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Abstract. - We study some examples where the self-affine nature of surfaces determines the
sealing of transport properties, beyond the simple geometrical characterization. The first
example deals with the permeability of two identical surfaces which have been translated with
respeet to each other along their mean orientation. The second example is the foree displacement
characteristic of two elastic solids limited by independent self-affine surfaces which are pressed
apainst each other.

Ifntroduction. — In recent years, there has been a considerable interest in the geometry of
systems appearing to be scale invariant, or fractal [1). More recently, self-uffinity, i.e. a
more general scaling transformation which takes anisotropy into aceount, has been found to
appear naturally in quite a number of different areas. Examples of thiz may be found in
growth models—such as the boundary of Eden clusters, or ballistic-deposition models
recently reviewed in ref. [2]—landseape and erosion surfaces [3], or fracture surfaces [4-7]. Tt
is indeed important to be able to identify such a peometrical property whenever it exists, but
often it is not clear what physical consequences this geometrieal property may imply. It is
the aim of this letter to identify a few of such physical properties whose sealing behaviour ean
be simply attributed to the underlying self-affine geometry.

A self-affine object is invariant under an affine transformation: xy—r Ay, fori=1,..,,d.
This invariance is in general to be considered only in a statisticel sense. For this symmetry to
be meaningful, a reasonable range of A values should fulfil this condition. Requiring that
these transformations can be combined implies a group strueture which results in each A to
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be an homogeneous function of one of them, say 4. The homogeneity exponent is
called Z;:

bt (1)

-

j.l'z.-ﬂ.

The set of homogeneity indices {¢;} characterizes the scaling properties of the self-affine
object. In the following, we will only consider the case of surfaces with a mean plane parallel
to (iy, ..., g 1) along which the surfaces are isotropic. The only non-trivial exponent, is thus
relative to the scaling in the z, direction {,—hereafter simply referred to as & In the rest of
this letter, we will keep the discussion on these well-defined notions, and aveid the use of any
«fractal-dimension» concept which can assume different values depending on the precise
definition or measurement method chosen, This term is also somewhat misleading in the
sense that it unduely encourages the use of tools and results which were developad
specifically for self-similar cbjects (ie. {;=1 for all ).

The examples we consider in this letter concern fracture surfaces. These have been
observed to exhibit self-affine peometries under very general conditions [4-7]. Furthermore,
the roughness exponent has been found to be surprisingly insensitive to the materials
involved, and how they were fractured. The typical value found is ¢ = 0.85[6,7]. We first
study the permeability of a erack which has been subjected to a displacement parallel to its
mean surface. As a second example, we consider a semi-infinite elastic medium limited by a
self-affine surface which is pressed onto another independent self-affine surface. We finally
consider the transport properties across the interface in the previous situation.

Consider a single rough erack in a solid. We assume that the two opposite parts of the solid
are translated with respect to each other by an amount d parallel to the mean crack plane
(with no rotation). We moreover suppose that the solid is undeformable, or that the applied
normal stress pressing the two sides of the crack together is low, so that most of the
deformation takes place in the relative displacement of the two rigid blocks. In order to allow
a displacement d without deformation of (nor overlap between) the twe blocks, a normal
displacement k(d) is necessary. If we introduce a parametrization of the surface z(x) (for x =
= (2, ...) Lg-1)), the normal displacement can easily be computed to be

h(d) = max (z(x) — 2(x + d)). (2)

The self-affinity of the surface imposes that i(d) o |d|*. The local opening of the erack will be
an essential feature which controls the flow properties discussed below. The opening afx) =
= 2(x + d) + A(d) — z(x) can be shown to display a self-affine structure only over a limited
range of length seale, which depends on d. More precisely, the pair correlation function can
be cast into the secaling form

{(a(x) — a(x")?) = |x — x' |[Fal]x - x' | h(d)~ %), (3)

where o(z) ~ const for x << 1 and olx) ~ z * for 2 %> 1. Therefore, the statistieal distribution
of local aperture ean also be east in a scaling form where the reduced variable a/k{d} allows to
capture the d dependence.

Let us now consider the laminar flow of a Newtonian fluid in the crack, in a direction
parallel to the mean crack plane. Figure 1 sketches the two-dimensional version of the
geometry we consider below. In this case, the flow has to take place perpendicularly fo the
figure plane. However, the arpument we develop below applies also to the general situation
where the surfaces are not invariant along the flow direction.

In most cases of physical interest, the roughness exponent ¢ is smaller than 1. In such a
case, the relative roughness (Le. the roughness divided by the system size) tends to zero as
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Fig. 1. - The two opposite surfaces of a erack are displaced parallel to the mean erack plane by some
amount d. The material is considered to be rigid and undeformable. As a result, the two sides have to be
displaced perpendicularly by kid) so as to avoid everlap. We study the flow, normal to the fipure, in the
space which is comprised between the two surfaces, a{x) and, more specifically, the scaling of the
permeability with |d4].

the. system size increases to infinity. This observation implies that fracture planes are
asymptotically flat. Such a property allows us to simplify the estimate of the permeability
scaling. The asymptotic behaviour (for large system size) can be ohtained with arbitrarily
small prefactors in the roughness, and thus the roughness can be treated as a perturbation on
the simple Poiseuille flow between parallel plates.

This allows to derive the sealing of the permeability as a function of the displacement d.
Locally, the hydraulic conductance scales as the eube of the aperture, A(x) = a{x)®. When
the two opposing faces of the crack are translated by a quantity o parallel to the mean
fracture plane, the distribution of local apertures has the same form for all d, apart from a
scaling factor which depends on |d| as mentioned above. Since the upper cut-off in the
aperture distribution is proportional to |d|%, the entire aperture distribution scales as |d|°.
Thus, the scaling of the local conductance distribution is simply |d|*. As a consequence, we
conclude that the global hydraulic conductance X for a unit length along the flow and
perpendicular to it scales as

Ko |d]¥. (4)

The permeability is deduced from the hydraulic eonductance by taking into account the
eross-section available for the flow. Thus the hydraulic conductance should be divided by the
mean aperture to give the permeability, thus it seales as

ko |d|E, (5)

However, the latter quantity requires the knowledge of the mean aperture, which may be
difficult to estimate experimentally for each displacement. Thus, the roughness exponent
determines the scaling of the permeability as a function of the displacement. With a
roughness exponent ¢ = (.85, we find that K = |d|>%.

There has been a number of theoretical and experimental investigations of the
permeability of cracks [8,9]. However, in most cases, the key problem addressed was the
evolution of the permeability as a function of the aperture of a erack, under a varying normal
pressure. As the pressure incresses, the closing of the crack leads to an interesting
percolation preblem where, however, the self-affinity of the surface leads to long-range
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Fig. 2. - Schematized is the elastic contact between a flat plane and the self-affine boundary of a rigid
punch. As the normal force F is varied, the interpenetration between the two solids £ follows a
non-linear relation with respect te F, whose form depends on the roughness exponent £,

correlations which are expected to ehange the value of the critical exponents compared to the
usual accepted values [10]. This point—which deserves a detailed study—is however far from
our initial problem. This has not been studied so far to our knowledge.

Let us now consider a semi-infinite elastie solid limited by a self-affine surface with an
exponent Z,. This domain is pressed against another elastic solid limited by an independent
self-affine surface with an exponent ., whose mean orientation is pavallel to the first surface.
As shown in fig. 2, a normal force F' is applied, so as to close the space in between the two
surfaces. As F is inereased, the area of contact between the two solids will increase, and thus
the force displacement is non-linear, as in the classic example of two spheres in contact solved
by Hertz in the last century [11]. Correlations in the heipht distribution will appear to be
determinant as shown below.,

First, it is important to note that, as for the Hertz contact, the two surfaces only appear
through the distance which separates them. In our case, this separation will also be
self-affine, with an expenent £ = max(Z,, §z). Therefore, this problem can be reduced to the
indentation of an elastic half-space by a self-affine rough surface as shown in fig. 2. Similarly,
the elastic properties of the two solids only come into play through the harmonic average of
plane strain elastic moduli[11]. We will derive the force displacement sealing by using the
self-affinity of the separation, and the combination of two simple transformations.

The first group of transformations consists of uniform dilations: x; — A (i=1,.,d—1)
and z — )z along and perpendicularly to the mean surface. Under such transformations, both
the strain ¢ and the stress s remain unchanged, the former because of the geometrie
transformation and the latter due to the linearity of the elastic behaviour. The contact area
will Ecﬁle a5 8 — 1915, Therefore, the total foree seales as the contact area times the stress:
Fo)d 1,

The second group of transformations consists of affinities along the z-axis, z — gz, while
the other directions remain unchanged. Under those transformations, the fundamental
property is that the contact area is now unchanged, whereas the penetration ¢ is changed as
5 — . This means that the loading varies linearly with with a constant area of contact. As
a consequence of the linearity of the elastic behaviour, the normal stress under the contact
will scale as oy — usy. The total force scales as the normal stress times the area, F— uF.
Let us emphasize that the non-linearity of the contact law comes from the variation of the
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contact area with the applied force. In the latter affine transformations, this variation is
cancelled.

None of those two transformations, dilation and z-affinity, preserve the statistical
invariance of the separation. This ean, however, he achieved by combining these two groups
of transformations successively with ¢ = 27!, so that ; — Jx; and z — A%z, In this case, the
force F, the interpenetration ¢ and the area of contact S will be rescaled as

d—r A2,
S=)4-18. (6)
F*—}.-"'Ld'l'r_EF,,

Searching for a combination of those quantities which are invariant for all 2 we find the two
scaling relations:

F [ a{:+d—2}|l'|:’

S“SM—I]R, (7)
S o pld-1ftd+5-2)

Using this simple scaling approach, we can recover the classic Hertz law for two spheres
in contact [11]. In this case, the £ exponent is 2(Y), and the space dimension d = 3, therefore
F = ¢%?2_ The value £ =2 comes from the fact that at the contact point the surfaces can be
approximated by parabolas which are invariant under the affinity z; — 2z fori=1,..,d =1
and z— 3%z, with a fixed radius of curvature,

With a fracture roughness exponent 0.85, we find that F e« 232, It is interesting to
confront this expectation with experimental results which have been collected in the past on
this problem. A power law relation between the force and the displacement is indeed very
commonly encountered in compression tests on fracture surfaces [12]. The typical exponent
which is measured is in the range 2 + 8, in good agreement with our expectation considering
the usual uncertainty associated with these measurements. To our knowledge, this provides
the first theoretical explanation for this long-standing empirical observation.

Note that for the case of real fractures, the most common situation to be encountered is
when the two facing self-affine surfaces are not independent, but rather opposite faces of the
same crack, which may be translated with respect to each other as in fig. 1, by an amount o
along the mean fracture plane. In this case, the early stage of the compression should display
the scaling law obtained in eqgs. (5). Above a crossover interpenetration, ¢ = 3* « |d|%, the
identity of the two surfaces becomes apparent, and the foree is expected to inerease very
abruptly (faster than any power law).

It is amusing to note that in the two-dimensional case the foree displacement relation does
not depend on the roughness exponent any longer. An exact computation can be performed
for two parallel eylinders (£ = 2) which shows that an additional loparithmic contribution is to
be expected [11]. This logarithmic correction is obviously out of reach of the present
dimensional analysis,

In the latter example, one could also study transport from one edge of the crack to the
opposite one, across the surface. In a number of cases, the void in between the two

() For the Hertz problem, the separation between the two contaeting surfaces is approximated by
the kissing parabola z = X g, j¥ix; which can be fitted to the formalism of the self-affine surfaces using
L =2 50 as to prescrve the curvature.
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boundaries is insulating, whereas the solid is condueting. One could think of the example of
heat transport. In such a case, using again the asymptotic flat character of the surface, one is
led to the conclusion that the transport coefficient between the two solids is simply
proportional to the area of contact. We have seen in eq. (5) that the latter varies as a power
law of the normal foree, with an exponent (d — 1)}/(d + { —2) =235 in three dimensions for
real fractures. Thus, the conduction across the crack appears to display again a non-trivial
dependence on the normal pressure which results from the self-affine nature of the crack
geometry.

Other examples of physical properties which exhibit a non-trivial scaling due to the
self-affine character of the surface should be investigated, both for a better understanding of
the comsidered physical phenomena themselves, and also for an indirect way of detecting
some pgeometrical features when they are not directly accessible through a direct
measurement.
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