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Abstract

Then-dimensional Sierpiski gasketx, spanned by + 1 vertices, hag: + 1)! symmetries acting
as the symmetric group on the vertices. The object of this note is the remarkable observation that
for n > 2 every topological automorphism &f is one of these symmetries. A modification of the
arguments yields that, given any finite permutation gréug S,+1 acting on an(n + 1)-element
set, there is a finite subs&t< X such thatG is the group of topological automorphisms Xf\ T
considered as a group acting faithfully on the vertices2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The Sierpiski gasket is a well-known geometric object which can be obtained in the
following way. Start with a (closed) trianglgé = Ag = Ug with the vertex pointgo, p1
and p,. Consider the bisection points of the edges which form another (open) triangle
A1. RemoveA; from A to get the unionU; of three smaller triangles, each two of
them having one point in common. Continue with each of the remaining triangles in the
same way to get a uniobiz of 9 triangles of the next smaller generation and so on. The
2-dimensional Sierpiski gasket is the intersectioki = (),_q 1 U. Of the generated
decreasing sequence of sets. Each X is determined by a decreasing sequence of
triangles having exactly in common. In each generation of triangles there are three
possibilities. Thus: can be represented by a sequence on the set(31, 2}. If we take
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the Tychonoff topology on the spacé& and then take the quotient topology identifying
sequences which represent the same point we get a description of theXspastandard
reference for fractal sets lik& is [2]. More special and recent results and references on
the Sierpiski gasket can be found for instance in [3].

To be more precise and more general than in the first paragraph, start instead of
3={0, 1, 2} with an arbitrary setM equipped with the discrete topology and consider
the spaceM® of sequences, y, ... on M with the product topology. Call = (xo, x1, ...)
andy = (yo, ¥1, . . .) equivalent (in symbols ~ y) if there is amm such thaty, = y; holds
for all k < n and allk > n satisfyx; = y, andy; = x,. ~ is an equivalence and we define
X = XM = M/~ to be the quotient space.

A topological automorphism of the spacé is a homeomorphisny : X — X. All
topological automorphisms form, with the composition of maps as operation, the group
Aut(X). The group operation is the composition of maps: ¥ Sy, is any permutation on
M let f, be the map

fn X - X, (-xn)nEN = (n('x”))nEN'

By the obvious geometric interpretation we call it the symmetry induceg .b$ym(X)
denotes the the group of symmetriesXnOf course SyriX) C Aut(X).

In this note we prove the converse: For finité every f € Aut(X) is a symmetry
(Theorems 1 and 2). Thus AWlX) acts faithfully as the symmetric groufy on the set
V of vertices and can be identified with the symmetric group\onThis means that the
restriction mappingy : Aut(X) — Sy, f — flv, is a well-defined isomorphism.

A modification of the arguments yields Theorem 3, showing that any permutation group
acting on a finite set can be identified with AyfX \ T'), whereT is an appropriate finite
subset ofX.

Problem. Are these results also true for infinilé?

The reader who is interested in a general and recent textbook on permutation groups
may confer to [1].

2. Notations, general agreements and idea of the proof

The fixed setM is, for the rest of the paper, supposed to be finite withj > 3. It is
convenient to introduce several abbreviations. We call constant sequeaoes, m, .. .),
m € M, vertices and writ& = (m). V denotes the set of all vertices.

Let X = (xp)neN ~ ? = (Vu)nen With x, =y, for all n <k, xx # yr andx, = yx,
yn = x¢ for all n > k. Then we write(xo, x1, ..., xx—1, xx/yr) for the equivalence class
consisting ofx andy and call it a dyadic point of théth generation.D; denotes the
set of all dyadic points of théth generation. The whole set of dyadic points is the union
D =|J;2o Dk. D is dense inX. Hence every € Aut(X) is determined by its values db.
Let us call the remaining points € G = X \ V \ D general points of{. Note that the
representation of vertices and general points as a sequence is unique and the identification
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via ~ matters exactly the dyadic points. For technical convenience we make a further
distinction. If in the sequenceé = (x,),cn Of the general poink everym € M occurs
infinitely many times, i.e., for eachr € M the equation,, = m holds for infinitely many

n € N, we callx a generic point. Let us denote the set of generic poini&hyMost points

are generic, as well in the sense of probability theory as well as in that of Baire categories.
(We do not need these fact.)

Notations. If Y € X then Y(xop,...,x,) denotes the set of thosg = (y,)neny € Y
with (yo, ..., yn) = (x0,...,x,). For fixedm € M, the shift operatorr : X (m) — X,
(x0, X1, X2, ...) > (x1, X2, X3, . ..) is a well-defined homeomorphism, similady : X (mo,
mi,...,my—1) — X forfixed (mo, ..., m,—1). Note thatGy is shift invariant in the strong
sense that ~1(Go) = Go = 7(Go), which is not the case for andD.

The subspace’’ = X \ T with finite 7 C X will play an important role. Therefore we
introduce the following manners of speakingZ1fC Y we call X’ a Y-mSg (¥ -modified
Sierpihski gasket). Similarly we call it # Y>-mSg if T C Y1 U Y>, etc. In our proof8/Gy-
mSg will occur very often. Of special technical importance for us areYfar X, the sets
Y\T"0 meM, keN,with

Tk — {(xo:m,xlzm,...,xkflzm,m/m’) |m’7ém} C Dy.

The main idea of the proof of our results is that the gets 7% are characterized
by the purely topological property that no other sets of cardinghfy — 1 makeX’ \ T
split into two components of connectedness. Among the points of these sets thoge of
are the only ones with the further property to be contained in more thaf 6he. Thus
f (Do) = Dg for every f € Aut(X’). It follows that the setX’(m) \ Do, m € M, being just
the components aX’ \ Dg have to be permuted by. The induced permutation € Sy,
easily turns out to satisfy = f,. These arguments are carried out in Section 4 after in
Section 3 several auxiliary results on the connectedness of the involved sets are presented.

3. Several connectedness properties

For this section letl € Go U V be a finite set of generic points and vertices (cf.
Section 2). For Theorem 2 we need statements akibat X \ 7.

Lemma 1. Every VG-mSgX’ = X \ T is connected, provide/| > 3.

Proof. Fix any Xo € Do. Let C be its component of connectedness (with respedt’jo
SinceT C V U Gy, all (connected) straight lines between poiits Dg are contained in
X', hence also irC. (Here we used that fgM | > 3 the setGo does not contain points on
line segments joining points dd.) In particular we havé € C for all X = (mg, m1/m>) €
D1 with pairwise differentng, m1, m2. An arbitraryx = (m,m1/m>) € D1 can be joined
with at least one of these points withi¥{, henceD1 € C. Continuing this argument we
getDy C C forall k, i.e., D C C. Since components are closed abds dense inX’ we
getX’' =D C C C X/, proving thatX’ is connected. O
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Let us say thatl" is a graph on a sed (undirected, without one point circles) if all
E e I' (called edges) are two element subgets {a1 # a2} € A of A. I'(A) denotes the
complete graph od, i.e.,I'(A) ={E C A | |E| = 2}. The following two lemmas contain
several useful and well-known facts concerning connectedness of graphs and topological
spaces.

Lemma2. LetI" C I'(M) beagraphom andIo=T(M)\ T.
() If |Ip] < M| —2thenTI is a connected graph.
(2) If |[Io| = |M| — 1thenr is not connected only iy = {{m, m'} | m’ # m} for some
meM.

Proof. Suppose thaf™ is not connected. TheM can be represented as the union of
two nonempty disjoint subset®1, M2 such that there are no edggs;, m2} in I with

m1 € M1, ma € Ma. Let, without loss of generality, = |M3| < %|M| < |M2|. This means
that|Io| > |M1]|M2| =k(|M| — k). If |Ip] < |M| — 2 this is impossible, yielding the first
assertion. | = |M| — 1 we concludé = 1, and the second assertion followsz

Lemma 3. Let A = J,.; A; be atopological space. Suppose that
I ={(i1,i2) i1 #i2, Ay N A;, # 0}

is a connected graph ohand eachd; is connected. Then is connected.

Proof. Every decomposition ofA into components would induce a decomposition of at
least oneA; into components, contradiction.0

Lemma 4. Let X’ be a VG@-mSg,D’ C D, D' finite andX” = X'\ D'.
() If ID’| <|M| — 2thenX” is connected.
(2) If |D'| = |M| — 1 thenX” is not connected if and only b’ = T for some
m € M andk € N.

Proof. (1) D’ is finite, hence there is a maximalsuch thatD’ N Dy # @. Then all
X" (mo, ...,my), m; € M, areVGy-mSg and therefore, by Lemma 1, connected. Consider
the representation

X" (mg, ...,mp_1) = U X" (mg, ..., mp_1,m")
m'eM
and the graplt™ correspondingtoitasin Lemma 3. Sind¥| < |[M|—2, Lemma 2 implies
that I" is connected. Hence an application of Lemma 3 shows that’dko, ..., mr—1)
are connected. Continuing in the same way we get connectednesX6{al, . . ., my_2),
X" (mo, ..., mg_3) etc. and finally ofx”.

(2) It is clear thatX” is not connected ifD’ = 7K Thus it suffices to prove the
converse. In order to do this suppose thét is not connected. First we show that
D’ € X (m) for somem € M. If this would fail, everyX”(m) would contain at most
|M| — 2 points of D', hence be connected by the first part of the lemma. By the same
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argument as in the proof of the first part we would get the contradiction Xt{ats
connected. Fix the (unique) with D’ C X’'(m). Take the maximal value df such that
D' C X, =X (xo=m,...,x; =m).Sincek is maximal, at least one point &f, N D’ isin
Tk, ThusX) = X; \ D’ can be represented a¥&o-mSg with at mostM | — 2 deleted
points, hence is connected, again by the first part. Obvidusiy( X" \ X;) U(T ™®\ D’)

is connected. (For a formal proof use Lemma 3 wheretthare connected sets of the form
X" (mo, ..., my).) SinceX” =Y U X}/, this together with Lemma 3 implies th&tN X}’ is
empty. But this is possible only ip’ > 70k Since|T ™| = |M| - 1=|D’'|, both sets
coincide. O

4. Proof of the theorems

Consider all subsetd of a VGy-mSg X’ with cardinality |A| = |M| — 1 such that
X" = X'\ A splits into two components. By Lemma 4 these are exactly thedsetg %),
m € M andk € N. If f € Aut(X’) andA has this property then alsf(A) has this property.
If k > 1thenA = T"% has an empty intersection with all other sets of this type. On the
other hand, fom1 £ m2, we have

70 A 720 — {1y /my)) £ 0.

Thus the points iDg are characterized by a topological property which has to be preserved
by every f € Aut(X’), i.e., f(Do) = Do. X' \ Dg splits into the connected components
X'(m), m € M. Hence the same must hold fgt(X’ \ Do), implying f(X'(m)) =
X' (7t (m)) for a uniquer € Sy;. Call thisz the permutation induced by. Now we are

able to prove our main results.

Theorem 1. Let X’ C X be a VG-mSg, i.e. X’ is a Sierpriski gasket minus a finite set of
vertices and generic points, anfle Aut(X’). Thenf(¥) = f.(¥) for all X € X’, where
7 € Sy is the permutation induced by.

Proof. By induction onk we will show that
f(X'(mo, ...,mp)) = X'(m(mo), ..., w(my)).

This impliesf = f,. If k =0 the assertion is just what we mentioned above. Suppose that
the assertion holds for sonte This implies that intersections of the s&t§mo, . .., my)
are preserved, i.e.,

f(mo, .. .,mk/m;c) = (n(mo), R n(mk)/n(m;c)).

Consider the setX!, = X'(mo, ..., mg, m) for fixed mo, ..., my. By the same argument
as above these sets are permuted’bBut this permutation is compatible with the dyadic
points only if itis againt. O

Theorem 2. Aut(X) = Sym(X) = Sy, acts faithfully onV which can be identified with/
via (m) — m. This action is given by the restriction mappifig— f|v.
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Proof. Follows immediately from Theorem 1 and Sgk) C Aut(X). O
Theorem 3. For each permutation grour < Sy; acting on the finite seM there is a
finite setT € X = X such thatAut(X’), X’ = X \ T, is given by
Aut(X) ={fxlx |7 € G}.
ThusAut(X’) is isomorphic toG and has the same faithful action @ if we identifyV

with M via (m) — m.

Proof. Fix any point(x,),en from G and consider its orbit

T = {(7(xn)nen | 7 € G}

induced byG. ThenX' = X \ T is a Go-mSg andf,(X') = X’ for all # € G. This
showsD in the assertion of the Theorem. The other set-theoretic inclusion follows from
Theorem 1. O
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