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Abstract:

We describe in this paper a new method for the
estimation of the fractal dimension of a
geometrical object using fuzzy logic techniques.
The fractal dimension is a mathematical concept,
which measures the geometrical complexity of an
object. The algorithms for estimating the fractal
dimension calculate a numerical value using as
data a time series for the specific problem. This
numerical (crisp) value gives an idea of the
complexity of the geometrical object (or time
series). However, there is an underlying
uncertainty in the estimation of the fractal
dimension because we use only a sample of points
of the object, and also because the numerical
algorithms for the fractal dimension are not
completely accurate. For this reason, we have
proposed a new definition of the fractal dimension
that incorporates the concept of a fuzzy set. This
new definition can be considered a weaker
definition (but more realistic) of the fractal
dimension, and we have named this the “fuzzy
fractal dimension”.

1. Introduction

Traditionally, we would assign a particular
geometrical object a crisp value of the fractal
dimension, and this numerical value was
considered as a specific label for the object.
However, this numerical value is difficult to use in
classification or recognition applications because
calculated values won’t match these crisp values.
We have experienced this problem when we used
this idea for classifying bacteria with the fractal
dimension [2, 7]. We have found particular
numerical labels for each of the bacteria, but when
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we try to use these values for recognizing specific
bacteria in samples we have run into problems
because of uncertainties. For this reason, we have
proposed the following scheme for estimating the
fuzzy fractal dimension of a set of geometrical
objects. First, we calculate the standard fractal
dimension of the objects, using the box counting
algorithm with samples of points from the objects.
Second, with the crisp values for the fractal
dimensions of the objects build linguistic values
for the dimensions, these will be the fuzzy fractal
dimensions of the objects. Third, using these
linguistic values of the fractal dimensions build a
set of fuzzy rules that relate each object with each
rule. This set of fuzzy if-then rules can be
considered a classification scheme for the set of
geometrical objects, and can be wused for
recognizing these objects because a particular
value is mapped to an object. We can apply this
method either for pattern recognition or for time
series analysis as follows. First, we need to build
the specific classification rules for the application
using the fractal dimension. Then, we need to
implement a method for sampling the object to
obtain the data needed to calculate the crisp value
of the fractal dimension. Finally, we use this crisp
value as input in the set of fuzzy rules to obtain as
output the specific classification for the object. For
real image processing this can be used to recognize
a particular object as needed for robotic
applications [3]. For time series analysis, this can
be used for modeling and forecasting purposes. In
any case, the generalization of the mathematical
concept of the fractal dimension [6], to include
now the ideas of fuzzy logic [9] is also important
from the theoretical point of view because is only
the initial point in the fuzzy generalization of
Fractal Theory.



2. Fractal Dimension of an Object

Recently, considerable progress has been made in
understanding the complexity of an object through
the application of fractal concepts [6] and dynamic
scaling theory. For example, financial time series
show scaled properties suggesting a fractal
structure {2, 4]. The fractal dimension of a
geometrical object can be defined as follows:
d= lin}) [InN(r)] / {In(1/r)] 1)

where N(r) is the number of boxes covering the
object and r is the size of the box. An
approximation to the fractal dimension can be
obtained by counting the number of boxes
covering the boundary of the object for different r
sizes and then performing a logarithmic regression
to obtain d (box counting algorithm). In Figure 1,
we illustrate the box counting algorithm for a
hypothetical curve C. Counting the number of
boxes for different sizes of r and performing a
logarithmic linear regression, we can estimate the
box dimension of a geometrical object with the
following equation:

InN(r) =Inf —-d lnr
this algorithm is illustrated in Figure 2.

The fractal dimension can be used to
characterize an arbitrary object. The reason for this
is that the fractal dimension measures the
geometrical complexity of objects. In this case, a
time series can be classified by using the numeric
value of the fractal dimension (d is between 1 and
2 because we are on the plane xy). The reasoning
behind this classification scheme is that when the
boundary is smooth the fractal dimension of the
object will be close to one. On the other hand,
when the boundary is rougher the fractal
dimension will be close to a value of two.
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Figure 1 Box counting algorithm for a curve C.
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In N(r) = Inf3 - dlnr
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Figure 2 Logarithmic regression to find dimension.
3. Fuzzy Logic for Object Classification

We can use a fuzzy rule base as a classification
scheme if we can make a suitable partition of the
input space such that we are able to distinguish
different  geometrical  objects by their
characteristics. We will consider geometrical
objects in the plane for simplicity. We can now use
fuzzy clustering techniques [1, 8] to cluster the
data, and then build a fuzzy rule base that will
actually be a classification scheme for the
particular application.

We will consider that we have n objects
01, 02, ..., On, and that we are able to apply
fuzzy clustering techniques to obtain n pairs (Xi,
Yi) i=1,...,n, which are the respective centers of
the n clusters. Then a fuzzy rule base can be
constructed as follows:

If X is x; and Y is y; then Object is Oy
If X is x; and Y is y, then Object is O, 3)
If X is x, and Y is y, then Object is O,

These rules can be used for pattern
classification or time series analysis because in
both cases the data has the same general structure.
For applications of higher dimensionality this
approach can be generalized in a straightforward
manner, but of course the problem is that the
number of rules increases dramatically (which is
known as the curse of dimensionality).

To illustrate these ideas we will consider a
particular application. Lets consider the problem of
forecasting the time series of the exchange rate US
dollar/MX peso. We used the time series of
average weekly rates for 36 weeks to find the



fuzzy model as explained above. We then used the
fuzzy model to predict future values of the
exchange rate and compare these to the actual
values to validate this approach.

We show in Figure 3 the time series of
exchange rates for 36 weeks of US dollar/MX peso
from August 1999 to April 2000. We can notice
from this figure the cyclical behavior of the time
series over this short period of time.

Time Series of Exchange rate
9.8

0.7
9.6 AN
95; /

NVAY
1N W

9.3}

exchange rate

.

8.2

9.1

0 5 10 15 20 25 30 35

Figure 3 Time series of exchange rates US/Mexico.

We used the Fuzzy Logic Toolbox of
MATLAB for fuzzy clustering of this data, and
then for implementing the fuzzy rule base using the
recognized clusters. In this case, five rules of the
form shown in Equation 3 were used. We show in
Figure 4 the general architecture of the fuzzy
system. In this case, the Mamdani fuzzy reasoning
procedure was used due to its simplicity.

Figure 4 General Architecture of the fuzzy system.
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We also show in Figure 5 how we can use
this fuzzy system to predict a particular value of
the exchange rate base on the actual value of the
exchange rate and the value of future time. We
validated these results against the real values that
occurred during the following four weeks.

Figure S Fuzzy Prediction of the exchange rate.

4. Fuzzy Estimation of the Fractal Dimension

The fractal dimension of a geometrical object is a
crisp numerical value measuring the geometrical
complexity of the object. However, in practice it is
difficult to assign a unique numerical value to an
object. It is more appropriate to assign a range of
numerical values in which there exists a
membership degree for this object. For this reason,
we will assign to an object O a fuzzy set p,, which
measures the membership degree for that object.

Lets consider that the object O is in the
plane xy, then a suitable membership function is a
generalized bell function:

po= 1/[1+|(xc)/al*] @

where a, b and c are the parameters of the
membership function. Of course other types of
membership functions could be used depending on
the characteristics of the application.

By using the concept of a fuzzy set we are
in fact generalizing the mathematical concept of
the fractal dimension. In fact, our definition of the
fuzzy fractal dimension is as follows.



Definition 1: Let O be an arbitrary geometrical
object in the plane xy. Then the fuzzy fractal
dimension is the pair: (do, Ho)

where d, is the numerical value of the fractal
dimension calculated by the box counting
algorithm, and p, is the membership function for
the object.

With this new definition we can account
for the uncertainty in the estimation of the fractal
dimension of an object. Also, this new definition
enables easier pattern recognition for objects,
because it is not necessary to match an exact
numerical value to recognize a particular object.

S. Fuzzy Fractal Approach for Time Series
Analysis and Prediction

Let us consider now the problem of time series
analysis and prediction. Let y;, y5, ..., ¥, be an
arbitrary time series. If we want to be able to
forecast this time series, we need to analyze the
data and extract the trends and periodicities of the
series. Assuming that the time series can be
clustered into n objects Oy, Oy, ..., O, as shown in
Figure 6, then we can build a fuzzy rule base as in
Section 3 of this paper. However, we now also
want to consider the geometrical complexity of the
objects Oy, Oy, ..., O, as measured by their fractal
dimensions d,1, d, ..., don respectively. Then a
fuzzy rule base for time series prediction can be
expressed as follows.

If dim is d,) and pos is x; then prediction is Oy
If dim is dy; and pos is x, then prediction is O,

..
If dim is d,, and pos is x, then prediction is O,
Yy A
. e_ s On.] 3
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O
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Figure 6 Fuzzy clustering of the time series.
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In this case, we need to define membership
functions for the fractal dimension, position, and
for the geometrical objects. This fuzzy rule base
can be used with the Mamdani reasoning method,
and center of gravity as defuzzification method.
However, it is also possible to use a Sugeno type
fuzzy system in which the consequents can be
linear functions. This is illustrated in Equation (6).

If dim is do; and pos is x; then y=a;x;+bd,;+c,
If dim is d,; and pos is x, then y=a;x,+b,dtc;
©6)

If dim is d,, and pos is x,, then y =aX,+b,dogtcn

In this case, we can use a neuro-fuzzy approach for
adapting the parameters of the fuzzy system using
real data of the problem. We can use, for example,
an ANFIS approach [5] to learn from real data the
best values for the coefficients of the linear
functions and for the membership functions.

We show in Figure 7 an implementation of
the Mamdani type fuzzy system in the Fuzzy Logic
Toolbox of MATLAB for the time series of
exchange rates of US dollars/MX pesos. In this
figure, we can see the non-linear surface for the
fuzzy inference system of prediction.

Figure 7 Non-Linear Surface for time series.

We also show in Figure 8 the
implementation of the Sugeno type fuzzy system
for the same time series. In this figure, we can see
the non-linear surface for the Sugeno fuzzy system
for time series prediction. This surface represents
the fuzzy model for the problem of predicting the
exchange rate of the US dollar/MX peso.

Finally, we show in Figure 9 the fuzzy
reasoning for prediction for particular values of the
fractal dimension and time.



Figure 9 Fuzzy reasoning for time series
prediction.

6. Fuzzy Fractal Approach for Pattern
Recognition

We can also use the above ideas for pattern
recognition in image processing applications. The
method is very similar to the one for time series
prediction, the only difference is that the data is not
directly related to time. For pattern recognition
only real geometrical variables are used. In this
case, we also consider n objects Oy, O,, ..., On
with n corresponding cluster centers (xi, Vi),
i=1,...,n. Then the fuzzy rule base can be stated as
follows.

If dimension is d,) then Object is O,
If dimension is d,; then Object is O,
@)

If dimension is d,, then Object is O,
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To completely define this fuzzy system for pattern
recognition, we will need to define the membership
functions for the fractal dimensions and the
objects. The method for calculating the fractal
dimension is the same as before and for fuzzy
reasoning we can use Mamdani or Sugeno type.

7. Conclusions

We have presented a new approach for time series
analysis and pattern recognition combining fuzzy
logic and fractal theory. With the new approach,
we can always build a set of fuzzy rules using the
fractal dimension of the objects to solve the
problem of forecasting or recognition. We have
very good results in predicting the exchange rate of
the US dollar/MX peso with this new approach.
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