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Abstract. In this paper we use a result by J. Krasinkiewicz to present

a description of the topological behavior of an open map defined between

dendrites. It is shown that, for every such map f : X ! Y, there exist n

subcontinua X1, X2,. . ., Xn of X such that X = X1[X2[ · · ·[Xn, each set

Xi \Xj consists of at most one element which is a critical point of f , and

each map f|Xi
: Xi ! Y is open, onto and can be lifted, in a natural way,

to a product space Zi¢Y for some compact and zero-dimensional space Zi.

We also study the !-limit sets !(x) of a self-homeomorphism f : X ! X

defined on a dendrite X. It is shown that !(x) is either a periodic orbit or

a Cantor set (and if this is the case, then f|!(x) is an adding machine).

1. Introduction

It is well known that each open map from the interval [0, 1] to itself is an n-fold
branched covering map (i.e., there exist n 2 N and n subcontinua X1, X2,. . ., Xn

of [0, 1] such that [0, 1] = X1 [X2 [ · · · [Xn, each set Xi \Xj contains at most
one element, for i, j 2 { 1, 2,. . ., n } with i 6= j, and each map fi = f|Xi

: Xi !
[0, 1] is a homeomorphism). Based on this fact, the dynamics of such maps have
been extensively investigated (see for example [MT88]). Since every open map
of a finite tree, with at least one branch-point, onto itself is a homeomorphism
(Theorem 3.1), it is natural to investigate open maps on dendrites. Easy examples
show that a straight forward generalization of the above result for the interval is
false. In this paper we formulate a correct generalization for the class of dendrites
(see Theorem 4.4).
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Dendrites appear naturally as the Julia set of a complex polynomial. If, for
example, p : C ! C is the map defined by p(z) = z

2 + c, then for certain values
of c, the Julia set J of p is a dendrite and the map p|J : J ! J is a branched
covering [Mil00]. In particular, p|J is open. The dynamics of such maps is still
not well understood (cf. [BL02] and [Thu85]) and serves as a motivation for this
paper.

The paper is divided in 5 sections. After the introduction, we write in Section 2
some notions and auxiliary results. Then in Section 3 we present some conditions
under which an open map defined between dendrites must be a homeomorphism.
In this section we also study the !-limits sets of a self-homeomorphism f : X !
X defined on a dendrite X. Later in Section 4 we present a consequence of a
theorem by Krasinkiewicz that will allow us to prove the main theorem of the
paper (Theorem 4.3). Finally, in Section 5 we collect some other results involving
open maps between dendrites.

2. Notions and auxiliary results

All spaces considered in this paper are assumed to be metric. If X is a space,
p 2 X and Ø > 0, then BX(p, Ø) denotes the open ball around p of radius Ø. If
A ∫ X, then the symbols clX(A) , intX(A) and bdX(A) stands for the closure,
the interior and the boundary of A in X, respectively. Moreover, the symbol |A|
represents the cardinality of A.

A continuum is a nonempty, compact and connected metric space. The topo-
logical limit, with respect to the Hausdor´ metric, of a sequence of closed nonempty
sets (Yn)n in a metric space is denoted by Lim Yn.

A dendrite is a locally connected continuum that contains no simple closed
curves. For a dendrite X it is known that any subcontinuum of X is a dendrite
[Nad92, Corollary 10.6], every connected subset of X is arcwise connected [Nad92,
Proposition 10.9], and the intersection of any two connected subsets of X is con-
nected [Nad92, Theorem 10.10]. Given points p and q in a dendrite X, there is
only one arc from p to q in X. We denote such an arc by pq.

A map is a continuous function. A map f from a continuum X onto a contin-
uum Y is said to be

• open if the image of any open subset of X is an open subset of Y ;
• interior at x 2 X if for every open set U of X such that x 2 U, we have

f(x) 2 intY (f(U));
• confluent provided that for any subcontinuum Q of Y and any component

C of f
†1(Q), we have f(C) = Q;
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• monotone if for any y 2 Y, the set f
†1(y) is connected;

• light if for any y 2 Y, the set f
†1(y) is zero-dimensional.

It is well known that a map is open if and only if it is interior at each point
of its domain. Moreover, any open map is confluent [Nad92, Theorem 13.14]. It
is also known that confluent light maps onto a locally connected continuum are
open.

For a dendrite X and a point p 2 X we denote the order of p at X by ordpX.
Points of order 1 in X are called end-points of X. The set of all such points is
denoted by E(X). It is known that E(X) is zero-dimensional. It is easy to see
that if C is a connected subset of X, then the set C \E(X) is arcwise connected.
Points of order 2 in X are called ordinary points of X. The set of all such points
is denoted by O(X). It is known that O(X) is dense in X [Nad92, 10.42]. Points
of order greater than 2 are called branch points of X. The set of all such points is
denoted by B(X). It is known that B(X) is countable [Nad92, Theorem 10.23].
Moreover ordpX ¥ @0 for any p 2 X. Note that X = E(X) [O(X) [B(X).

For a dendrite X and subcontinua A and B of X such that A\B 6= ; we define
a map r : A[B ! A as follows. If x 2 A we put r(x) = x and if x 2 (A[B) \A

then r(x) is the unique point of A \ C where C is any irreducible arc in A [ B

from x to a point of A. It is known that r is a monotone retraction from A [ B

onto A [Nad92, Lemma 10.25]. The map r is called the first point map from A[B

to A.

If f : X ! Y is a map then a point p 2 X is said to be
• a fixed point of f if f(p) = p;
• a periodic point of f if there exists n 2 N such that f

n(p) = p;
• a critical point of f if for any neighborhood U of p there exist x1, x2 2 U

such that x1 6= x2 and f(x1) = f(x2).
We denote by Fix(f), P (f) and C the set of fixed, periodic and critical points

of f , respectively. It is known that if f : X ! X is a map and X is a dendrite,
then Fix(f) 6= ; [Why, Corollary 3.21, p. 243].

If X is a space then an arc pq in X is called a free arc in X provided that
pq \ {p, q} is open in X. The following theorem collects some results from Section
6 of [CCP94].

Theorem 2.1. Let f : X ! Y be an open map from a dendrite X onto a

continuum Y. Then

(2.1.1) Y is a dendrite;

(2.1.2) f is light;

(2.1.3) ordf(p)Y ¥ ordpX for any p 2 X;
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(2.1.4) if ordpX = @0, then ordf(p)Y = @0;

(2.1.5) f(E(X)) ∫ E(Y );
(2.1.6) f

†1(B(Y )) ∫ B(X);
(2.1.7) the set f

†1(y) is finite for any y 2 Y \ E(Y );
(2.1.8) the set f

†1(E(Y )) \ E(X) is finite;

(2.1.9) the image under f of a free arc in X is a free arc in Y ;

(2.1.10) for each subcontinuum B of Y and for each p 2 f
†1(B), there is a sub-

continuum A of X containing p and such that the map f|A : A ! B is a

homeomorphism.

The following basic result will be used in Section 4.

Theorem 2.2. Let X be a dendrite and let M be a subset of X such that E(X) ∫
M and M \ E(X) is closed in X. Let C be a component of X \ M . Then C is

open and closed in X \ M .

Proof. Note that X \ E(X) is connected and locally connected. Hence X \ M

is locally connected and the required result follows easily. £

3. Homeomorphisms and !-limit sets

In this section we provide suÆcient conditions which imply that an open map,
defined between dendrites, must be a homeomorphism. Later we will study the !-
limit sets of a self-homeomorphism f : X ! X defined on a dendrite X. We start
with a self-open map defined on a non-trivial tree, in which case no additional
assumptions are needed, i.e. such a map must be a homeomorphism.

Theorem 3.1. Let f : X ! X be an open map from a finite tree X onto itself.

If B(X) 6= ;, then f is a homeomorphism.

Proof. Put n = |B(X)| and let B(X) = {b1, b2, . . . , bn}. For any given i 2
{1, 2, . . . , n}, let ai 2 X be such that f(ai) = bi. Put B = {a1, a2, . . . , an}. By
(2.1.6), B ∫ B(X) and since |B| = n, it follows that B(X) = B. This shows that
f(B(X)) = B(X) and f

†1(B(X)) = B(X). Hence the map f|B(X) : B(X) !
B(X) is one-to-one and onto. To finish the proof it suÆces to show, by (2.1.5),
that f

†1(E(X)) ∫ E(X).
To see this, suppose there exists v 2 X \ E(X) such that w = f(v) 2 E(X).

Since B(X) is finite and f(B(X)) = B(X) it follows that v 2 O(X) and there
is a connected open subset U of X such that v 2 U ∫ O(X). Since f is light
U can be chosen so that X \ f

†1(f(U)) has at least two components C and
D. By (2.1.3) and the inclusion U ∫ O(X) we have f(U) \ B(X) = ; and
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f(U)\E(X) = {w}. Thus X \f(U) is a subcontinuum of X that contains B(X).
Note that f

†1(X \ f(U)) = X \ f
†1(f(U)), so both C and D are components of

f
†1(X \ f(U)). By the confluence of f we have f(C) = f(D) = X \ f(U). The

latter contradicts the fact that f|B(X) is one-to-one and completes the proof. £
In the following theorem we give some conditions under which a confluent map

between dendroids must be a homeomorphism. Recall that a dendroid is an arc-
wise connected continuum such that the intersection of any two of its subcontinua
is connected. Note that dendrites are locally connected dendroids. We extend
the definition of an end-point in a dendrite as follows. Suppose X is a dendroid.
Then a point e 2 X is called an end-point of X if e is an end-point of every arc
in X which contains e. Note that if X is locally connected (and hence if X is a
dendrite), this implies that the order of X at e is one. As before we denote the
set of all end-points of a dendroid X by E(X).

Theorem 3.2. Let f : X ! Y be a map from a dendroid X onto a dendroid Y.

Let us assume that:

(3.2.1) f is confluent and light,

(3.2.2) f
†1(E(Y )) = E(X) and the map f|E(X) : E(X) ! E(Y ) is one-to-one.

Then f is a homeomorphism.

Proof. Let us assume, on the contrary, that there exist x, y 2 X with x 6= y

and f(x) = f(y). By (3.2.2) f(x) /2 E(Y ) and, by (3.2.1), the set f
†1(f(x))

is zero-dimensional. Then we can assume, without loss of generality, that xy \
f
†1(f(x)) = {x, y}. Since f(x) /2 E(Y ), and f(z) 6= f(x) for all z 2 xy \ {x, y},

there is e 2 E(Y ) such that ef(x) \ f(xy) = {f(x)}. Let Cx and Cy be the
components of f

†1(ef(x)) such that x 2 Cx and y 2 Cy. Since f is confluent,
we have f(Cx) = f(Cy) = ef(x). Take points a 2 Cx and b 2 Cy such that
f(a) = f(b) = e. By (3.2.2) we have a, b 2 E(X) and a = b. Then the continuum
Cx [ xy [ Cy contains a simple closed curve, a contradiction. £

The following easy corollary will be used in the proof of Theorem 4.4. Another
proof can be obtained using the corollary that appears at the end of page 199 of
[Why].

Corollary 3.3. Let f : X ! Y be an open map from a dendrite X onto a dendrite

Y. If f has no critical points, then f is a homeomorphism.

Proof. Let f be as assumed. Since f has no critical points, f
†1(E(Y )) ∫

E(X), and since f is onto and f(E(X)) ∫ E(Y ) we have f
†1(E(Y )) = E(X).

This implies that f|E(X) is one-to-one. To see this consider two distinct points
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e1, e2 2 E(X) such that f(e1) = f(e2). Then, since f is light, f(e1e2) = Z is a
(non-degenerate) continuum. Let y 2 E(Z) \ {f(e1)} and x 2 e1e2 \ {e1, e2} such
that f(x) = y. Then x is a critical point of f , a contradiction. By Theorem 3.2,
f is a homeomorphism. £

Now we turn our attention to self-homeomorphisms defined on a dendrite. The
next two results involves the set of fixed points of any such map.

Lemma 3.4. Let X be a dendrite and g : X ! X a homeomorphism from X

onto itself. Let a, b 2 X be such that a 6= b and g(b) 2 X \ ab. Let D be the

component of X \ {b} that contains g(b). Then Fix(g) \ clX(D) 6= ;.

Proof. By a standard construction of a maximal Borsuk ray (see [Hag86]), there
is a map ' : [0,1) ! clX(D) such that '(0) = b, '(t) 2 bg('(t)) \ {g('(t))}
for every t 2 [0,1), clX('([0,1))) \ '([0,1)) = {y} and g(y) = y. Then
y 2 Fix(g) \ clX(D). £

Lemma 3.5. Let X be a dendrite and g : X ! X a homeomorphism from X

onto itself. If E(X) \ Fix(g) 6= ;, then |Fix(g)| µ 2.

Proof. Let e 2 E(X) \ Fix(g) and assume that Fix(g) = {e}. Let p 2 X \ {e}.
Note that C = ep \ eg(p) is an arc that contains e as one end-point. Let v be
the other end-point of C. Since g(e) = e and g is a homeomorphism, we have
g(ep) = eg(p), so g(v) 2 eg(p). Thus either v 2 eg(v) \ {g(v)} or g(v) 2 ev \ {v}.
Let us assume first that v 2 eg(v) \ {g(v)}. Let D be the component of X \ {v}
that contains g(v). By Lemma 3.4, Fix(g)\ clX(D) 6= ;. Let us assume now that
g(v) 2 ev \ {v} and let E be the component of X \ {g(v)} that contains v. By
Lemma 3.4, applied to g

†1
, we have Fix(g†1)\clX(E) 6= ;. In any case we found

a fixed point of g di´erent than e. £

From now on, in this section, f : X ! X represents a homeomorphism from a
dendrite X onto itself. Given x 2 X the set !(x) of points y 2 X such that, for
any neighborhood U of y and any N 2 N, there is n > N such that f

n(x) 2 U

is called the !-limit set of f. Note that !(x) = lim sup f
n(x). In this section we

will prove that either !(x) is a periodic orbit or a Cantor set. To this aim let us
consider the collection C of all components of X \Fix(f). Since Fix(f) is a closed
subset of the locally connected continuum X, the elements of C are open subsets
of X. Moreover if C 2 C, then C \ Fix(f) = ; so clX(C) \ Fix(f) ∫ E(clX(C)).
In the following lemma we present more properties of C and its elements.

Lemma 3.6. The following properties are satisfied:
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(3.6.1) C is countable;

(3.6.2) f(C) 2 C for any C 2 C;

(3.6.3) if C 2 C, then |clX(C) \ Fix(f)| ¥ 2;
(3.6.4) if C 2 C and |clX(C) \ Fix(f)| = 2, then f(C) = C and if we write

clX(C)\Fix(f) = {a, b} then for any x 2 C either !(x) = {a} or !(x) =
{b};

(3.6.5) if C 2 C, |clX(C) \ Fix(f)| = 1 and f
n(C) 6= C for all n 2 N, then

!(x) = clX(C) \ Fix(f) for any x 2 C.

Proof. Let D be a countable dense subset of X and Ci 2 C. Since Ci is open
it follows that Ci \ D 6= ; so we can pick a point di 2 Ci \ D. Note that if Ci

and Cj are di´erent elements of C, then di 6= dj . Thus since D is countable, the
collection C is countable as well. This shows (3.6.1).

To show (3.6.2) let C 2 C. Note that f(Fix(f)) = Fix(f). Since f is a
homeomorphism f(C) is a component of f(X \ Fix(f)) = f(X) \ f(Fix(f)) =
X \ Fix(f), so f(C) 2 C.

To show (3.6.3) let C 2 C and assume that |clX(C)\Fix(f)| µ 3. Let a, b and
c be three di´erent elements of clX(C) \ Fix(f). Consider the arcs ab, bc and ac

in clX(C) and note that ab \ bc \ ac = {t} ∫ C. Since f is a homeomorphism
that fixes a, b and c we have t 2 C \ Fix(f), a contradiction. This shows (3.6.3).

Now assume that C 2 C is such that |clX(C) \ Fix(f)| = 2. Put clX(C) \
Fix(f) = {a, b} and take x 2 C. Let r be the first point map from X to ab ∫
clX(C). It is easy to see that

1) r(z) = az \ ab \ bz, for any z 2 X.
In particular r(x) = ax\ ab\ bx. Since a, b 2 Fix(f), f(ab) = ab, f(ax) = af(x),
f(bx) = bf(x), and f is a homeomorphism

f(r(x)) = f(ax \ ab \ bx) = af(x) \ ab \ bf(x).

Applying 1) to z = f(x) we have af(x) \ ab \ bf(x) = r(f(x)). Hence f(r(x)) =
r(f(x)), so f

n(r(x)) = r(fn(x)) for any n 2 N. Note that r(x) 2 ab \ {a, b}, so
f(r(x)) 6= r(x). This implies that the arcs xr(x) and f(x)r(f(x)) are disjoint.
Now, since r(x), f(r(x)) 2 ab\{a, b} and r(x) 6= f(r(x)), either f(r(x)) 2 br(x) or
f(r(x)) 2 ar(x). Let us assume, without loss of generality, that f(r(x)) 2 r(x)b.
Then f|ab is a homeomorphism whose graph lays above the diagonal (except at
points a and b), so f

n(z) ! b for any z 2 ab \ {a, b}. In particular f
n(r(x)) ! b

and since the arcs in the sequence (fn(x)r(fn(x)))n are mutually disjoint, it
follows that f

n(x) ! b. Thus !(x) = {b}. To complete the proof of (3.6.4) we
have to see that f(C) = C. Let us assume that there is y 2 C such that f(y) /2 C.
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Then r(f(y)) 2 {a, b}, so r(y) is an element of X such that f(r(y)) = r(f(y)) 2
{a, b}, and this contradicts the fact that f is one-to-one. Thus f(C) ∫ C. By
(3.6.2), C ∫ f(C), so f(C) = C. The proof of (3.6.4) is complete.

To show (3.6.5) let C 2 C be such that |clX(C) \ Fix(f)| = 1 and f
n(C) 6= C,

for all n 2 N. Put clX(C) \ Fix(f) = {a} and let x 2 C. By (3.6.2) and (3.6.4),
(fn(C))n is a sequence of mutually disjoint elements of C such that, for any n 2 N,
f

n(clX(C)) \ Fix(f) = {a}. Since X is locally connected f
n(clX(C)) ! {a}, so

!(x) = {a} for any x 2 C. £

Let C 2 C be such that |clX(C) \ Fix(f)| = 1 and f
n(C) = C for some n 2 N.

Put clX(C) \ Fix(f) = {a}. If n = 1 then f|clX(C) is a homeomorphism from the
dendrite clX(C) onto itself such that a 2 Fix(f|clX(C) ) \ E(clX(C)). Then, by
Lemma 3.5, |clX(C)\ Fix(f)| = |Fix(f|clX(C) )| µ 2. Since this is a contradiction,
we have n > 1.

We say that an element C 2 C is an end-periodic component of X \ Fix(f)
(or simply, that C is end-periodic) if |clX(C) \ Fix(f)| = 1 and f

n(C) = C for
some n > 1. By (3.6.2), (3.6.4) and (3.6.5) the image, under f, of an end-periodic
component of X \ Fix(f) is an end-periodic component of X \ Fix(f). We say
that, for an element x 2 X, !(x) is a periodic orbit if there exists y 2 P (f) such
that !(x) = {fn(y) : n 2 N[ {0}}. We understand that f

0(y) = y for any y 2 X.
Let us assume that x 2 X is such that !(x) is not a periodic orbit. Then

if j 2 N we have x 2 X \ Fix(f j). Since f
j is a homeomorphism from X onto

itself, the family Cj of components of X\Fix(f j) satisfies properties (3.6.1)-(3.6.5),
where C is replaced by Cj and f by f

j
. Let C(j†1) 2 Cj be such that x 2 C(j†1).

If C(j† 1) is not end-periodic then, by (3.6.4) and (3.6.5), !(x) 2 Fix(f j). Since
this contradicts the fact that !(x) is not a periodic orbit, C(j†1) is end-periodic.
Put clX(C(j † 1)) \ Fix(f j) = {d(j † 1)} and note that d(j † 1) is an end-point
of clX(C(j † 1)). Moreover, since C(j † 1) is end-periodic, there exists nj†1 > 1
such that f

jnj†1(C(j † 1)) = C(j † 1). We have shown the following result.

Lemma 3.7. If x 2 X is such that !(x) is not a periodic orbit then, for any

j 2 N, we have x 2 C(j † 1) where C(j † 1) is an end-periodic component of

X \ Fix(f j). Moreover if clX(C(j † 1)) \ Fix(f j) = {d(j † 1)}, then d(j † 1) is

an end-point of clX(C(j † 1)) and f
jnj†1(C(j † 1)) = C(j † 1) for some integer

nj†1 > 1.

Let N = {n0, n1, n2, . . . } be a sequence of positive integers and let Z/ni de-
note the cyclic group of integers mod (ni), with the discrete topology. Then
CN =

Q1
i=0

Z/ni is a Cantor set. Define a homeomorphism hN : CN ! CN by
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hN (x0, x1, . . . ) = (y0, y1, . . . ), where yi is defined as follows. If x0 < n0 † 1, then
y0 = x0 +1 and yi = xi for all i > 0. If there is j > 0 such that xi = ni† 1 for all
i < j and xj < nj†1, then yi = 0 for all i < j, yj = xj +1 and yl = xl for all l > j.
If xi = ni † 1 for all i, then yi = 0 for all i (one can think of hN (x0, x1, . . . ) in-
formally as (x0, x1, x2, . . . )+ (1, 0, 0, . . . ) by adding in each coordinate modulo ni

and carrying). It is not diÆcult to see that hN is a minimal homeomorphism. Any
homeomorphism f : C ! C on a Cantor set C for which there exists a sequence of
positive integers N = {n0, n1, . . . } and a homeomorphism ' : C ! CN such that
f = '

†1 Æ hN Æ ' will be called an adding machine (or a generalized odometer)
[BKP97, D86]. Similarly, given a finite sequence N(k) = {n0, . . . , nk} of positive
integers, we can define a periodic homeomorphism hk :

Qk
i=0

Z/ni !
Qk

i=0
Z/ni

by restricting hN to the first k + 1 coordinates, where N(k) ∫ N . Hence, infor-
mally, hk(x0, . . . , xk) is defined as (x0, x1, . . . , xk)+(1, 0, . . . , 0) by adding modulo
ni in each coordinate and carrying.

We are ready to prove the above mentioned result about the !-limit sets of a
self homeomorphism defined on a dendrite.

Theorem 3.8. Let X be a dendrite and f : X ! X be a homeomorphism from

X onto itself. If x 2 X then !(x) is either a periodic orbit or a Cantor set.

Moreover if !(x) is a Cantor set, then f|!(x) is an adding machine.

Proof. Let 0m and 01 denote the m-tuple of zeros and the infinite sequence of
zeros, respectively. Take x 2 X and assume that !(x) is not a periodic orbit.
We will construct a decreasing sequence of subcontinua of X which contain x, as
follows. First, by Lemma 3.7, x 2 C(0) where C(0) is an end-periodic component
of X \Fix(f). Put clX(C(0))\Fix(f) = {d} and let n0 > 1 be minimal such that
f

n0(C(0)) = C(0). Put D(0) = clX(C(0)) and note that D(0) = C(0) [ {d} and
f

n0(D(0)) = D(0). Put C(i) = f
i(C(0)) and D(i) = f

i(D(0)) for 1 ¥ i < n0. Let
N(0) = {n0}. Since h0 : Z/n0 ! Z/n0 is defined as h0(m) = m + 1 mod (n0),
we can also write D(i) = D(hi

0
(0)) = f

i(D(0)) for any 0 ¥ i < n0. Then C(i) is
an end-periodic component of X \ Fix(f) and D(i) \ Fix(f) = {d}.

Now define f0 = (fn0)|D(0) and note that f0 : D(0) ! D(0) is a homeo-
morphism from the dendrite D(0) onto itself. Moreover Fix(f0) 6= ; and, by
Lemma 3.7, x 2 C(0, 0) = C(02), where C(02) is an end-periodic component
of D(0) \ Fix(f0). Put D(02) = clX(C(02)), D(02) \ Fix(f0) = {d(0)} and let
n1 > 1 be minimal such that f

n1
0

(D(02)) = D(02). Note that D(02) ¿ D(0)
since d 2 D(0) \ D(02). Let N(1) = {n0, n1}. Put D(hi

1
(02)) = f

i(D(02)) for
1 ¥ i < n0n1 † 1, and d(i) = d(hi

0
(0)) = f

i(d(0)) for 1 ¥ i < n0 † 1. Let
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f1 = (fn1
0

)|D(02) and note that f1 : D(02) ! D(02) is a homeomorphism from the
dendrite D(02) onto itself.

Now we proceed by induction for constructing the subcontinuum D(0j+1) from
the subcontinuum D(0j) that contains x. Put fj†1 = (fnj†1

j†2
)|D(0j)

and note that
fj†1 : D(0j) ! D(0j) is a homeomorphism. Hence Fix(fj†1) 6= ; and, since !(x)
is not a periodic orbit, x 2 D(0j) \ Fix(fj†1). Thus, by Lemma 3.7, x belongs
to an end-periodic component C(0j+1) of D(0j) \ Fix(fj†1). Put D(0j+1) =
clX(C(0j+1)), D(0j+1) \ Fix(fj†1) = {d(0j)} and let nj > 1 be minimal such
that f

nj

j†1
(D(0j+1)) = D(0j+1). Let N(j) = {n0, n1, . . . , nj}. Put D(hi

j(0j+1)) =
f

i(D(0j+1)) for 1 ¥ i < n0n1 · · ·nj † 1, and d(hi
j†1

(0j)) = f
i(d(0j)) for 1 ¥ i <

n0n1 · · ·nj†1 † 1.
In this way, for ki 2 {0, 1, . . . , ni†1} and i 2 {0, 1, . . . , m}, we have constructed

a subcontinuum D(k0, k1, . . . , km) of X, such that

D(k0, k1, . . . , km, km+1) ( D(k0, k1, . . . , km)

for every km+1 2 {0, 1, . . . , nm+1 † 1}. Define

D(k0, k1, k2, . . .) =
1\

m=0

D(k0, k1, . . . , km)

and note that D(k0, k1, k2, . . .) is the intersection of a decreasing sequence of
subcontinua of X, thus is a subcontinuum of X as well. Also define

d(k0, k1, k2, . . .) = lim
m!1

d(k0, k1, . . . , km).

The limit exists because the sequence of points (d(k0, k1, . . . , km))m forms a
monotone sequence contained in an arc in X. Define

K = {d(k0, k1, k2, . . .) : ki 2 {0, 1, . . . , ni † 1} for all i}

and note that K ∫ X. Put N = {n0, n1, n2, . . .} and CN =
Q

i Z/ni. Let
' : K ! CN be defined by '(d(k0, k1, . . . )) = (k0, k1, . . . ). We claim that ' is a
homeomorphism. To see this, let º be the topology on X and ºs the topology on K

as a subspace of X. If ºp is the product topology on CN , then we must show that
ºs = ºp. Assume first that U is a basic open set in ºp. Let d(k0, k1, k2, . . .) 2 U .
Then there is m such that

U = {k0}¢ {k1}¢ · · ·¢ {km}¢
Y

i>m

Z/ni.

Let V = D(k0, k1, . . . , km) \ {d(k0, k1, . . . , km†1)}. Note that d(k0, k1, k2, . . .) 2
V \K and that V is a component of

V
0 = X \ {d, d(k0), d(k0, k1), . . . , d(k0, k1, . . . , km†1)}.
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Since V
0 2 º and X is locally connected, it follows that V 2 º , so V \K 2 ºs.

Since V \K ∫ U it follows that U 2 ºs. This shows that ºp ∫ ºs.
To prove the other inclusion let U 2 ºs. Then U = V \ K, for some V 2 º .

Let y = d(k0, k1, . . .) 2 U . For simplicity put D1 = D(k0, k1, . . .) and, for each
i, Di = D(k0, k1, . . . , ki), di = d(k0, k1, . . . , ki) and Ii = Di \ D1. Then Ii is
arcwise connected. To see this we will show that every point z 2 Ii can be joined
to di†1 2 Ii by an arc lying entirely in Ii. Let zdi†1 be the arc in Di joining z to
di†1. Since y separates di†1 from D1 \ {y}, it suÆces to show that y does not
lie on zdi†1. Note that dj 2 di†1y for all j > i† 1. If y 2 zdi†1, then dj 2 zdi†1

for all j > i† 1. This implies that z 2 D1, a contradiction. Hence Ii is arcwise
connected for all i. Since (Di)i is a decreasing sequence it follows that (Ii)i is a
decreasing sequence as well, and since

T
i Ii = ;, it follows that diam(Ii) ! 0.

Then there is n such that In ∫ V .
Note that

Dn \K = {k0}¢ {k1}¢ · · ·¢ {kn}¢
Y

i>n

Z/ni,

so Dn \K 2 ºp. Moreover y 2 Dn \K and

Dn \K = (In \K) [ (D1 \K) ∫ (V \K) [ {y} = U [ {y} = U.

This implies that U 2 ºp and then ºs ∫ ºp. Thus ºs = ºp and since CN is a Cantor
set in the product topology, K is a Cantor set as well in the subspace topology
ºs.

Since d(hi
j(0j+1)) = f

i(d(0j+1)) and

d(k0, k1, k2, . . . ) = lim
m!1

d(k0, k1, k2, . . . , km),

it follows that f(d(k0, k1, . . . )) = d(hN (k0, k1, . . . )). In other words, f|K = '
†1 Æ

hN Æ ' and f|K is an adding machine. In particular the orbit of any point in
K is dense in K. Now, by [Nad92, Theorem 10.4], diam(fn(D(01)) ! 0 and
since x, d(01) 2 D(01) it follows that f

n(x) ! f
n(d(01)). Therefore !(x) =

!(d(01)) and since the orbit of d(01) is dense in K, we have !(d(01)) = K.
This shows that !(x) is a Cantor set and f|!(x) is an adding machine. £
Corollary 3.9. If f : X ! X is a homeomorphism from a dendrite X onto itself,

then the entropy of f is zero.

Proof. Let hN : CN ! CN be an adding machine. Then hN is an isometry in
the natural metric on CN and, hence, the entropy of hN is zero. Moreover, if the
entropy of f is positive, then there exists x 2 X such that the entropy of f|!(x)

is positive. Hence the result follows from Theorem 3.8. £
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4. Open maps between dendrites

Consider spaces X, Y, M and maps f : X ! Y and u : M ! Y. Then a map
v : M ! X is said to be a lifting of u with respect to f provided that u = f Æ v.
Denote by C(X, Y ) the space of all maps from X into Y . In Section 1 of [K00]
the following result is proved.

Theorem 4.1. Let f : X ! Y be a confluent and light map from a compact space

X onto Y. Let w : D ! Y be a map from a dendrite D and let x0 2 X and ≤ 2 D

be such that f(x0) = w(≤). Then

(4.1.1) there is a lifting v : D ! X of w with respect to f such that v(≤) = x0;

(4.1.2) all liftings of w with respect to f constitute a zero-dimensional compact

subset of C(D, X).

For proving Corollary 4.3 we will use the following reformulation of the con-
clusion of Theorem 4.1.

Corollary 4.2. Let f : X ! Y be a confluent and light map from a compact

space X onto Y. Let w : D ! Y be a map from a dendrite D and let x0 2 X and

≤ 2 D be such that f(x0) = w(≤). Then there exist a compact zero-dimensional

space Z, a point z0 2 Z, and a map q : Z ¢D ! X such that

(4.2.1) q(z0, ≤) = x0,

(4.2.2) f(q(z, t)) = w(t) for each (z, t) 2 Z ¢D,

(4.2.3) for each lifting µ : D ! X of w with respect to f, there is a uniquely

determined element z 2 Z such that µ(t) = q(z, t) for each t 2 D.

Proof. Let Z be the set of all z 2 C(D, X) such that z is a lifting of w with
respect to f . By (4.1.2) Z is compact and zero-dimensional. Let z0 be the lifting
v guaranteed in (4.1.1) and define q : Z ¢ D ! X as q(z, t) = z(t). Then it is
easy to show that properties (4.2.1), (4.2.2) and (4.2.3) are satisfied. £

Corollary 4.3. Suppose that f : X ! Y is an open and onto map between den-

drites X and Y. Then there is a compact and zero-dimensional set Z and an onto

map q : Z¢Y ! X such that if π2 : Z¢Y ! Y is the map given by π2(z, y) = y for

any (z, y) 2 Z ¢ Y, then f Æ q = π2. Additionally we have the following properties

(4.3.1) if q(z1, y1) = q(z2, y2), then y1 = y2;

(4.3.2) if z 2 Z and R = q({z}¢ Y ), then the maps q|{z}¢Y : {z}¢ Y ! R and

f|R : R ! Y are homeomorphisms.

Proof. Open maps between dendrites are confluent and light, so we can use
Corollary 4.2 with the map f as given in the hypothesis, D = Y and w as the
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identity map on Y. To show that the map q : Z ¢ Y ! X is onto let x 2 X. By
(4.1.1) there is a lifting µ : Y ! X of w with respect to f such that µ(f(x)) = x.
By (4.2.3) there is an element z 2 Z such that µ(y) = q(z, y) for any y 2 Y . In
particular q(z, f(x)) = µ(f(x)) = x, so f is onto. Properties (4.3.1) and (4.3.2)
are easy to prove. £

For a natural number n we write In = { 1, 2,. . ., n }.

Theorem 4.4. Let f : X ! Y be an open map from a dendrite X onto a dendrite

Y, and let C be the set of critical points of f. Then there exist n 2 N and n

subcontinua X1, X2,. . ., Xn of X with the following properties:

(4.4.1) X = X1 [X2 [ · · · [Xn;

(4.4.2) for any i, j 2 In with i 6= j the set Xi \Xj contains at most one element.

Moreover if x 2 Xi \Xj then x 2 C \ E(X) and f(x) 2 E(Y );
(4.4.3) for each i 2 In, the map fi = f|Xi

: Xi ! Y is open and onto;

(4.4.4) for each i 2 In, if f(C\Xi) ∫ E(Y ), then the map fi = f|Xi
: Xi ! Y is

a homeomorphism;

(4.4.5) for each i 2 In, if f(C \Xi) \ E(Y ) 6= ;, it follows that

(4.4.5.1) if c is a critical point of fi and c /2 E(Xi), then fi(c) /2 E(Y );
(4.4.5.2) there is a compact and zero-dimensional set Zi and an onto map

qi : Zi ¢ Y ! X such that if π2 : Zi ¢ Y ! Y is the map given by

π2(z, y) = y for any (z, y) 2 Zi ¢ Y, then fi Æ qi = π2. Additionally

we have properties (4.3.1) and (4.3.2) of Corollary 4.3 when Z, X,

q and f are replaced by Zi, Xi, qi and fi, respectively.

Proof. Put M = f
†1(E(Y )) and consider the sets OM = O(X)\M and BM =

B(X) \M. Then M = E(X) [ OM [ BM by (2.1.5). Moreover, the sets E(X),
OM and BM are pairwise disjoint and, by (2.1.8), the set M \ E(X) is finite.
Clearly M \ E(X) = OM [BM . Now consider the family

C = {C ∫ X : C is a component of X \ M }.

In the following lines we establish some properties of the family C.

1) If C 2 C then f(C) = Y \ E(Y ) and f(clX(C)) = Y.

To show this let C 2 C and c 2 C. If f(c) 2 E(Y ), then c 2 M, a contradiction
to the fact that C \M = ;. Hence f(C) ∫ Y \E(Y ). To show the other inclusion
fix a point x 2 C and let y 2 Y \E(Y ). Put z = f(x). Note that the set Y \E(Y )
is arcwise connected and that yz \ E(Y ) = ;. Then for the component K of
f
†1(yz) that contains x, we have K \M = ;. Hence K ∫ C. Since f is confluent
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we have f(K) = yz, so there is c 2 K such that f(c) = y. This shows that
Y \ E(Y ) ∫ f(C) and the first part of 1) holds. Since f is closed we have

f(clX(C)) = clY (f(C)) = clY (Y \ E(Y )) = Y.

Hence 1) holds. Now we claim that
2) If C, D 2 C and C 6= D, then clX(C) \D = ;.

To show this let C, D 2 C be such that C 6= D. Note that M is a subset of X

such that E(X) ∫ M and M \ E(X) is finite. Then, by Theorem 2.2, C is open
and closed in X \ M. Thus clX\M (C) \D = C \D = ;, so

; = clX\M (C) \D = clX(C) \ (X \ M) \D = clX(C) \D.

This shows 2).
3) If C 2 C, then clX(C) \ C ∫ M.

To see this let C 2 C and take a point x 2 clX(C) \ C. If x /2 M, then x 2 D

for some D 2 C. Note that clX(C)\D 6= ; and D 6= C. This contradicts 2), so 3)
holds.

4) If C, D 2 C, C 6= D and B = clX(C)\ clX(D) , then either B = ; or B is
a one-point set and B ∫ OM [BM .

To show this let C, D and B be as assumed. Consider that B is nonempty.
Then B is a subcontinuum of X, so f(B) is a subcontinuum of Y. Let us assume
that there is a point b 2 B \ M. Then, by 3), b 2 clX(C) \ M ∫ C and b 2
clX(D) \ M ∫ D. This implies that C = D, which is a contradiction. Hence
B ∫ M. Thus f(B) ∫ f(M) ∫ E(Y ). Since E(Y ) is zero-dimensional and f(B)
is connected, it follows that f(B) is a one-point set. Hence, by (2.1.2), B is a
one-point set too.

Put B = {x} and note that x 2 M. Then x 2 E(X)[OM [BM . Let us assume
that x 2 E(X). Fix points c 2 C and d 2 D and consider the arcs cx ∫ clX(C)
and dx ∫ clX(D) . Then cx \ dx ∫ B = {x}, so the set cx [ dx is an arc in X

with end-points c and d. Since x 2 E(X) either x = c or x = d. Hence either
clX(C) \D 6= ; or clX(D) \ C 6= ;. In any situation we contradict assertion 2),
so 4) holds.

5) If C 2 C, then E(clX(C)) = clX(C) \M.

To show this note first that clX(C) \ M ∫ clX(C) \ C ∫ E(clX(C)). On the
other hand suppose x 2 E(clX(C)) and x /2 M . Then x /2 E(X) so X \ {x}
has at least two components A and B. Assume, without loss of generality, that
clX(C) \ {x} ∫ A. Choose a 2 A \ E(X) and b 2 B \ E(X), then x 2 ab and
ab \ E(X) = ;. By (2.1.8), ab \M is finite and there exists an open sub-arc pq
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of ab which contains x such that pq\M = ;. Then pq ∫ C which contradicts the
assumption that x 2 E(clX(C)), and 5) holds.

6) The family C is finite.

To see this fix a point y 2 Y \ E(Y ). By 1), f
†1(y) \ C 6= ; for each C 2 C.

By (2.1.7), f
†1(y) is finite. Hence C is finite and 6) holds.

By 6) there exists n 2 N such that C = {C1, C2,. . ., Cn} and Ci 6= Cj for every
i, j 2 In with i 6= j. Given i 2 In put Xi = clX(Ci) . Clearly Xi is a subcontinuum
of X. Moreover if i, j 2 In and i 6= j then, by 4), the set Xi \Xj is either empty
or it is a one-point set whose only element belongs to OM [ BM . By 5) we have
E(Xi) = Xi \M for any i 2 In. We claim that

7) X = X1 [X2 [ · · · [Xn.

To see this put X0 = X1 [X2 [ · · ·[Xn and note that X \ M ∫ X0. Suppose
that there is a point x 2 M \ X0. Then X \ X0 is an open subset of X that
contains x. Then f(X \ X0) is an open subset of Y that contains f(x) 2 E(Y ).
Hence there exists y 2 f(X \ X0) such that y /2 E(Y ). Let a 2 X \ X0 be such
that f(a) = y. Note that a 2 X \ M so a 2 X0. This contradiction shows that
M ∫ X0, so 7) holds.

By 7) assertion (4.4.1) holds. Assertion (4.4.2) follows from 1), 3) and 4). To
show (4.4.3) let i and fi be as assumed. By 1) fi(Xi) = f(clX(Ci)) = Y so fi is
onto. Since f is open, fi is interior at any point of Xi \

S
j 6=i Xj . Hence to show

that fi is open it suÆces to prove that

8) fi is interior at any point of Xi \Xj for j 6= i.

To show this let j 6= i and take a point x 2 Xi\Xj . By 4) x 2 OM [BM . Since
OM [BM is finite, there exists an open and connected subset V of Xi such that
V \ (OM [BM ) = {x}. Note that fi is interior at any point of V \ {x}. We claim
that y = f(x) 2 intY (f(V )) . For suppose that there exists yn 2 Y \f(V ) such that
yn ! y. Then Lim yny = {y}. Since dim f

†1(y) = 0, there exists a 2 V \ f
†1(y).

Then ax ∫ V and f(ax) ∫ f(V ). Since y 2 E(Y ) and f(ax) ∫ f(V ) is a
subcontinuum of Y containing y, there exist a first point wn of yny (from yn)
such that wn 2 f(clX(V )) and a first point zn of wny (from wn) such that
zn 2 f(ax). Choose vn 2 ax such that f(vn) = zn and let Kn be the component
of f

†1(wnzn) containing vn. Then f(Kn) = wnzn and since dim f
†1(y) = 0 we

have Lim Kn = {x}. Hence Kn ∫ V for suÆciently large n. Choose n such that
Kn ∫ V and let un 2 Kn be such that f(un) = wn. Since wn is the first point
of yny \ f(clX(V )) we have wn /2 intY (f(V )) , contradicting the fact that f is
interior at un. This completes the proof of 8) and, hence, (4.4.3) holds.
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To show assertion (4.4.4) let i 2 In and assume that f(C \Xi) ∫ E(Y ). Then
fi is an open and onto map with no critical points. By Corollary 3.3, fi is a
homeomorphism.

To show assertion (4.4.5) of the theorem, let i 2 In and assume that f(C\Xi)\
E(Y ) 6= ;. Let c be a critical point of fi such that c /2 E(Xi). If fi(c) 2 E(Y ), then
c 2 Xi\M = E(Xi) according to 5). This contradiction shows that fi(c) /2 E(Y ),
so (4.4.5.1) holds. Finally (4.4.5.2) follows from Corollary 4.3. £
Corollary 4.5. Suppose that f : X ! Y is an open map from the dendrite X

onto the dendrite Y such that f(C) ∫ E(Y ), where C is the set of critical points of

f . Then there exist n 2 N and n subcontinua X1, . . . , Xn such that X =
Sn

i=1
Xi,

Xi \Xj is at most one critical point of f and for each i 2 In, f|Xi
: Xi ! Y is a

homeomorphism.

5. Open maps on dendrites

It is easy to see that the set of critical points C of an open map f : X ! Y

between two dendrites can be uncountable. In this section we will show that for
an arc A ∫ X, the set of critical points of the restricted map f|A is finite. We
always assume that f : X ! Y is an open map from a dendrite X onto a dendrite
Y.

Theorem 5.1. Let A be a subcontinuum of X such that f|A is one-to-one. Then

there is a subcontinuum B of X such that A ∫ B and f|B : B ! Y is a homeo-

morphism.

Proof. Let C be a component of Y \ f(A). By [Nad92, Theorem 5.6] clY (C) \
f(A) 6= ;. Let aC 2 A be such that f(aC) 2 clY (C) . Since X contains no simple
closed curves, we have clY (C) \ f(A) = {f(aC)}. Moreover, by (2.1.10), there
is a subcontinuum AC of X such that aC 2 AC and f|AC

: AC ! clY (C) is a
homeomorphism. Then

B = A [
∞[

{AC : C is a component of Y \ f(A)}
±

satisfies the required conditions. £
In the next theorem we show that on a given arc A ∫ X, the map f|A has only

finitely many critical points.

Theorem 5.2. Let A be an arc in X from a point a 2 X to a point b 2 X. Order

A by ¥ in such a way that a ¥ b. Then there are a = a0 < a1 < · · · < ak = b such

that f|aiai+1 is one-to-one, for any i 2 { 0, 1, . . . , k † 1 } and the set of critical

points of f|A is { a1, a2,. . ., ak†1}.



OPEN MAPPINGS BETWEEN DENDRITES 769

Proof. First assume that A \ {a, b} contains infinitely many critical points ai of
the map f|A . Given i 2 N note that f is not one-to-one in any neighborhood of
ai in A. By compactness of A it follows that there is a subarc B of A such that
B contains infinitely many an and f(B) 6= Y.

Since we can replace A by B we may assume that f(A) 6= Y. Fix an ordinary
point y 2 Y \ f(A). Given i 2 N, by (2.1.10), there is a subcontinuum Ai of
X such that ai 2 Ai and f|Ai

: Ai ! Y is a homeomorphism. Consider the
first point map r : X ! A from X to A and note that f is one-to-one in the
arc xai, for any x 2 f

†1(y) \ Ai. By (2.1.7) the set f
†1(y) is finite. Moreover

f
†1(y) \ A = ;. Put f

†1(y) = {x1, x2, . . . , xn} and note that f
†1(y) \ Ai 6= ;

for every i 2 N. Since A contains infinitely many ai, there exist s 2 { 1, 2,. . ., n }
and N ∫ N infinite such that xs 2 Ai for any i 2 N. Put c = r(xs). Since X is
uniquely arcwise connected and N is infinite, there must exist i, j 2 N such that
either ai < aj < c or c < aj < ai. Hence aj 2 cai ∫ Ai, contradicting that f|Ai

is
a homeomorphism. This contradiction shows that f|A has finitely many critical
points a1, a2, . . . , ak†1.

Put a0 = a, ak = b and assume, without loss of generality, that a0 ¥ a1 ¥ · · · ¥
ak†1 ¥ ak and that the set A \ {a0, a1, . . . , ak} contains no critical points of f|A .
Given i 2 { 0, 1, . . . , k † 1 } suppose that f|aiai+1 is not one-to-one. Then there
exist p, q 2 aiai+1 such that f(p) = f(q). We can assume that ai ¥ p < q ¥ ai+1.

By (2.1.2) f(pq) is a non-degenerate subcontinuum of Y, so we can take an end-
point y0 of f(pq) di´erent than f(p). Let x0 2 pq be such that f(x0) = y0. Note
that x0 2 A \ {a0, a1, . . . , ak+1}. Moreover, it is not diÆcult to see that x0 is a
critical point of f|A . This contradiction shows that f|aiai+1 is one-to-one. £

Remark. Note that Theorem 5.2 does not state that C \ A is finite, where C

denotes the set of critical points of f . Indeed, easy examples show that this may
not be true.
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