpile graph G

d (G))

L (wg,wg) € O (|[vV (@) [

Observe that |V(G)*|d(G)2 S |V(G)*|3d(G), for any graph of size
bigger than 1.

Now, we will establish a lower bound on L (wg,wg) which could be
stronger than the linear bound of theorem 45.

Teorema 49 L (wg,wg) € (|V (@)"] + d(G)2> .

Proof. Remember that all the avalanches triggered by 2wg have the same
length. Given G € C we will lowerbound the length of a very specific

xxxVviii 5. Statistics of critical avalanches

avalanche triggered by 2w¢g. Given i < d(G), we define M; (G) as the
d(G)

induced subgraph of G constituted by the subset of nodes U N; (G), we
Jj=t

can think of the graph M, (G) as a sandpile graph whose sink is equal to

N;_1(GQ) (we define Ny (G) = {s}). Given 0 £ i < d(G) — 1, we use the

symbol w; to denote the configuration wyy,(g). We have that the subgraph

M;11 (G) is embedded into M; (G). Note that

2w; = (wi + esu,(qy) + (i1 + 5;)

where (, is some configuration. Theorem 22 says that

stay (@) (2wi) = stara) (stan(o) (Wi + esa)y)) + star) (Wisr + 5;))

and Theorem 77 says that:

L stara) (wi+ esouay) = wi
2. L (w,-, e5(M¢(G))) = ‘Ml (G)| .

Thus, we have that there exists a configuration ; such that we can
pass from the configuration 2w; to the configuration 2wy + ~. Further-
more, we have that the partial avalanche carrying us from 2w; to 2wa + v,
has a length equal to |M; (G)|, this partial avalanche (it is not a maximal
avalanche) is the first stage of the whole stabilization process. In the second
stage we work on the subgraph M (G) with the configuration 2w,. We can
now claim that after | My (G)| topplings we can pass from 2ws to 2ws + 4
for some configuration 7. If we continue in this way, going to Ng(q) (G) =
Mgy (G) (the core of G), we will generate d (G) partial avalanches whose
length are lowerbounded by [My (G)|, | M2 (G)|, ..., |Myc) (G)| (respectively).
Therefore, we have that

d(G)
L(wg,we) > Y |M; ()]
i=1
We observe that:
L MG = V(6]
2. For all i £ d(G) we have that |M; (G)| 2 |Mi+1 (G)].
Therefore, we have that L (wg, wg) € (|V Q)] + d(G)2> |

Corollary 50 IfC is a bounded class of sandpile graphs such that d (G) ¢
O (VIV(G), then L(wa,we) ¢ O (IV (G)').

5. Statistics of critical avalanches XXXIX

Let C be a bounded class. We will prove that if we choose uniformly
at random two critical configurations f and g, then with high probability
the avalanche triggered by f + ¢ is large, its length is almost equal to the
length of the longest critical avalanche. First at all we have to remember
the notion of accessibility. Given f,g € C (G) we say that g is accessible
from f if and only if there exists a configuration h > g and there exists a
configuration ¢ such that

h=f+(L@)" @)
We will use the symbol f — ¢ to indicate that g is accessible from f.

Notation 51 Given G a sandpile graph, we use the symbol T to denote
the configuration defined by

for allv € V (G)* we have that T (v)=1

Lemma 52 Given G € C, we have that for any fi, ..., fap,)2 € K (G) the
configuration 2wg is accessible from fi + ...+ fopoy2

Proof. Remember that given f € K (G) and given {v,w} € E(G), either
f(w) 2 0or f(v) 20 (theorem ??). Let f1,..., fpc+1 be D¢ + 1 critical
configurations, given v € V (G)* we have that either there exists i < D¢ +1
such that f; (v) 2 0 or for any w neighbor of v and for any ¢ < D¢ + 1
we have that f; (w) £ 0. Suppose that for all ¢ < D¢ + 1 we have that
fi (v) =0, in this case we can choose any neighbor of v, say w, and fire it.
Also, we can place at least one chip on v, taking care of leaving at least 1
chip on w. It is clear that, if we begin with the configuration Z fi we
i<Dc+1
can choose a sequence of topplings, of length at most |V (G)*’ , such that if
we apply this sequence on Z fi, we obtain a configuration h which is
i<Dc+1

different to zero on any v € V (G)*, that is: there exists h > T such that

Z fi — h. Thus, given f1,..., foyp,)2 € K(G) there exists h > 2wg
i<(Dc)?
such that Z fi—h m

i<2(Dc)?

Teorema 53 (critical configurations generate, with high probability, long
avalanches) Given G € C we have

L(wc,wc) 1
4e® | = 2 (De)’

Pr L(f,g)>
B [(f.9)

x1 5. Statistics of critical avalanches

Proof. Let a = 2 (Dc)z, given f1, fa, ..., fa We have that Z fi — 2wg.
iSaG

It implies that
L far > fi] = L(we,wa)
i<a—1

Also, we have that either

I fm@fi ZM

. 2
i<a—1
or

L Z i ZiL(wG’wG)

) 2
i<a—1

Arguing in this way we can prove that there exists i < « such that

L(’wg,wg)
L\ f; > =7
fi 46{9 5] ==
j<i—1
Thus, we have that
. L(’UJG,UJG)
Pr i <alLl|f, > —— =1
fla-“vfrx - f’L @ f‘] - 204

7<i—1

Note that for any f € £ (G) and for any ¢ > 1

1
P | DI = ke

i<

i.e. if we choose uniformly at random % critical configurations and we com-
pute their sum, then we generate uniformly at random one element of
K (G). Given fi,..., fo asequence of critical configurations on G and given

j < a-—1, we define g; = @fj. We have that:
Jj<i

1. The procedure below is a sound method to generate uniformly at
random two elements of K (G) :

e Choose uniformly at random f1, ..., fo.
e Choose uniformly at random ¢ € {2,...,a}.

e Compute f; and g;_1.

5.1 Exercises xli

2. The following equality holds

L
o [peica (bt 2 e

From items 1 and 2 we have that

Pr |:L(fi79i—l) >

2<i<a

L(’LU(;,’LU(;):| 1
20

and

e £ >

L ('U)G, U)G) :|
f,9€K(G)

2a
L(wg,wg)} 1

(firgi-1) >

Pr [L
2<i<a; fi,e0fa 20

Thus, we have proven that

e, [t

L(wg,wg) } < 1
[,9€K(G)

4(De)? ~ 2(De)?
(]
Summarizing we have

Teorema 54 Let C be bounded class of sandpile graphs and let G be an
element of C.

1. For all f,g € K(G) we have that L (f,g) > W(G)*‘Bw

2. Prf)ge;c(g) |:L (f7 g) > LE:Z’LG)!)%G)] > Q(ch)z-

3. L (wg,we) € O (}V(G)*| d(G)2) .

4. L(we,we) €9 (|V(G)*| + (d(G)2)) .

Proof. The proof follows easily from the previous work m

5.1 Exercises

1. Define a bounded class of sandpile graphs, say C, such that d(G) ¢
0] (\/ |G|) . How long are, on average, the critical avalanches occur-

ring on C-graphs?

2. Define a bounded class of sandpile graphs such that d (G) € O (log (|G])) .

How short are the critical avalanches occurring on C-graphs?

3. Are tight the upper and lower bounds established in this chapter?
For which bounded classes are they tight?

xlii 5. Statistics of critical avalanches

This is page xliii
Printer: Opaque this

6

Dimension 1

In this chapter we study the algorithmic complexity of the one-dimensional
sandpile model, that is: we study the complexity of The Abelian Sandpile
Model, when restricted to the bounded class L;.

6.1 GC [L4] belongs to logDCF L

In this section we prove that GC [£1] belongs to logDCF' L, which is the clo-
sure under logspace reduction of the class constituted by the deterministic
context free languages. It is known that

NC! ClogDCFL C AC' C NC?
The class logDCFL has an interesting machine characterization.

Definition 55 A pdT'M is a logspace bounded Turing machine which has
access to a pushdown stack.

Teorema 56 (Sudborough’s Theorem) L € logDCFL if and only if there
exists a pdT' M, say M, such that M solves L.

A proof of this theorem can be found in [S].

We will prove that the problem GC [£;] can be solved using a pdTM,
that is: we prove that GC [£1] belongs to logDCF L. First at all we have
to establish some basic facts concerning the dynamics of one-dimensional
sandpiles.

xliv 6. Dimension 1

Lemma 57 Let f be a configuration on the one-dimensional lattice LT,
suppose that there exists i € [n] such that:

1. f(i)=2.
2. For any j # i we have that f(j) < 1.

Furthermore we suppose that there exists j1 <1 5 jo such that f (j1) =
f(j2) =0, and given k € {j1 + 1,...,jo — 1} — {j} we have that f (k) = 1.
Then, st (f) is the configuration defined by

_J O0ifv=g1+52-7J
stey (f) (v) = { 1 otherwise

Last lemma allows us to efficiently compute the relaxations of some very
specific configurations. We ca use this as the basis of our predicting algo-
rithm. Let f,g be two critical configurations on L}, given h = f + g we
have that Range (h) C {0,1,2}, let 41 5 i2 § ... § 4k be the positions
where h takes the value 2, and let t = h —e;, — ... — ¢;, . Define a sequence
t1,...,t; in the following way

t1 = St/v‘? (t)
to = StL{l (tl + 6,’2)
tr = st (te1 +eiy)

the abelianicity of the model implies that stzn (h) = tx.

Given f, g two critical configurations on L}, we have that Range (f + g) C
{0,1}, also a possible description of stzu (f + g) is the ordered list of its
null positions.

Teorema 58 GC [L1] can be computed using a pdT M.

Proof. Let (n, f, g) be an instance of GC' [£;1]. We suppose that the under-
lying graph of the two-dimensional lattice is the linear graph [n + 1]JU{0},
also we add two new nodes to L7, the nodes 0 and n + 1 which will
be play the role of the sink. We suppose that given f a configuration
7(0) = f(1)=0.

At the beginning of the computation the input is written in the input
tape, we suppose that the input is a word 0z;...x,0, where given ¢ < n the
equality (f + g) (¢) = x; holds, furthermore we suppose that the pushdown
stack and the work tape are empty.

We observe that we can partition the set {1,...,n} into three sets as
follows:

L To={i:(f+g) @) =2}.

6.1 GC [L4] belongs to logDCFL xlv

2. No={i: (f+9) () =0&Vj((f+9) (i) =2=i%))}.
3. My={i: (f+9) () =0&Tj((f+9) () =2&j D)}

Let Tp ={i1 $i2 S ... $ix}. Wedefinet =h —e;, —... — e;,, and we
define a sequence tq, ..., t; as before, that is:

tl = St[;;l (t)
tg = Stﬁf (tl + 62'2)
ty = ster (k-1 +eqy)

We know that t, = stzu (f + g) . Given | < k we define
LTy ={it,(i) =2}

22N ={i:t:(i) () =0&Vj (L (i) () =2 =15))}
3. M ={i:t:(1)(1))=0& 3 (L (1) () =2&j £}

We observe that T, = M = @. Also, in order to compute ¢ it is
sufficient to compute Ny (N, fully describes the configuration ¢;). We try
to compute N, to this end we compute the whole sequence

(vaTlle) JRXXD) (N]ﬁT]ka)

Finally we observe that T; and M; are determined by their first elements,
(which we denote with the symbols d; and m;), since, along the whole
computation, we have access to the input (which is saved on the input
tape).

The computation is divided in two stages, the first one, which we call
initialization, consists in the computation of h;.

First Stage: Initialization

1. Given ay, ..., a, the elements of Ny we write the word a;#as#...#a,
on the pushdown stack.

2. We compute dy and mg, and we save these two numbers on the work
tape, (using O (log (n)) cells).

The second stage consists in the computation of (N;,d;,m;) from the
previously computed triple (N;—1,d;—1,m;_1) .

Second Stage: Computing the sequence

Suppose we have computed the triple (N;_1,d;—1,m;—1) .

xlvi

4.

6. Dimension 1

. We compute «, the maximum of N;_;, which is the number written

at the top of the pushdown stack.
We compute z = m;_1 + o — d;—1. (Note that o $ z < m;_1)

If we suppose that there exists ¢ € Tj such that d;—1 £ ¢t £ 2.
Then, we have that N; = N,_1 — {a} (we erase the number at the
top of the pushdown stack), m; = z and ¢; = miner, {di—1 $t}.
Otherwise, i.e. if there not exists ¢t € Ty such that d;_; St £ z, we
have that N; = (V;—1 U {z}) — {a} (we erase the number at the top
of the stack and after that we write z), t; = minger, {d;—1 £t} and

m; = minjeMo {j i mi,1} .

We stop when T; becomes an empty set.

It is easy to check that if by #...#b, is the word written on the pushdown
stack at the end of the computation, then Ny = {b,...,b,}. Thus, we have
computed the stabilization of f 4 g using a pdTM. m

Corollary 59 The problems SPP[Ly], CSV [L1], MC [L4], MC*[L4],
EC L], GO [L4], I[L1], SPA[L1] and RR L] belong to NC*.

Remark 60 [t can be proved that SPP [L41] also belongs to logDCFL.

6.2 SPA[L]is TC’hard

Let £3" be the one-dimensional undirected sandpile lattice on {1, ...,3n},
(we can add the nodes 0, 3n+ 1 and assign to them the role of sink nodes).
Suppose that g is a configuration on £3" which satisfies the following three
conditions.

1.
2.

3.

If ¢ <mn, then we have g (i) = 0.
Ifie {n+1,..,2n}, then we have g (¢) € {1,2}.

If ¢ > 2n + 1, then we have g (i) = 0.

Let [lgll = >_; 9 (i) <2n

Teorema 61 There exist numbers i,j € {0,1,...,3n + 1} such that

1.

i and j—i<{lgll,llgll -1}

2. Ifk ¢ {i,i+1,..,7}, then stzan (g) (k) = 0.
S Ifk e {ii+1,...,5}, then stpsa (g) (k) € {0,1}; and there exists at

most one k such that i £ k $ j and stzsn (g) (k) = 0.

6.2 SPA[Lq] is TC%hard xlvii

Proof. Let i1 < i < ... < i be the positions where the value of g is
equal to 2. Let gy be the configuration which takes the value 1 on the set
{n+1,...,2n} and the value 0 on its complement. Note that

g:go+61‘1 +...+€ik
The abelian property of the abelian sandpile model (22) implies that

stean (9) = sta (ge—1 + €i,)

where g1 = st an (go + €;,) and given g;, we have that

Giry1 = Stﬁ?n (gir + 6i7‘+1)

First at all we try to compute g;. It is easy to check that g; is a con-
figuration constituted by a zero floating in a connected sea of ones, and
that the position of the isolated zero is the mass center of the configuration
go+ei,, that is: we have a position j; € {n + 1, ...,2n} such that g, (j) = 0.
Furthermore, we have that if j € {n+1,...,2n} — {j1}, then ¢1 (j) = 1,
and either g1 (n) =1or g1 (2n+1) =1.

Now, we try to compute go. If j; = io, then there exists an interval
I D {n+1,...,2n} such that g1 + ¢;, takes the value 1 on I; and the value
0 out of ;. In this case g1 +e;, is already a stable configuration and is equal
to go. If j1 # io, then there exists an interval I; 2 {n + 1, ..., 2n} such that
g1 + ei, takes the value 0 out of Iy; (g1 + €:,) (1) = 0; (g1 + €5,) (32) = 2;
and g1 +e;, takes the value 1 on any other point of I;. So, the configuration
g1+e€;, looks like a zero and a two floating in a connected and isolated sea of
ones. It is easy to check that g, = st cin (g1 + €4,) is a stable configuration
of one of the following two types:

1. (type 1) There exists an interval I O {n+1,...,2n} such that the
configuration st zan (91 + €5,) takes the value 0 out of I and the value
1 on I5. Furthermore, the length of I5 is n + 2.

2. (type 2) There exists an interval Iy O {n+1,...,2n} such that the
configuration st s (g1 + e;,) takes the value 0 out of I and the value
Lon Ir—{z}, where x € I and stzsn (g1 + €;,) (z) = 0. Furthermore,
the length of I is n + 3.

At this point, it should be clear that we can use an inductive argument
to prove that for any j < k, the configuration g; is a configuration of one
of the following two types:

1. (type 1) There exists an interval I; O {n+1,...,2n} such that g;
takes the value 0 out of I; and the value 1 on I;. Furthermore, the
length of I; is n + j.

xlviii 6. Dimension 1

2. (type 2) There exists an interval I; O {n+1,...,2n} such that g,
takes the value 0 out of I; and the value 1 on I; — {z}, where z € I;
and g; () = 0. Furthermore, the length of I; is n + j + 1.

If we take j = k we obtain the theorem. m

We are ready to prove the main theorem of this subsection. We will prove
that the computation of the majority function is constant depth reducible
to SPA[L4].

Given (21, ..., &) , we have that Maj (1, ...,2,) = lifand only if Y x; >
| 5] +1. Note that Maj (z1,..., Zn, Tny1 = T1, ..., T2y = T,) = 1 if and only
if > x; >n+1if and only if >~ z; 2 n.

Teorema 62 SPA[L;] is TC°-hard.

Proof. We show that the computation of the majority function is constant
depth reducible to SPA[L1]. Suppose that z = (z1,...,2,) is a boolean
vector. Let m = 2n and let (Y1, ..., Ym) = (T1, sy Tn, L1, ...y T). We define
a configuration g, on {0,1,...,3m + 1} as follows
N _ Jy+lifi=m+jandje{l,..,m}
92 (i) = { 0 else

Note that g, satisfies the conditions in the statement of theorem 61. Let
us call the shadow of g, to the area out of {m + 1, ...,2m} that will be filled
with chips after the relaxation process. If Maj (z) = 1, then the shadow
of g, will be large, it will fill at least n + 2 positions. On the other side, if
Maj (z) = 0, then the shadow of g, will be small, it will fill at most n + 1
positions. Let A,, be equal to the set

{((,j): 0<i<m&jz2m&j—i>m+n+1}
Note that Maj (1, ...,z,) = 1 if and only if
V' ((Gm.g.i+1) € SPALL]) A((Gm,g.5 — 1) € SPA[L1])
(1,5)€EAm
Thus, we have proven that we can compute the majority function using
a D logtime uniform family of depth-three circuits, with an or gate on the

top; a second layer composed by and-gates and a first layer composed by
SPA|Lq] oracle gates. Therefore, we have that SPA [£4] is TC°-hard. m

Corollary 63 SPP (L] is TC°-hard, and SPP [L1] belongs to AC' but
given € Z 0 we have that SPP [£q] ¢ AC'~¢.

6.3 A long remark: one-dimensional critical
avalanches

In this section we will establish some facts concerning the dynamics of
one-dimensional sandpiles and one-dimensional critical avalanches.

6.4 Exercises xlix

Teorema 64 Let n be a natural number, we have
1. L (w}l,w}L) € (n2) .

2. There exists a positive constant K such that

P L(f,g) > Kn?| >
f,gEICIEL}l)[(f.9) > Kn?] >

ool —

Proof. It follows from theorem 49 that L (w},w}) € Q (|£711| +d (E}L)2) ,

we observe that |£}| =n and (d (E}l))2 =([%)2 ~ ";. Items 2 is conse-

quences of theorem 49. m

Also, we have that most critical avalanches are very long, they have a
length which is at least cuadratic with respect to the size of the lattice,
but in despite of this we can predict the final state of those avalanches in
time O (log2 (n)) , that is: jpredicting is possible! It is possible to predict
in short time the evolution of long sandpile dynamics.

6.4 Exercises

1. Prove Sudborough’s theorem.

2. Prove lemma 57.

3. Look for the definition of AC'~¢. Prove that GC [£1] doesn’t belong
to AC'~¢ for any € 2 0.

6. Dimension 1

This is page li
Printer: Opaque this

7

Dimension 2

In this chapter we study the two-dimensional sandpile model, that is: we
study the restriction of The Abelian Sandpile Model to two-dimensional
square lattices.

7.1 The hardness of two-dimensional sandpile
prediction problems

In this section we prove that SPA[Ls] is NC! hard, to this end we prove
that the problem MCV P [P] is log space reducible to SPA[L3]. Remem-
ber that MCV P [P] (The Planar Monotone Circuit Value Problem) is the
problem defined by:

Problem 65 (Planar Monotone Circuit Value Problem)

o Input: (C,), where C is a planar monotone boolean circuit and p is
a valuation.

e Problem: Compute C () .

It is important to remark that MCV P [P] is NC* hard under logspace
reductions, also if we define a logspace reduction of MCV P [P]in SPA [Ls],
we prove the NC! hardness of SPA [Ls]. Therefore, our goal is to define
a logspace algorithm which, on input (C,u) an instance of MCV P [P],
computes an instance of SPA[Ly], say (L3, f,v), such that C(u) = 1 if

lii 7. Dimension 2

and only if SCy (v) > 1. It is important to remark that we can suppose
w.l.o.g. that C is a synchronous planar circuit whose fan out and fan in are
bounded by two.

Teorema 66 SPA[Lsy] is NC' hard.

Proof. Let (C, 1) be an instance of M CV P [P] such that C is a synchronous
planar circuit whose fan in and fan out are bounded by two. Let G¢ be
the underlying graph of C, we can compute, using logarithmic space, an
embedding of Ge into £5™, where n is the size of G¢ and p(X) is a
suitable polynomial. Furthermore, we can suppose that the image of G¢ is
fully contained in the interior of Eg("). We say that a node v € V (Eg(n)

belongs to the image of such an embedding if and only if either v is he
image of some node w € V (G¢), or v is located on the image of one of
the edges of G¢ (the embedding sends nodes of G¢ in nodes of L‘,’;(”) and
edges of G¢ in simple walks of Lg(n)). In the former case we say that v is a
gate-node and in the later we say that v is a wire node. We note that given

v a gate-node, v has exactly one preimage which will be denoted with the
symbol w,. Given o the output node of G¢, we use the symbol v, to denote

its image. Now we define a configuration on LIQ)(”) :
1. If v is a gate-node and w, is an and-gate we set f (v) = 2 = deg (v)—2.
2. If v is a gate-node and w,, is an or-gate we set f (v) = 3 = deg (v) —1.

3. If v is a wire-node we set f (v) = 3 = deg (v) — 1.

4. If v is a gate node, w, is an input gate and u(w,) = 1, we set
f () =4,

5. If v is a gate node, w, is an input gate and p(w,) = 0, we set
J () =0.

The main idea of such a construction is that we are identifying the fol-
lowing two facts:

1. Gate w, evaluates to 1 (0); node v fires (doesn’t fires).

2. A true signal flows through a given wire; chips flows through the
corresponding simple walk in the lattice ﬁg(n).

The construction will work if we add a last ingredient called diode. Diodes
are gadgets designed to ensure that the flow of chips in the lattice is a
directed flow analogous to the flow of true signals in the circuit, that is:
diodes are constructions designed to ensure that chips flow in the right
direction and that spurious signals are not produced.

A diode has the following structure

7.2 Two-dimensional critical avalanches liii

3 3
33 3 3 2 3 3 3

Chips can flow from left to right

but not vice versa

We built a diode on any lattice-wire (simple path representing a circuit
wire), if we don’t have enough space (i.e. if there is either overlapping of
diodes or overlapping of diodes and wires) we can subdivide the lattice as
many times as necessary eliminating the overlapping of our constructions.
Finally after adding all the diodes, if v doesn’t belongs to the subgraph of

C‘S(n) simulating the circuit (that is: v is neither a gate node nor a wire
node) we set f (v) = 0.
It is not difficult to check that

SCy (vp) > 1if and only if C (1) =1

Then, we have that MCV P [P] is logspace reducible to SPA [Ls] since
the whole construction can be computed in logspace m

7.2 Two-dimensional critical avalanches

In this short section we will say some things related to the statistics of
two-dimensional critical avalanches, it will allows us to analyze the average-
perfomance of simulation algorithms, when they are employed to solve the
problem GC'[Ls].

Teorema 67 There exist positive constants C, D such that

1. For all f,g € K(LY) we have that L (f,g) > "27#.
2. L (w2, w2) < Cn*e0 (|Lg|2) .
3. L (w2,w2) > Dn® € Q (|cg|1~5) .

Proof. Item 1 follows directly from theorem 45. Item 2 is a consequence
of theorem 47 and the following fact: given n > 1 we have that d (ﬁ%) =
|5]. We prove Item 3. It follows from the proof of theorem 49 that

d(£3)
L(wep,wep) > Z |M; (L%)|. Note that for any i < d(L%) the size
i=1

of M; (L) is equal to i2. Also, we have

12
L(weg,wey) >) 2 €Q(n’) =9Q (|E3|1'5)
1

N3

i

liv 7. Dimension 2

]
Let SA be the naive (sequential) sandpile automata simulation algo-
rithm, and let BB be the parallel sandpile automata simulation algorithm (we

topple all the unstable nodes at once). We will use the symbol tgl‘ (n, f,9)

to denote the running time of SA on input (E%, 7 g) , we define tg) (n, f,9)
accordingly.

Teorema 68 Let L be the class of square sandpile grids, we have that:

1. Given f,g € K (L,) we have that tgl\ (n, f,g) > ”27# €N (|£%|) .

2. There exists a constant C' such that for any n > 1

2) 915 1
f,gG]CI&En) [tSA (na f7 g) Z C|Ln’ :| Z 372

3. There exists a constant C' such that for any n > 1

0.5
oo (& o202 018 2

L

32

Proof. We have already proven items 1 and 2. We prove item 3. Let f, g
LL.5

be two elements of K (£2) such that L(f,g) > C ’V (£2) ‘ . It implies

0.5
that there exists a node v which is toppled at least C ‘V (E%)*’ times.

If we are using the parallel updating protocol (that is, if we are running
the algorithm B) the topplings performed at v have to be performed at

410.5
different times, and it implies that tg) (n,f,g) > C ‘V (ﬁ%) . Thus, we
have that

P [t(z) , > 2 0.5} >
f,gE)CI(lL%) B (7’L fﬂg)fc"ﬁn’ —2D2

7.3 Exercises

1. Define the class 7 of triangular sandpile lattices. Is 7 a bounded
class?

2. Define the class H of honeycomb sandpile lattices. Is H a bounded
class?

3. Are there classes of two-dimensional regular lattices other than 7, H
and L57

This is page lv
Printer: Opaque this

8

Dimension 3

In this chapter we study the restriction of The Abelian Sandpile Model to
three-dimensional cubic lattices.

8.1 RR|[L3] is P-complete

If we would adapt Moore’s construction to the three-dimensional setting, we
would obtain a reduction of the Monotone Circuit Value Problem (MCV P
for short) into SPA [L3], that is: we can prove that SPA [L3] is P-complete.
In this section we prove something stronger, we prove that RR[L3] (the
easiest of our three-dimensional algorithmic problems) is P-complete.

Teorema 69 RR[L3] is P-complete.

Proof. Let (C, i) be an instance of M CV P, we suppose that C is synchro-
nous, has fan in and fan out bounded by two, and we suppose that C is a
n-size circuit with m input gates. If we use the basic components of Moore’s
construction (fuses, diodes, gates and duplicators) we can built a sandpile
circuit into a three-dimensional lattice Eg(n) (where p(X) is a suitable
polynomial) in such a way that the nodes of the circuit are contained in
the interior of Lg(n). Let C* be the subgraph of L’g(n) whose nodes are the
nodes of the circuit. We can claim that any node of C* has a neighbor out
of C*, moreover we can claim that the complement of C* is a connected
subgraph of Lg("). Given v € V (C*) we assign to v two positive integers in
the following way:

lvi 8. Dimension 3
1. ky = Hw eV (C*): {v,w} € E (cgm))}‘ .
2.1y = Hw gV (C*):{v,w}eE (Eg(n))}‘ .
Now, we define a configuration f(c ,) on Eg(”) :
L If v ¢ V(C*) we set fic) (v) =5.
2. If v is a fuse-node we set fic .,y (v) =5 — 7.
. If v is an or-gate we set fic .,y (v) =5 —7y.

3
4. If v is an and-gate we set fc) (v) =4 —r,.

5. If v is an input gate corresponding to the variable X and p (X) =1,
then we set fc) (v) =6 — 1.

6. If v is an input gate corresponding to the variable X and p (X) =0,
then we set fc) (v) = 0.

Now, we prove that f(c,,) is critical if and only if C (u) = 1. First at all

we remember that f(c , is critical if and only if for any v € V/ (ﬁf;(")) we
have SCf-%eé(Lg(n)) (v) > 1.

We begin by adding one chip to any node on the border of Eg("), then
we fire those nodes. We continue firing any unstable node out of V (C*).

Claim. We can fire all the nodes out of V (C*), before firing the first
node in V (C*).

(proof of the claim). Remember that for any node out of V' (C*) , say v, we
have that fc ,) (v) = 5. Also, v becomes unstable if and only if at least one
neighbor of v is fired. Note that after adding the border configuration, we
can fire all the nodes in the border of £2™ | without firing nodes in V (C*)

(we are supposing that V (C*) is contained in the interior of Eg(n)). We
prove the claim using an inductive argument with respect to the distance
to the border.

e (distance zero) The nodes on the border can be fired.

e (distance i) We suppose that any node out of V (C*), whose distance
to the border is less than or equal to i, can be fired before firing the
first node in V (C*).

e (distance i + 1) Let v be a node such that the distance from v to the

border is equal to i + 1. There exists j such that {i,j} € F (Lg(")> ,

j € (V(C*))° and the distance from j to the border is equal to i. The
inductive hypothesis says us that node j can be fired before firing the

8.2 Strict P-completeness of SPP [Ls] Lvii

first node of V (C*). We observe that after firing j, node ¢ becomes
unstable. Also, we can fire i just after firing j. Thus, we can fire 4
before firing any node in V (C*).

Thus, we can fire all the nodes out of V (C*), before firing nodes in
V (C*). We observe that if we fire all the nodes out of V' (C*), the nodes in
V (C*) (which are the nodes that have been not fired) get the right values,
that is: after firing the complement of V (C*), the subgraph C* carries a
configuration such that all the nodes of V (C*) are fired in the relaxation
process if and only if C (1) = 1. Therefore, we have that C (u) = 1 if and
only if for any v, Scf"'ea(cp(")) (v) > 1if and only if f is critical. Thus, we

3

have proven that M CV P is logspace reducible to SPP [L3] m

8.2 Strict P-completeness of SPP [L;]

If NC # P and L is a P-complete problem there not exist polylogarith-
mic time parallel algorithms computing the problem L. Also, the notion
of P-completeness allows us to discard the existence of polylogarithmic
time algorithms solving a given problem. If we want to discard the exis-
tence of sublinear time algorithms computing a given problem, we have to
use a stronger notion. Anne Condon [C] introduced the notion of strict
P-completeness, which can be used to decide questions concerning the
existence-nonexistence of sublinear time algorithms.

Definition 70 Given L, Two languages in P a honest NC reduction of

L in Q is a NC reduction N for which there exists k > 1 such that for any

x input of L, large enough, and for any query y, computed by N on input
.) k

x, the inequality |y| > |z|” holds.

Definition 71 Given f : N — N a nondecreasing function and given L €
P, we say that L is f-hard for P if and only if for oll Q € P, for any
sequential algorithm M computing Q@ and for all € 2 0 there exists a honest
NC-reduction N from Q into L, such that for any instance x of Q and for
any query y computed by N, on input x, we have that

Flyh) = O (tam () 2[7)

where ta is the running time of M. We say that L is f-complete for P
if and only if L is f-hard for P and L can be solved in time O (f).

From a naive point of view we have that a problem L is f-hard for P if
and only if any algorithm computing L has a running time Q (f) . The three
theorems listed below are the core of the theory of strict P-completeness.

lviii 8. Dimension 3

Teorema 72 If L is f-hard for P and there exists € 2 0 such that L can
be solved in time f (|z|)|z|” . Then, any problem 2 € P can be solved in
time O (tq (n)n™%), where tq is the sequential time of 2.

Proof. Let 2 be a problem in P, and let M be an algorithm solving L in
time g (n) and let A be a honest NC reduction of € in L such that for
any query y, computed by A on input z, we have that

Fyl) = O (taa (J2]) [2F) and |y| > [a|*

where € 2 0 and k > 1. Let B be a parallel algorithm solving L in time
£ (n)|n|~2*. Let A be the parallel algorithm defined by:
On input x algorithm A works as follows:

e Algorithm A simulates algorithm A on input z. Furthermore, given y
a query computed by N on input z, algorithm A simulates algorithm
B on input y instead of asking the oracle for L.

It is clear that algorithm A solves problem 2. Now, we have to upper-
bound the running time of A. First at all we note that ¢4 (x), the running
time of A on input =, is upperbounded by txr () + maxyeq . (x) {t5 (¥)},
where tp (x) denotes the running time of N, ¢5 (y) denotes the running
time of B on input y and Qs (z) denotes the set of queries computed by A
on input x. We note that ¢ is polylogarithmic, also we focus our attention
on the term maxyeq . (z) 15 (y)} . First at all we remember that: |y| > |x\%
and for all y € Qu () the relation f (Jy|) € O (ta (Jz]) |2|°) holds. Then,
we have that there exist two constants C, D such that

s st (oD} < o L7 (JoH]) ™ e e
< O (taleDlal lal ™t (al)) + D
< O (talehlal ™ ta () + D

Thus, we have that t4 (n) € O (txp (n) 7). Then, we have that © can
be solved in time O (tq (n)n"<). m

Given L and) two problems in P, and given M a reduction from L into
Q, we define a function sy as follows

spm(n) =max{|IM(y)] : 3z (2| <n & y € Qa (z))}
and we define a second function sﬁ in the following way
syt (n) = max {m: sy (m) < n}

Teorema 73 If L is f-hard for P and there exists a NC-reduction M of
L in §Q, then Q is f o sx/ll -hard for P.

8.2 Strict P-completeness of SPP [L3] lix

Proof. Let ¥ be a language in P whose sequential running time is equal
to t(n) € Q(n) and let € 2 0. There exists a honest NC' reduction of ¥
in L, say N, such that for any z instance of ¥ and for any y € Qur ()
we have that f (|y]) € O (t(|z])|z|®) . Let M o N be the composition of M
and N. It is easy to check that M o A is a honest NC reduction. Given z
an instance of ¥ and given z a query computed by M o A on input = we
have that:

1. There exists y € Qu (z) such that z is a query computed by M on
input y.

2. Since L is f-hard we have that for any y € Qar (z), the containment
f(lyl) € O(t(|z]) |z|°) holds.

3. [z < s (Jyl)-

Thus, we have

F(sa (D) < f (s (s (1yD)) = £ (lyl) € O (¢ (Jz]) |=[)

]

In order to use the theory we need at least one problem, for which some
type of strictly P-hardness have been already established. Consider the
following problem

Problem 74 (SCV P; Square circuit value problem)

o Input: (Cyn, f), where C is a boolean circuit of size n, f is a valu-
ation for C and n is a square. Furthermore, we demand that C is a
synchronic, monotone boolean circuit of depth \/n such that each one
of the \/n levels of C is constituted by /n gates, and all the inner
gates have fan in and fan out equal to 2.

e Problem: Decide if C' accepts f.
Teorema 75 The problem SCV P is \/n-hard for P.

The proof can be found in [C]. The theorem says that the problem SCV P
plays a role in the theory of strict P-completeness which is analogous to
the role played by CV P (The Circuit Value Problem) in the theory of
P-completeness.

Teorema 76 SPP[L3] is &/n-hard for P.

Proof. We use the symbol A to denote Moore’s reduction of MCV P in
SPP[L3]. Given (C,u) an instance of MCV P, we have that N (C,p) is
equal to a pair (G, fc) such that G¢ is a cubic lattice and f¢, is a
configuration on G¢, (which can be expressed as a sum of two stable con-
figurations. Also, N is a reduction of MCV P in MC [L3]). In the definition

Ix 8. Dimension 3

of the reduction N, we suppose that any input of A is a stratified boolean
circuit of bounded fan in and bounded fan out. We can suppose that, given
(C, i) an instance of SCV P, C is a square boolean circuit whose fan in and
fan out is equal to 2, furthermore we can suppose that it is monotone and
stratified. Also, Given (C,) an instance of M CV P, we can apply on it the
reduction A/. We observe that N is a honest NC reduction, since it is a
log space reduction, and given (C,) we have that the size of N (C,) is
bigger than the size of (C,). Thus, if one wants to prove that SPP [L3]
is /n-hard for P, one only has to prove that

N (C.p)] < I(Cp)]

Last inequality is straightforward. Thus, we have proven that SPP [L3]
(and MC'[L3]) is /n-hard for P. m

8.3 Three dimensional critical avalanches

In this short section we study the statistics of three-dimensional critical
avalanches. Furthermore, we analyze the average-case behavior of simula-
tion algorithms solving the problem GC [Ei] .

Teorema 77 Let n be a natural number, we have

1. L(wr,wk) € Q(n?).

L w;/,w}l
2. Prygeres) |[L(f,9) 2 % > L.

3. There exists a positive constant K such that

1
P L > K 4 s 4
f,gElCIi[:gL) [L(f.g) > Kn* | > -

Proof. Item 2 follows from theorem 54, item 3 follows from items 1 and 2;
we prove item 1. Given £,, a sandpile lattice, we use the symbol ¢ (£,) to
denote the set

{w eEVI(L) :({xw}eE (En))}
We use the symbol §,, to denote the configuration defined by:

given v € V (L£,)", 0, (v) =6 — degg, (v)

We prove that there exists a constant C' such that for any n > 1 we have
4
that L (wy,,w,) > Cn* € Q (|£n|5> . Remember that all the avalanches

triggered by 2w, have the same length. Fix n > 2, we want to lowerbound
the length of a very specific avalanche triggered by 2w,,. Given n > 2, we

8.3 Three dimensional critical avalanches Ixi

can identify the sink of £,,_o with § (£,) the border of £,. If we make
such an identification, we can think of £,,_> as embedded into £,,, and
we can express the configuration w,, as w,—2 + ¢, + 1,,, where +,, is some
configuration on £,,. Note that

2wy, = (Wn + 0n) + (Wn—2 +7,)
We know that that

ste, (2wn) = ste, (ste, (wn +6,) + ste, (W2 +7,))
ste, (wn +6,) = wy, and L (wy,d,) = |V (La)] = (n)°

Thus, we have that there exists a configuration 3, such that we can pass
from the configuration 2w,, to the configuration 2w,,_2s + f3,,. Furthermore,
we have that the partial avalanche carrying us from 2w, to 2w,,_2+ 3,, has
a length equal to n3. This partial avalanche (it is not a maximal avalanche)
is the first stage of the whole stabilization process. In the second stage we
work on the subgraph £, _o with the configuration 2w, _. We can claim
that after (n — 2)3 topplings we can pass from 2w,_2 to 2w,_4 + B,_;-
If we continue in this way, going to the core (center) of L,,, we have to
n

generate | %] — 1 partial avalanches whose lengths are lowerbounded by

n®, (n—2)°, ..., (n—2(|%] - 2))3 and (n—2(|%] - 1))3 (respectively).
13)-1
Therefore, we have that L (wy,, wy) > Z (n—2i)%] e (n'). m
i=0

Let X, : K (En)2 — N be the random variable defined by X, (f,g) =
L(f.9).

Teorema 78 E[X,], the expected value of X, belongs to © (n*).
Proof. We know that there exist positive constants D, K such that
1. For all f,g € K (L,) we have that X,, (f,g) < Dn*.
2. Prygexc,) [X" (f,g9) > Kn4] > 6—19.

Then, we have that

K
@MgEMAgmﬁ

Therefore, we have that E [X,] € © (n*) =© (|Ln|%> [
Now, we come to the analysis of the average-case behavior of simulation
algorithms solving the problem GC' [L3].

Teorema 79 GC [Ls5] is /n-hard for P.

Ixii 8. Dimension 3

Proof. It follows from the following facts: SPP [L3] is ¢/n-hard for P,
and the reduction of SPP [L3] in GC [L3] is a size-preserving honest NC
reduction m

Next theorem follows easily from the results obtained in section 2, it is the
three-dimensional version of theorem 67, it is interesting because it brings
together the results concerning the algorithmic hardness of GC and the re-
sults concerning the statistics of three-dimensional critical avalanches. Re-
member that SA denotes the (naive) sequential sandpile automata simula-
tion algorithm, and remember that the symbol B denotes the parallel sand-
pile automata simulation algorithm. We will use the symbol t?i (n, f,9)

to denote the running time of SA on input (n, f, g), (we define tg’) (n, f,9)
accordingly).

Teorema 80 Letn > 1 be a natural number.

1. There exists a positive constant K such that

1
P t .f,q) > Kn*] > —
f’geéﬁn) [sa(n, f.g) > Kn] = 59
2. There exists a positive constant K such that
P [ts(n, f,g) > Kn] > 1
r n,f,g) > Kn] > —
foerie, VY 69

Proof. The proof is completely analogous to the proof of theorem 67 m

Theorem 80 suggests that the problem GC' is ns-hard on average, which
means that given an algorithm M computing the problem GC, there exists
two positive constants K, D such that

Pr tam (n, f,g) > Kn®5 > D
£0eK(L) [m(n, f,9) >] 2z

Conjecture 81 The problem GC [Ls3] is /n-hard on average.

8.4 Exercises

1. Let L be a P-complete problem. Is there an unbounded function
fr (n), such that L is f1, (n) strict P-complete?

2. What can be said about higher dimensional sandpile lattices?

3. U

This is page Ixiii
Printer: Opaque this

9
Open problems

9.1 Directed sandpiles

We can prove that there are not polynomial bound on avalanche’s length,
when we consider the class of two-dimensional directed sandpile lattices.
This fact rules out the possibility of using the naive sandpile automata
simulation algorithm to solve, in polynomial time, the problem SPP when
restricted to directed sandpiles.

Let (G, S) be a sandpile graph such that S = {s} and there exists a path
V0, U1, V2, ..., Upn, s with the following two properties:

1. deg, (vo) = 1.
2. For any i, if 1 <i < n, then deg, (v;) > 2.

3. For any ¢ > 0 we have that deg_ (v;) = 1.

Lemma 82 Given g = (|G’|2 + 1) €y, the length of any maximal avalanche

triggered by g is lowerbounded by 2™.

Proof. First we note that, in order to stabilize the sandpile it is necessary
to throw at least one chip trough the sink. It implies that SCy (v,) > 1.
Note that in order to place one chip on v, we have to fire v,_; at least
one time. Hence, one toppling at node v,, forces at least two topplings at
node v,_1. Two topplings at node v,,_1 forces at least four topplings at
node v, _s, and so on. We can show, using an inductive argument, that one

Ixiv 9. Open problems

toppling at node v, forces at least 2" topplings at node vyg. Thus, we have
proven that the length of any maximal avalanche with initial configuration

(|G|2 + 1) €y, is bigger than 2. m

Teorema 83 7?7 There is not polynomial bound on the size of the avalanches
for the abelian sandpile model on two-dimensional sandpile directed lattices.

Proof. First at all we define ((G,,Sn)),,»; & sequence of two-dimensional
sandpile directed lattices. Given n > 1 we define (G,,, S,) in the following
way:

1. V(Gn) ={(m,i) :m <n+1andiec{0,1}}.
2. E(G,) = A1 UAyU A3, where

A ={((m,0),(m+1,0)) : m < n};

Ay ={((m,1),(m—1,1)): 1 <m<n+1} and

Aj is equal to

{((m,0),(m,1)) : 1 <m <n}U{((0,1),(0,0)),((n+1,1),(n+1,0))}.
3.5, ={(n+1,0)}.

Note that the path (0,0),(1,0),...,(n + 1,0) satisfies the conditions in
the statement of lemma 82, and note that |G,| = 2n + 4. From lemma
82 we have that the length of any maximal avalanche beginning in g, =

((2n +4)° + 1) €(0,0) is lowerbounded by 2". m

Remark 84 Note that if we define g, as (n+ 1) e,y we obtain the same
lower bound on the length of the mazimal avalanches triggered by gy,.

Last theorem rules out the possibility of solving in polynomial time the
problem SPP [2] by means of the naive sandpile automata simulation al-
gorithm. It does not imply that we can not solve SPP [2] in polynomial
time, note that, with some effort we could compute a closed-form formula
(of low arithmetical complexity) for the function h : N — NV ()" defined
by h(n) = stg, (gn)!. So, we can predict, (even better than in polynomial
time), the final states of our exponential long avalanches. Can we always
predict? At the moment we do not know if SPP [2] belongs to P, this
problem could be intractable, but we conjecture that SPP [2] € P. Which
is the complexity of SPP[2]? Is SPP [2] NP complete?

INote that given n,m > 1 and given gn m = me(o,0y € C (Gn), the relaxation of gn
is the configuration g;; defined by

1if1<k<(mmodn+1)
0, otherwise

a7 (k) = {

9.2 The complexity of two-dimensional sandpiles Ixv
9.2 The complexity of two-dimensional sandpiles

We have proven that SPP[Ly] is NC'-hard, and we have proven that
SPP [Ls] belongs to P. These are the best upper and lower bounds that
have been already established for this problem. Also, the gap between upper
and lower bounds is still very large. Which is the complexity of SPP [£2]?
We conjecture that SPP [L5] is P-hard. We consider that establishing tight
bounds for the computational complexity of SPP [Ls] is the most impor-
tant open problem in the area. It is important to remark that there is some
work concerning this problem; Gajardo and Goles [GM] have shown that
a proof of P hardness for SPP [L3] could not be achieved using Moore’s
construction. The work of Gajardo-Goles suggests that either SPP [Ls] is
not P complete or the proofs showing that SPP [Ls] is P-hard are far from
reach.

There is some weak evidence concerning the possible P-completeness of
SPP L], this weak evidence is provided by the work of Schulz [S2]. Let
dist be the algorithmic problem defined by:

Problem 85 (dist; how far is the next critical configuration)

o Input: (n, f), wheren € N and f € M (LY).
e Problem: Compute miny, {f +t € K (L5)}.

Schulz has proven that the problem dist is N P-complete. Though, there
are not a clear connection between the algorithmic hardness of the problems
dist and SPP [L3], we believe that the theorem of Schulz suggests that
SPP [L5] is P-complete.

Ixvi 9. Open problems

References

[Ba] L. Babai. The abelian sandpile model. Manuscript, available at
http://people.cs.uchicago.edu/ "laci/REU05/.

[BG] L. Babai, I. Gorodezky. Sandpile Transience on the Grid is Poly-
nomially Bounded. Proc. 2007 ACM-SIAM Symposium on Dis-
crete Algorithms, pgs 627-636.

[BTW] P. Bak. How Nature Works: The Science of Self-organized Criti-
cality. New York, Copernicus, 1996.

[BL) B. Bjorner, L. Lovasz. Chip Firing Games on Directed Graphs.
Journal of Algebaic combinatorics, 1(1991): 305-328.

[C] A. Condon. A Theory of Strict P-completeness.
STACS(1992):33-44.

[CS] J. Cooper, J. Spencer. Simulating a Random Walk with Constant
Error. Combinatory, Probability and Computation. 15(6): 815-
822, 2006.

D] D. Dhar. Theoretical Studies of Self-organized Criticality. Physica
A. 369:29-70, 2006.

[GGM] A. Gajardo, E. Goles, A. Moreira. Complexity Of Langton “s Ant.
Discrete applied mathematics, 117(2002):41-50.

[GG] Gajardo, Goles. crossing information.

This is page lxvii
Printer: Opaque this

Ixviii

[GM]

References

Goles, Martinez

C. Langton. Studying Artificial Life with Cellular Automata.
Physica D 22(1986):120-149.

J. Machta, K. Moriarty, R. Greenlaw. Parallel Algorithm and
Dynamic Exponent for Diffusion-limited Agreggation. Physical
Review Eb55, 6211, 1997.

C. Mejia. El modelo de pilas de arena sobre grafos dirigidos y
algo de complejidad. Revista integracion: temas de Matematicas,
24(2;2006):101-116.

C. Mejia, A. Montoya. On the Complexity of Sandpile Predic-
tion Problems. FElectronic Notes in Theoretical Computer Science.
252:229-245, 2009.

P. Miltersen. The computational complexity of one-dimensional
sandpiles. Theory of computing systems. 41(1):119-125, 2007.

C. Moore. Majority-voting Cellular Automata, Ising Dynamics
And P-completeness. Journal of statistical physics 88(1997):795-
805.

C. Moore, M. Nilsson. The computational complexity of sand-
piles. Journal of Statistical Physics. 96:205-224, 1999.

C. Papadimitriou. Computational Complexity. Addison wesley,
Reading MA, 1994.

V. Priezzhev, D. Dhar, A. Dhar, S. Krishnamurthy. Eulerian
Walkers as a Model of Self-organized Criticality. Physical Review
Letters, 77:5079-5082, 1996.

W Ruzzo. On Uniform Circuit Complexity. Journal of Computer
and Systems Sciences. 22 (1981):365-383.

M. Schulz. On the addition of Recurrent configurations of the
Abelian Sandpile Model. ACRI 2008:236-243.

Schulz, complete problem
Sudborough

G. Tardos. Polynomial bound for a chip firing game on graphs.
SIAM J. Discrete Mathematics. 1:397-398, 1988.

C. Thompson. Mathematical Statistical Mechanics. Princenton
univ. press, Princenton NY, 1972.

References Ixix

E. Toumpakari. On the abelian sandpile model. Ph.D. Thesis,
Universidad de Chicago, 2005.

D. Welsh. Complexity: Knots, Colourings and Counting. Cam-
bridge University Press, Cambridge (UK), 1993.

Wolfram S. Cellular Automata And Complexity. Wolfram re-
search, U. champaign IL, 1994.

