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Abstract

Then-dimensional Sierpiński gasketX, spanned byn+1 vertices, has(n+1)! symmetries acting
as the symmetric group on the vertices. The object of this note is the remarkable observation that
for n > 2 every topological automorphism ofX is one of these symmetries. A modification of the
arguments yields that, given any finite permutation groupG 6 Sn+1 acting on an(n+ 1)-element
set, there is a finite subsetT ⊆ X such thatG is the group of topological automorphisms ofX \ T
considered as a group acting faithfully on the vertices. 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The Sierpínski gasket is a well-known geometric object which can be obtained in the
following way. Start with a (closed) triangle∆= ∆0 = U0 with the vertex pointsp0,p1

andp2. Consider the bisection points of the edges which form another (open) triangle
∆1. Remove∆1 from ∆ to get the unionU1 of three smaller triangles, each two of
them having one point in common. Continue with each of the remaining triangles in the
same way to get a unionU2 of 9 triangles of the next smaller generation and so on. The
2-dimensional Sierpiński gasket is the intersectionX = ⋂n=0,1,... Un of the generated
decreasing sequence of sets. Eachx ∈ X is determined by a decreasing sequence of
triangles having exactlyx in common. In each generation of triangles there are three
possibilities. Thusx can be represented by a sequence on the set 3= {0,1,2}. If we take
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the Tychonoff topology on the space 3ω and then take the quotient topology identifying
sequences which represent the same point we get a description of the spaceX. A standard
reference for fractal sets likeX is [2]. More special and recent results and references on
the Sierpínski gasket can be found for instance in [3].

To be more precise and more general than in the first paragraph, start instead of
3= {0,1,2} with an arbitrary setM equipped with the discrete topology and consider
the spaceMω of sequencesEx, Ey, . . . onM with the product topology. CallEx = (x0, x1, . . .)

andEy = (y0, y1, . . .) equivalent (in symbolsx ∼ y) if there is ann such thatxk = yk holds
for all k < n and allk > n satisfyxk = yn andyk = xn. ∼ is an equivalence and we define
X=X(M) =Mω/∼ to be the quotient space.

A topological automorphism of the spaceX is a homeomorphismf :X → X. All
topological automorphisms form, with the composition of maps as operation, the group
Aut(X). The group operation is the composition of maps. Ifπ ∈ SM is any permutation on
M let fπ be the map

fπ :X→X, (xn)n∈N 7→
(
π(xn)

)
n∈N.

By the obvious geometric interpretation we call it the symmetry induced byπ . Sym(X)
denotes the the group of symmetries onX. Of course Sym(X)⊆ Aut(X).

In this note we prove the converse: For finiteM every f ∈ Aut(X) is a symmetry
(Theorems 1 and 2). Thus Aut(X) acts faithfully as the symmetric groupSV on the set
V of vertices and can be identified with the symmetric group onM. This means that the
restriction mappingϕV : Aut(X)→ SV , f 7→ f |V , is a well-defined isomorphism.

A modification of the arguments yields Theorem 3, showing that any permutation group
acting on a finite setM can be identified with Aut(X \ T ), whereT is an appropriate finite
subset ofX.

Problem. Are these results also true for infiniteM?

The reader who is interested in a general and recent textbook on permutation groups
may confer to [1].

2. Notations, general agreements and idea of the proof

The fixed setM is, for the rest of the paper, supposed to be finite with|M| > 3. It is
convenient to introduce several abbreviations. We call constant sequencesEv = (m,m, . . .),
m ∈M, vertices and writeEv = (m). V denotes the set of all vertices.

Let Ex = (xn)n∈N ∼ Ey = (yn)n∈N with xn = yn for all n < k, xk 6= yk and xn = yk ,
yn = xk for all n > k. Then we write(x0, x1, . . . , xk−1, xk/yk) for the equivalence class
consisting ofEx and Ey and call it a dyadic point of thekth generation.Dk denotes the
set of all dyadic points of thekth generation. The whole set of dyadic points is the union
D =⋃∞k=0Dk .D is dense inX. Hence everyf ∈ Aut(X) is determined by its values onD.
Let us call the remaining pointsEx ∈ G = X \ V \ D general points ofX. Note that the
representation of vertices and general points as a sequence is unique and the identification
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via ∼ matters exactly the dyadic points. For technical convenience we make a further
distinction. If in the sequenceEx = (xn)n∈N of the general pointEx everym ∈ M occurs
infinitely many times, i.e., for eachm ∈M the equationxn =m holds for infinitely many
n ∈N, we callEx a generic point. Let us denote the set of generic points byG0. Most points
are generic, as well in the sense of probability theory as well as in that of Baire categories.
(We do not need these fact.)

Notations. If Y ⊆ X then Y (x0, . . . , xn) denotes the set of thoseEy = (yn)n∈N ∈ Y
with (y0, . . . , yn) = (x0, . . . , xn). For fixedm ∈ M, the shift operatorτ :X(m)→ X,
(x0, x1, x2, . . .) 7→ (x1, x2, x3, . . .) is a well-defined homeomorphism, similarlyτn :X(m0,

m1, . . . ,mn−1)→X for fixed (m0, . . . ,mn−1). Note thatG0 is shift invariant in the strong
sense thatτ−1(G0)=G0= τ (G0), which is not the case forV andD.

The subspacesX′ =X \ T with finite T ⊆X will play an important role. Therefore we
introduce the following manners of speaking. IfT ⊆ Y we callX′ a Y -mSg (Y -modified
Sierpínski gasket). Similarly we call it aY1Y2-mSg ifT ⊆ Y1∪Y2, etc. In our proofsVG0-
mSg will occur very often. Of special technical importance for us are, forY ⊆X, the sets
Y \ T (m,k), m ∈M, k ∈N, with

T (m,k) = {(x0=m,x1=m, . . . , xk−1=m,m/m′) |m′ 6=m
}⊆Dk.

The main idea of the proof of our results is that the setsT = T (m,k) are characterized
by the purely topological property that no other sets of cardinality|M| − 1 makeX′ \ T
split into two components of connectedness. Among the points of these sets those ofD0

are the only ones with the further property to be contained in more than oneT (m,k). Thus
f (D0)=D0 for everyf ∈ Aut(X′). It follows that the setsX′(m) \D0,m ∈M, being just
the components ofX′ \D0 have to be permuted byf . The induced permutationπ ∈ SM
easily turns out to satisfyf = fπ . These arguments are carried out in Section 4 after in
Section 3 several auxiliary results on the connectedness of the involved sets are presented.

3. Several connectedness properties

For this section letT ⊆ G0 ∪ V be a finite set of generic points and vertices (cf.
Section 2). For Theorem 2 we need statements aboutX′ =X \ T .

Lemma 1. Every VG0-mSgX′ =X \ T is connected, provided|M|> 3.

Proof. Fix any Ex0 ∈D0. Let C be its component of connectedness (with respect toX′).
SinceT ⊆ V ∪G0, all (connected) straight lines between pointsEx ∈D0 are contained in
X′, hence also inC. (Here we used that for|M|> 3 the setG0 does not contain points on
line segments joining points ofD.) In particular we haveEx ∈ C for all Ex = (m0,m1/m2) ∈
D1 with pairwise differentm0,m1,m2. An arbitraryEx = (m,m1/m2) ∈D1 can be joined
with at least one of these points withinX′, henceD1 ⊆ C. Continuing this argument we
getDk ⊆ C for all k, i.e.,D ⊆ C. Since components are closed andD is dense inX′ we
getX′ =D ⊆ C ⊆X′, proving thatX′ is connected. 2
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Let us say thatΓ is a graph on a setA (undirected, without one point circles) if all
E ∈ Γ (called edges) are two element subsetsE = {a1 6= a2} ⊆ A of A. Γ (A) denotes the
complete graph onA, i.e.,Γ (A)= {E ⊆A | |E| = 2}. The following two lemmas contain
several useful and well-known facts concerning connectedness of graphs and topological
spaces.

Lemma 2. LetΓ ⊆ Γ (M) be a graph onM andΓ0= Γ (M) \ Γ .
(1) If |Γ0|6 |M| − 2 thenΓ is a connected graph.
(2) If |Γ0| = |M| − 1 thenΓ is not connected only ifΓ0= {{m,m′} |m′ 6=m} for some

m ∈M.

Proof. Suppose thatΓ is not connected. ThenM can be represented as the union of
two nonempty disjoint subsetsM1,M2 such that there are no edges{m1,m2} in Γ with
m1 ∈M1, m2 ∈M2. Let, without loss of generality,k = |M1|6 1

2|M|6 |M2|. This means
that |Γ0|> |M1||M2| = k(|M| − k). If |Γ0|6 |M| − 2 this is impossible, yielding the first
assertion. If|Γ0| = |M| − 1 we concludek = 1, and the second assertion follows.2
Lemma 3. LetA=⋃i∈I Ai be a topological space. Suppose that

Γ = {(i1, i2) | i1 6= i2, Ai1 ∩Ai2 6= ∅}
is a connected graph onI and eachAi is connected. ThenA is connected.

Proof. Every decomposition ofA into components would induce a decomposition of at
least oneAi into components, contradiction.2
Lemma 4. LetX′ be a VG0-mSg,D′ ⊆D, D′ finite andX′′ =X′ \D′.

(1) If |D′|6 |M| − 2 thenX′′ is connected.
(2) If |D′| = |M| − 1 thenX′′ is not connected if and only ifD′ = T (m,k) for some

m ∈M andk ∈N.

Proof. (1) D′ is finite, hence there is a maximalk such thatD′ ∩ Dk 6= ∅. Then all
X′′(m0, . . . ,mk), mi ∈M, areVG0-mSg and therefore, by Lemma 1, connected. Consider
the representation

X′′(m0, . . . ,mk−1)=
⋃
m′∈M

X′′(m0, . . . ,mk−1,m
′)

and the graphΓ corresponding to it as in Lemma 3. Since|D′|6 |M|−2, Lemma 2 implies
thatΓ is connected. Hence an application of Lemma 3 shows that allX′′(m0, . . . ,mk−1)

are connected. Continuing in the same way we get connectedness of allX′′(m0, . . . ,mk−2),
X′′(m0, . . . ,mk−3) etc. and finally ofX′′.

(2) It is clear thatX′′ is not connected ifD′ = T (m,k). Thus it suffices to prove the
converse. In order to do this suppose thatX′′ is not connected. First we show that
D′ ⊆ X(m) for somem ∈ M. If this would fail, everyX′′(m) would contain at most
|M| − 2 points ofD′, hence be connected by the first part of the lemma. By the same
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argument as in the proof of the first part we would get the contradiction thatX′′ is
connected. Fix the (unique)m with D′ ⊆ X′(m). Take the maximal value ofk such that
D′ ⊆X′k =X′ (x0=m, . . . , xk =m). Sincek is maximal, at least one point ofX′k∩D′ is in
T (m,k). ThusX′′k =X′k \D′ can be represented as aVG0-mSg with at most|M|−2 deleted
points, hence is connected, again by the first part. ObviouslyY = (X′′ \X′k)∪ (T (m,k) \D′)
is connected. (For a formal proof use Lemma 3 where theAi are connected sets of the form
X′′(m0, . . . ,mk).) SinceX′′ = Y ∪X′′k , this together with Lemma 3 implies thatY ∩X′′k is
empty. But this is possible only ifD′ ⊇ T (m,k). Since|T (m,k)| = |M| − 1= |D′|, both sets
coincide. 2

4. Proof of the theorems

Consider all subsetsA of a VG0-mSgX′ with cardinality |A| = |M| − 1 such that
X′′ =X′ \A splits into two components. By Lemma 4 these are exactly the setsA= T (m,k),
m ∈M andk ∈N. If f ∈ Aut(X′) andA has this property then alsof (A) has this property.
If k > 1 thenA= T (m,k) has an empty intersection with all other sets of this type. On the
other hand, form1 6=m2, we have

T (m1,0) ∩ T (m2,0) = {(m1/m2)
} 6= ∅.

Thus the points inD0 are characterized by a topological property which has to be preserved
by everyf ∈ Aut(X′), i.e., f (D0) = D0. X′ \D0 splits into the connected components
X′(m), m ∈ M. Hence the same must hold forf (X′ \ D0), implying f (X′(m)) =
X′(π(m)) for a uniqueπ ∈ SM . Call thisπ the permutation induced byf . Now we are
able to prove our main results.

Theorem 1. LetX′ ⊆X be a VG0-mSg, i.e.,X′ is a Sierpiński gasket minus a finite set of
vertices and generic points, andf ∈ Aut(X′). Thenf (Ex) = fπ(Ex) for all Ex ∈ X′, where
π ∈ SM is the permutation induced byf .

Proof. By induction onk we will show that

f
(
X′(m0, . . . ,mk)

)=X′(π(m0), . . . , π(mk)
)
.

This impliesf = fπ . If k = 0 the assertion is just what we mentioned above. Suppose that
the assertion holds for somek. This implies that intersections of the setsX′(m0, . . . ,mk)

are preserved, i.e.,

f (m0, . . . ,mk/m
′
k)=

(
π(m0), . . . , π(mk)/π(m

′
k)
)
.

Consider the setsX′m = X′(m0, . . . ,mk,m) for fixedm0, . . . ,mk . By the same argument
as above these sets are permuted byf . But this permutation is compatible with the dyadic
points only if it is againπ . 2
Theorem 2. Aut(X)= Sym(X)∼= SM acts faithfully onV which can be identified withM
via (m) 7→m. This action is given by the restriction mappingf 7→ f |V .



142 R. Winkler / Topology and its Applications 101 (2000) 137–142

Proof. Follows immediately from Theorem 1 and Sym(X)⊆ Aut(X). 2
Theorem 3. For each permutation groupG 6 SM acting on the finite setM there is a
finite setT ⊆X =X(M) such thatAut(X′), X′ =X \ T , is given by

Aut(X′)= {fπ |X′ | π ∈G}.
ThusAut(X′) is isomorphic toG and has the same faithful action onM if we identifyV
withM via (m) 7→m.

Proof. Fix any point(xn)n∈N fromG0 and consider its orbit

T = {(π(xn))n∈N | π ∈G}
induced byG. ThenX′ = X \ T is a G0-mSg andfπ (X′) = X′ for all π ∈ G. This
shows⊇ in the assertion of the Theorem. The other set-theoretic inclusion follows from
Theorem 1. 2
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