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Fractal dimension is a potentially valuable means of
quantifying the roughness of an entire Digital Elevation
Model, and/or its sub-regions. However, it has found few
applications, due to the fact that it is computationally
expensive, and that the intervals of constant fractal di-
mension had to be determined manually.

A technique has been developed whereby linear sec-
tions within a variogram, and hence scale ranges of con-
stant fractal dimension, may be determined automati-
cally.

A study is being conducted to determine the useful-
ness of fractal dimension as a tool for classification of ter-
rain types by their associated quantified roughness. Vari-
ograms for grids of small tiles covering the DEM have been
obtained, from which linear intervals, and hence fractal
dimension, have been automatically determined.

The method has been applied to a stereo matched
SPOT DEM, and to the USGS USA 30 second DEM. The
DEMSs have been segmented, and comparisons of fractal
behaviour with othe measures of the terrain are described.
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INTRODUCTION

Fractal techniques have gradually gained a reputation as
a way of rendering visually realistic terrain. In particular,
much attention has been focused on fractional Brownian
motion ([2]; [6] ; [7]). Despite the fact that this process
has not been derived from models of terrain formation, it
still persists as a useful application of fractal geometry to
terrain datasets. Fractals are basically spatial distributions
or patterns which possess self-similarity so that there exists
a statistical equivalence between small-scale and large-scale
fluctuations in these patterns. Many patterns observed in
real world data (point distributions, curves and surfaces)
appear to be of self-similar fractal form, such as coastlines
which appear to be similar at different scales.

Fractals are characterised by their fractional dimension
D, which gives a measure of the change in the properties of a
phenomena with scale. In a pure mathematical model, frac-
tal curves maintain these properties over infinite ranges of
scale, though in real data, finite limits have been observed.
Thus, fractal models of real phenomena include inner and
outer cutoff scales, which determine the limits within which
similar scaling behaviour is dominant. More than one inter-
val can exist within a wide scale range, so discrete behaviour
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changes over large scale changes have been recorded.

Studies by Richardson, interpreted in [4], detail the scal-
ing of coastlines by a constant exponent, the fractal dimen-
sion D, over ranges of scale of up to two orders of magnitude.
A different model of terrain, fractional Brownian motion,
was applied to contour data in [3]. The model was further
studied in [8], which used the variogram of elevation differ-
ences between points a known distance apart. Data sampled
using the GESTALT photomapper from United States Ge-
ological Survey 30 metre Digital Elevation Models (DEMs)
was used.

Breaks in the linearity of the graph were detected vi-
sually. All but one of the variograms exhibited linear be-

haviour over limited ranges of scale (0.6 to 5 Km). Some
exhibited distinct linear behaviour of several ranges of scale

within the same variogram.

Our aim is to automate this process, such that regional
variation of fractal dimension may be detected. This is only
feasible if variograms are computed for arbitrarily many por-
tions of the DEM, and from this, fractal dimension is deter-
mined in an unsupervised manner.

Applications of these segmented DEMs include (a) data
compression of regional and global data-sets [9]; (b) simu-
lation of sub-pixel scattering effects [10]; (c) estimation of
kriging interpolation local functions [11]; (d) surface rough-
ness estimates for climatic models [14].

COMPUTATION OF FRACTAL DIMENSION

The application of fractional Brownian motion to ter-
rain originated from [5]. Fractal behaviour is determined
by defining a function applicable to a phenomena, where
the function exhibits ‘invariant’ behaviour over a range of
scales. When applied to two dimensional functions of nat-
ural stochastic systems, in this case height within a coordi-
nate system, a variety of functions may potentially be used
to determine fractal properties.

Our method of fractal dimension computation for DEMs
is derived from [8], which uses a variant on Brownian motion
known as fractional Brownian motion. As it is only valid
to determine the fractal dimension over a scale range of
constant dimension value, a linear segmentation algorithm
(but not the fractal measurement algorithm) due to [15] and
[16] is used to determine such intervals over log-log plots.
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Formally, a random function Zg(z) exhibits pure frac-
tional Brownian motion if for all z and Az:

Pr(| AZa. ||| Az |77 < y] = erf(y) (1)

where ” Pr” denotes probability, H is the dimension of
the Brown zeroset (which is trivially related to the fractal
dimension), and | AZx, | denotes | Zg(z + Az) — Zg(z) |

This function exhibits behaviour that gives a similar
shaped distribution at different scales. For fractional Brow-
nian motion, AZa, are the increments of a single valued
function Zy(z), the increments having a Gaussian distribu-
tion and a variance as equation 2.

< [AZs.) > Az |2 (2)

where <> denote averages over many samples of Zg(z), H
is a scaling parameter with range 0 < H < 1, and Az is a
vector change in position in Euclidean space (RF, E > 1).

The power law relation between AZ,, and Az should
be invariant for all Az for single fractals (which have con-
stant H at all space scales) implying that the shape of the
distributions for fixed values of Az will remain the same
(Gaussian). Thus, computation of height change statistics
at various space scales will enable H to be derived. Taking
logs of equation 2 we have:

In(< [AZa,)* >) o< In(]| Az ||*F)
and finally, rearranging the above to give:

In(< [AZa,)? >) x 2H In(]| Az ||) (3)
Equation 3 gives a straight line relationship between
In(< [AZa.)? >) and In || Az || with gradient 2H for a true
fractal. Empirical studies in the past have found that fractal
components of natural scenes appear to preserve their frac-
tal dimension (and hence H value) over a variety of ranges in
Az. An algorithm to determine these ranges is given later.
H is determined by computing the gradient of least squar-
es regressions of the graph In(< [AZa.]* >) against In(||
Az |) for a linear interval. -
Finally, the fractal dimension, D, is then obtained from
H using the simple relation
D=3-H (4)

LINEAR SEGMENTATION OF THE
VARIOGRAM

A measure of linearity originally put forward by [15] and
[16] is defined as:

1= V43 + (p20 — po2)?

- Hao + Moz

)

where p;;(0 < 4,7 < 2;i+ j = 2) represents the central-
order second moment of a set of points in a plane.

Let S, denote a set of n points (where n > 3) in a plane
of fractal plots as
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Azl pmin+=—1

lazi=llazllpmin

Sa={p(ll A= [1)}

and I, represents a measure of linearity computed for
S,. The largest limit || Az |lmoz of scale within which the
function is linear is determined by:

| Az lmae=l Az [lmin +n" ~1
where n* is given by

n* = Min{n | In.y < I, In > Inj;n > 4}

()
Note: this is not the equation as given in [15] and [16],
which contained the erroneous limits:

Iy < I, In> Inga;

™M

Given a graph with two perfect sections of linearity, [
will gain a measure of 1.0 for the first line. However, when
the second line is encountered, I4; will drop in value, but
both I,y and I, will remain equal. The test will not detect
this as a break in the linearity. Beyond the break in lin-
earity, I will steadily decrease, repeatedly failing the test.
Thus, the two perfect linear intervals will be treated as one
imperfect linear interval by the original criteria.

In figure 1 a variogram of a DEM shows distinct linear
intervals. To determine the extent of the first linear interval,
|| Az ||moe must be found. The first linear interval of the
variogram is shown in figure 1.

Once a linear interval is determined, equation 3 is used
as the basis of a least squares fit algorithm, to determine
attributes such as the fractal dimension of the interval.

APPLICATION TO DEMS

In order to apply segmentation to complete DEMs, frac-
tal dimension must be calculated locally for the entire DEM.
To achieve this, we divide the DEM into a matrix of equal
sized tiles. These tiles are then treated as complete DEMs

within their own right, with a variogram being produced for
each.

We have used a tile size of at least 32 by 32 DEM grid
elements, giving in the order of a thousand comparisons for
each inter-point spacing required. To derive the variance
data, all points are compared with all others for small tiles.
A larger sample justifies use of a row column algorithm (see
(12]), which speeds up computation.

Two DEMs were considered, to give an idea of how the
technique performed at different scales. The larger of the
two covered a area of 9 363 132 square kilometres, resulting
in the use of spherical coordinates to analyse the data. In
order to gain an equivalent comparison over the entire DEM,
variances were binned at kilometre intervals. In addition, a
maximum point pair spacing was guaranteed for the entire
DEM, such that all linear intervals were limited in the range
of scales used.

Producing graphs and finding linear intervals by hand
is an impossible task for this volume of data. Hence, the



Figure 1: Example variogram with first linear interval shown
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method of automatic linear segmentation outlined above
was used. From theory, we expect fractal dimension to re-

main constant over a significant range of scales. When the
inter-point spacing is plotted against expected absolute dif-

ference on a log-log graph, equation 3 implies that a linear
interval with gradient H will result.

However, when using the linear segmentation method,
we may encounter two or three distinct linear intervals for
the tile size given above. This leads to the problem of which
interval should be chosen to represent the fractal dimension
for that particular area. In other studies, where the method
has been applied to more local terrain datasets, the first lin-
ear interval has been found to give the most consistent re-
sults. It avoids the complexity of comparing intervals which
do not represent exactly the same scale range. Moreover,
the method allows for potential interpolation of the data,
as output of the first linear interval can be fed directly into
a fractal interpolation program, as applied in [1] and [13].

RESULTS

To observe any relationships between terrain, and its lo-
cal fractal dimension over a broad area, the USA 30 second
DEM was segmented into 40 by 40 tiles, for each of which a
variogram was calculated. Tiles were not overlapped, as the
resulting fractal dimension was of sufficient detail such that
trends could be observed. From these variograms, the first
linear interval was detected, and used as the basis for calcu-
lating the fractal dimension of the local region. The DEM
consists of 8400 by 3360 height samples, giving a resultant
tiled image with a resolution of 210 by 84. However, not all
points represent an area within the land mass of the United
States, so such tiles are given a null fractal dimension value.
Figure 2 shows the resulting image.

In order to examine more local effects, the method was
applied to a stereo matched SPOT-DEM of Montaigne Sainte
Victoire, near Aix-en-Provence [11]. This consisted of 415
by 208 height samples, equi-spaced at 30 metre intervals.
This was segmented into 32 by 32 tiles. Figure 3 shows the
results. In this figure, overlapping tiles with a grid pitch
of 8 samples are used to give a better visual impression of
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Figure 2: USGS USA 30 Second DEM images: Top - Height
intensity, Mid - Lambertian shaded, Lower - First interval
fractal dimension (range -24.97 to 4.39, values in range 2.0
to 3.0 displayed)

the changing fractal dimension. However, for all analysis,
non-overlapping tiles were used, such that redundant infor-
mation was not processed, and time constaints were served.

As can be seen, there is some limited correlation between
the features in the DEM and the resulting fractal values. To

test this further, we investigated the relationships that exist
between fractal dimension and rudimentary terrain charac-
teristics. To this end, values resulting from tiled images (40
by 40 sized tiles, non-overlapping) of fractal dimension of
the dataset were compared with images, degraded to the
same resolution, of height, slope and aspect. The correla-
tion coefficients of fractal dimension with each of the above
images were calculated.

For Montaigne Saint Victoire, correlation of dimension
against height resulted in a value of 0.44. For dimension
against slope, a much higher value of 0.62 was noted. Both
the above are extremely significant, with P < 0.01, whereas
for the correlation of dimension against aspect, a value of
0.01, was observed, giving effectively no correlation at all.

For the USGS USA 30 second DEM, different behaviour
was recorded. The correlation of dimension against height
gave the best result, a value of 0.45, and a significance level
P < 0.01. For the other two comparisons, negligable values
resulted, with significance level P > 0.1. For dimension
against aspect, a correlation coeficient of 0.03 was recorded,
and for dimension against slope, an even lower value of 0.01
resulted.

A most surprising result was that of the range of fractal
dimension values encountered. For Montaigne Sainte Vic-
toire, a range of 2.05 to 2.87 was recorded. However, for
the USA DEM, the minimum value measured was -24.97,
whereas the maximum value measured was 4.39. Measure-



Figure 1: Montaigne Sainte Victoire stereo-matched DEM im-
ages: Top - Height intensity, Middle - Lambertian shaded, Bot-
tom - First interval fractal dimension (range 2.05 to 2.87).

ment of the areas producing these values using 60 by 60
sized tiles yielded similar results. However, 80 percent of
values did lie within the range 2 < D < 3.

Using our row/column algorithm, a time complexity of
O(N?®/?) results, an improvement on the O(N?) behaviour
of the standard method. On a Sun 4/60, calculation of
the variance values for the USA dataset occupied 180 CPU
minutes. In addition, calculation of the linear segments,
and the resulting fractal dimensions took a further 2 CPU
minutes.

CONCLUSIONS

Given the size of the dataset under study, the time of
three hours taken to aquire the input information for seg-

mentation seems acceptable.
Correlation between fractal dimension and aspect gave

negligible results for both samples. However, correlation
with slope gave a marked result for the Sainte Victoire
DEM, and negligable correlation for the USA. This is prob-
ably due to the tile size being larger than most features
exhibited by the USA DEM, averaging over any slopes. For
Sainte Victoire, a tile may occupy a small proportion of a
slope on the central ridge, resulting in meaningful average
slope for the whole tile.

Correlation between fractal dimension and height gave
an intuitively correct result. It is to be expected that ‘rough-
er’ surfaces would occur more commonly in mountainous
regions. However, the correlation is not absolute, suggest-
ing that fractal dimension has a role in segmentation that
cannot be supplanted by height alone.

The most surprising result of the study is that of fractal

dimension exceeding the expected range of 2 < D < 3. Such
values have now been obtained using different algorithms,
and different datasets. We are at present determining con-
ditions under which these values can occur.
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