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Abstract—The fractal dimension of a waveform represents a invariant, even under different initial conditions. This explains
powerful tool for transient detection. In particular, in analysis of  why the FD of attractors has been used widely for system char-
electroencephalograms and electrocardiograms, this feature has 4qterization. However, estimating the FD of these attractors in-
been used to identify and distinguish specific states of physiologic | | tati Iburden. A beddi tem h
function. A variety of algorithms are available for the computation Volves a large computa |0na_ _ur e_n. nem _e _|ng Sysieém has
of fractal dimension. In this study, the most common methods of t0 be constructed from the original time-domain signal, based on
estimating the fractal dimension of biomedical signals directly the method of delays [9], [10], and the attractor of this system
in the time domain (considering the time series as a geometric has to be untangled before estimating its FD. At present, the al-
object) are analyzed and compared. The analysis is performed 4 ithms developed to assess the FD of the attractor are very

over both synthetic data and intracranial electroencephalogram - . -
data recorded during presurgical evaluation of individuals slow, due to a considerable requirement for preprocessing. The

with epileptic seizures. The advantages and drawbacks of each Most popular method for doing this is the algorithm from Grass-
technique are highlighted. The effects of window size, number berger and Proccacia [11], which estimates the correlation di-

of overlapping points, and signal-to-noise ratio are evaluated for mension {),) or FD of the attractor. Many other algorithms

each method. This study demonstrates that a careful selection of {4 astimating the FD of the attractor have been proposed [12]

fractal dimension algorithm is required for specific applications. but their computational requirements are expensive. Three o,f
Index Terms—Fractal dimension, fractal dimension algorithm  the most prominent methods for computing the FD of a wave-

comparison, transient detection. form [1], [2], [5] have been applied to the analysis of EEG,
other biomedical signals, and a variety of engineering systems.
|. INTRODUCTION Though our study focuses on experimental signals derived from

. . . intracranial EEG (IEEG), its results are widely applicable to an
HE term “fractal dimension” refers to a noninteger or frac- ( ) yapp y

tional dimension of a geometric object. Fractal dimefltype of signal.
sion (FD) analysis is frequently used in biomedical signal pro-
cessing, including EEG analysis [1]-[8]. Applications of FD in
this setting include two types of approaches, those in the tifhe Higuchi’s Algorithm

domain and the ones in the phase space domain. The formetonsiderz(1), z(2), ..., (V) the time sequence to be an-
approaches estimate the FD directly in the time domain or origtyzed. Construck new time series®, as

inal waveform domain, where the waveform or original signal is

considered a geometric figure. Phase space approaches estimate

the FD of an attractor in state—space domain. Calculating the — { (m), 2(m + k), 2(m +2K), ..,

FD of waveforms is useful for transient detection, with the ad- N-m

ditional advantage of fast computation. It consists of estimating x<m + { 2 J k)} ; form=1,2,.... k
the dimension of a time-varying signal (waveform) directly in

the time domain, which allows significant savings in prograiyherem indicates the initial time valud; indicates the discrete
run-time. The phase space representation of a nonlinear, &ipe interval between points (delay), apgl means integer part
tonomous, dissipative system can contain one or more attract@fs. For each of the curves or time serigl§ constructed, the
with generally fractional dimension. This attractor dimension @&verage lengtt.,.,(k) is computed as

LN —m)/k]
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Fig. 1. Weierstrauss cosine function for FDs equal to 1.5 and 1.2.

yielding an sum of average lengthsék) for eachk as indicated problem by creating a general unit or yardstick: the average step
in (2) or average distance between successive paintdprmalizing
distances in (3) by this average results in
k
L(k) = Ln(k). @)

m=1

_ logo(L/a)

logio(d/a)’
The total average length for scale L(k), is proportional to
k—P, whereD is the FD by Higuchi’s method. In the curve ofDefiningn as the number of steps in the curve, thes: /a,
In(L(k)) versusln(1/k), the slope of the least squares linea@nd (5) can be written as
best fit is the estimate of the fractal dimension [1].

®)

D= 1Og10(n) (6)

B. Katz's Algorithm d ’
logy <z> + logo(n)

In contrast to Petrosian’s method (to be described in Sec-

Flon ”.'C)’ K'atz s FD calculation [2] is sl]ghtly ;Iower, but it Expression (6) summarizes Katz's approach to calculate the FD
is derived directly from the waveform, eliminating the prepro-
. ) . of a waveform.
cessing step of creating a binary sequence. The FD of a curve
can be defined as ) )
C. Petrosian’s Algorithm
D= logyo(L) ©) Petrosian uses a quick estimate of the FD [5]. However, this
logyo(d) estimate is really the FD of a binary sequence as originally de-
fined by Katz [2]. Since waveforms are analog signals, a binary

where L is the total length of the curve or sum of distancegiyn ) is derived following four different methods denoted with

between successive points, afid the diameter estimated as thefhe lettersa, b, ¢, andd, in [5], respectively. A fifth method is

distance between the first point of the sequence and the pOinE\%fo included in [5], but it is the same dwiith an adjustable pa-

the sequence that provides the farthest distance. Mathematicz?gﬁeter_ Method. generates the binary sequence by assigning

d can be expressed as ones when the waveform value if greater than the mean of the
data window under consideration, and zero when it is lower than
the mean. In method, the binary sequence is formed by as-

d = max (distancél, )) . (4) signing one each time the waveform value is outside the band of
the mean plus and minus the standard deviation, and assigning

Considering the distance between each point of the sequereso otherwise. Methodconstructs the binary sequence by sub-

and the first, point is the one that maximizes the distance witlracting consecutive samples on the waveform record. From this

respect to the first point. sequence of subtractions, the binary sequence is created by as-
The FD compares the actual number of units that composigning+1 or —1 depending on whether the result of the sub-

a curve with the minimum number of units required to reprdraction is positive or negative respectively. In methhdhe

duce a pattern of the same spatial extent. FDs computed in ttiiferences between consecutive waveform values are given the

fashion depend upon the measurement units used. If the undtue of one or zero depending on whether their difference ex-
are different, then so are the FDs. Katz's approach solves theeds or not a standard deviation magnitude. A variation of this
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Fig. 2. FD by each method versus theoretical FD of synthetic signal for different number of pé)n{a) By Higuchi’'s methody++ N = 150,--- N = 250,

...IN =500, N =750,--N =1000,___ N =2000; (b) By Katz's method, -.-.&N =150, N =250,...N =500, N =750,
---N =1000,+++ N = 2000; (c) By Petrosian’s method}" N =150,---N = 250,---N =500,__ _ _ N =750,+4++ N =1000,...
= 2000; and (d) By Petrosian’s method," N =150,---N =250,---N =500,____ _ N ="750,4++N =1000,...N = 2000.

method consists of utilizing aa priori chosen threshold mag-length. Each of the algorithms described above was imple-
nitude different from the standard deviation, is denoted by Petented in MiTLAB and tested on synthetic signals with known
rosian as method. The FD of any of the previous binary se+D, and on experimental data derived from intracranial EEG
quences is then computed as signals of epileptic patients.

Synthetic data were produced using the deterministic Weier-

log,gn strauss cosine function [13], given as follows:

D=

()

n
logygn +logy nF0ANA

M
Wg(t) = ny_iH COS(QW’yit) , 0<H<1 (8
wheren is the length of the sequence (number of points), and =

--N4 is the number of sign changes (number of dissimilar pairéfnerey > 1, and we fixedy = 5 andM = 26. The fractal
in the binary sequence generated. dimension of this signal is given b§ equals2 — H. A set of

100 sequences, each with different FD, was generated using (8).
Fig. 1 shows two of the sequences generated.
The FD of the experimental signals was computed using a
We tested these algorithms with respect to reliability, e§liding window approach. A total of 16 seizure records from
ficiency (computational time), noise sensitivity, and recordpileptic patients was analyzed. As the sliding window moved

Ill. M ETHODS
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Fig. 3. Effect of noise on the FD estimate (SNR10 db) by (a) Higuchi's; (b) Katz's; (c) Petrosian’s method;“and Petrosian’s method/:” (Symbols for
each window length are the same used on Fig. 2.)

over the data, the FD was computed for each set of points tkeaponentially related to the known FDs. Petrosian’s algorithm
lay inside the window. A sliding window of 1.25 s was used t{Fig. 2(c) and (d)] is relatively linear and demonstrated the least
promote stationarity in each segment analyzed, considering thghamic range for the estimated FD (approximately between
our EEGs were sampled at 200 Hz; the sliding window was 28001 and 1.055). Similar results are obtained for the other
points. An overlap of 0.45 s or equivalently a displacement gériations of Petrosian’s method described in Section Il. The
160 points was used. FD estimates with Higuchi’'s method improve as the window
length increases. No window length effect is observed in the
range of 150 to 2000 points for Petrosian’s method. In Katz's
method the window length affects the dynamic range of the
FDs of synthetic signals ranged from 1.001 to 1.99&stimated FD yielding a dynamic range between 1 and 1.2 for
Fig. 2(a)—(d) shows the FD values obtained by each of the anaindow lengths greater than 750 points, and between 1 and 1.3
ysis methods plotted against the known FDs of the synthefar window lengths lower than 250 points. The curve that is
data. Note that perfect reproduction of the known FDs shouttbsest to the ideal straight line of slope one was obtained for a
yield a straight line of slope equal to one. Higuchi's algorithrwindow size of 250 points.
[Fig. 2(a)] provides the most accurate estimates of the FD.The FD results obtained with experimental EEG data reveal
Katz's method [Fig. 2(b)] is less linear. Its calculated FDs atbat even though Higuchi's method is the most accurate of

IV. RESULTS
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Fig. 4. FD of EEG signals for (a) Higuchi's method, (b) Katz's method, (c) Petrosian’s mettioad (d) Petrosian’s methodi:”

the three; Katz's method yielded the most consistent resuliy. 2(c) and (d) with Fig. 3(c) and (d), respectively, it becomes
regarding discrimination between states of brain functioolear that the noise sensitivity in Petrosian’s method depends
Specifically, when considering the distinction between thgighly on the type of binary sequence used. Furthermore, all
period before an epileptic seizure (preictal period) and thiee binary sequences proposed by Petrosian except the one in
seizure period (ictal period), Katz's technique provided theassign the digital value of one, once a threshold or threshold
most repeatable and discriminative results between preictal drahd is exceeded; while the binary sequence defined in method
ictal phases over 16 EEG records analyzed [7], [8]. ¢ changes from one to zero every time there is a slope sign
Fig. 3(a)—(d) presents the FD estimated for each methodange disregarding the magnitude of the slope sign change.
when the synthetic signal is contaminated with white noiskpgically, when white noise is added to the synthetic signal,
yielding a signal to noise ratio (SNR) of 10 db. Higuchi'she variability of the signal increases and slope sign changes
and Petrosian’s algorithm with binary sequence establishedcur more frequently, creating a high sensitivity to the noise.
by method ¢" [Fig. 3(a) and (c)] are severely affected byAnalyzes for different SNRs demonstrated that Higuchi’'s and
this level of noise. However, Katz's method is influenced bfpetrosian’s algorithm when used with the slope sign change
the noise, but not as much as the other methods, and it tubiisary sequence in methag deteriorate for low SNRs; while
out that its dynamic range is enhanced with the presencekdtz’'s algorithm and Petrosian’s method when used with the
noise. Another interesting observation is that when Petrosiatfgeshold-based binary sequences are the most immune to the
algorithm is used with the binary sequence obtained by theise effects.
other preprocessing methodsb, d, ande proposed in [5], the  Fig. 4(a)—(d) presents as example four records analyzed
results present even less sensitivity to the noise than Katz's; laim one epileptic patient by the three FD methods introduced
still maintain their reduced dynamic range. When compariraarlier. Equivalent results were obtained for all the records
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TABLE |
COMPARISON OFCOMPUTATIONAL BURDEN AND RUN-TIME
Window Flops Run-time

Length [ Higuchi's Petrosian’s Katz’ Higuchi’s |Petrosian’s| Katz’
250 2563196 2833258 4023768 7.359 3.39 2.265
500 22558344 2811358 4004368 3.954 1.328 1.796
1000 2101444 2795158 3987168 2.296 1.266 1.5
2000 2015248 2776558 3963568 1.468 1.093 1.375
4000 |Note: Records analyzed were 12min length 1.016 0.954 1.297
8000 |sampled at 200Hz with 36% overlap 0.797 0.828 1.203

studied. Time labeled as zero corresponds to the beginning oWith respect to the fastest method (Petrosian’s for window
the ictal period. The better performance of Katz's algorithiengths between 500 and 4000 points), Katz's lags by 35.2%
over Higuchi’'s can be explained by two reasons. One is thed Higuchi's by 66.4%, when using a window length of 500
exponential characteristic observed in Fig. 2(b). Because gdints. This is not a problem since the total record length ana-
this exponential relationship to known FDs, Katz's metholyzed is 12 min long; therefore, all three methods can be run in
emphasizes the higher FDs, which presumably contribute tteal time. If the window length increases up to 8000 points, then
most to discriminating different states of brain function withdiguchi’s performance improves and becomes 3.7% faster than
respect to seizures. In this case, it appears that the true valuefrosian’s.

the FD is not as important as the changes in FD associated with

different brain ;tatgs, a feature that may be desirable. in other V. CONCLUSION

systems or applications. The other reason can be explained from _ ) )
Fig. 3(a) where the high noise sensitivity of Higuchi’s method Our results show that Katz’s algorithm is the most consis-
is evident. Note that the function represented in this ﬁgu,t_gntmethod.fordiscrimin.ation ofepilept_icstates fromthe IEEG,
has lost the one-to-one relationship between the estimated likgly due to its exponential transformation of FD values and rel-
the real FD of the synthetic signal, due to the effect of noigdive insensitivity to noise. Higuchi's method, however, yields
added. For window lengths greater than 150 points, most of ténore accurate estimation of signal FD, when tested on syn-
estimated FD values are the image of two different FD valudhetic data, but is more sensitive to noise. Petrosian’s method
This can explain the low distinguishability of the FD over tim€rformance depends on the type of binary sequence used. If
in Fig. 4(a), conjecturing that different EEG segments wit pmary sequence based on s_Iope—S|gn—changes. is utilized then
different FD values, in the presence of noise, can yield the sathis method becomes less suitable for analog signal analysis,
FD estimate when Higuchi's method is used. In Petrosiar@ven its high sensitivity to noise and its poor reproducibility of
method, the slope-sign-change binary sequence yielded gymamic range of synthetic FDs. This study demonstrates that a
least distinguishability between the preictal (preseizure) af@reful selection of FD algorithm is required for specific appli-
ictal (seizure) stages as is observed in Fig. 4(c). On the oti&fions. Factors such as knowledge of possible FD range, noise
hand, the threshold band-based binary sequence as defis¥g!, and window length must be considered to achieve the best
by method % yielded the most distinguishability betweenf€sults.

the preictal and ictal stages [Fig. 4(d)] among all the other
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