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Abstract

We present for the first time a higher dimensional continued fraction
algorithm (abbreviated cfa), that produces diophantine approximations

of more than linear goodness. On input Z1,-++,Zn-1 € R, it produces
vectors (pgk), . :Ps.k—)xr'l(k)) €2", k=1,2,..., such that

() .
max |zi - p,_kl < llz|| - const(n)
1<isn a®7 7 ot e

By a theorem of Dirichlet, there is no algorithm that replaces the term

mh by a term bigger than ;1;. The higher dimensional cfas analyzed
. (%)

so far do not achieve better than maxigign |2 — :—'(;ﬂ < ﬁ;‘?—l . The o(1)

term decreases with k, but is not known to be related with q(").

Other properties of the cfa are generalized by our algorithm, too.
On input z;,---,2,_; it starts with the standard basis of Z™ and then
constructs by performing elementary basis transformations a sequence
(B™)x of bases of Z". The sequence (B™)y is finite iff the numbers
T1,°**,Zn-1,1 are Z- linearly dependent; a linear dependence is found in
case of existence. The maximal distance between the vectors of B9 and
the straightline (z1,---,zn_1, 1) R tends to zero exponentially fast in k.
For each k, the above mentioned vector (p(lk),.. . ,pg‘_)l,q(")) is the first
vector of basis B(*),

1 Introduction

The continued fraction algorithm (abbreviated cfa) is one of the
fundamental mathematical algorithms. Its underlying computa-
tional model is the unit cost model, that is, one step is either an
arithmetic operation +, -, *, /, or a trunc |.] to the next lower
integer, or a comparison > among real numbers. The cfa accepts
as input one arbitrary real number z;, and outputs a sequence of
bases of Z2 with several nice properties (see below).

In 1868 Jacobi [7] considered generalisations of the cfa. An
n-dimensional cfa accepts as input real numbers zq, -+ -, z,_; and
outputs a sequence of bases of Z". It obtains each basis from
the previous one by performing a sequence of elementary basis
transformations. (Remark: A basis of Z* , n > 1, is an ordered
set {b1,+--,bn} C Z™ such that Y b;Z = Z". An elementary
basis transformation transforms one basis of Z" to another one
by either interchanging two basisvectors, or by adding an integer
multiple of one basis vector to another basis vector.)

One desires that the following four properties of the cfa carry
over to higher dimensions.

Ideal convergence: If the sequence ({bi"), .. -,bff)})k of bases
of Z™ produced is infinite, then it should fulfill
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max dist(6*),zR) = 0 .
1<ikn

Here and in the sequal we use the notation z := (z1,...,%s_1,1).

Integer relations: The algorithm should detect integer re-
lations for z, if they exist. An integer relation is a vector
(m1,...,mn) € Z"\{0} such that "2~ m;z; + m, = 0.

Diophantine Approximations: Vectorsb = (p1,---,pn_1,q) €
Z" such that max;¢i<n—1 |2i — Bl is “small” are called (simulta-
neous) diophantine approzimationsfor zy,---,z,_1. For arbitrary
given denominator ¢ one can find trivially nominators py,....Dp_1,

such that max; i<t |2; — Bl < fllﬂ holds. The following is a
theorem of Dirichlet:

“For arbitrary zy,---,2,-7 € R there exist in-
finitely many (p1,...,pn-1,94) € 2" such that
”

1
max; cign—1 |2 — B < —] sl
P

lal
The bound is sharp in the sense, that the right side of the inequa-
tion cannot be replaced by ;,, where s > 1+ ;l—l and ¢ and s
are constants [3].

For arbitrary dimensions it is not known, whether there exist en-
tire bases of diophantine approximations fulfilling the Dirichlet-
bound (ore some other nontrivial bound). But one desires, that
some of the basisvectors are “good” (in some sense) diophantine
approximations for the input numbers.

Periodicity: Periodicity was often demanded, but up to now no
higher dimensional cfa (including the one presented here) achieved
it. So a reference to the literature may suffice: [2].

Since Jacobi’s paper, higher dimensional cfas where pro-
posed by Poincare, Minkowski, Perron, Brun, Szekeres and others
([13,10,12,4,15]). However, none of these algorithms is proven to
fulfill one of the four poperties above. Only results for specific
inputs are known.

In several papers since 1979, Bergman, Ferguson and Forcade
([5,1]) presented variations of an algorithm for the integer re-
lation problem. It was analyzed by Hastad, Just, Lagarias and
Schnorr [6]. The algorithm is ideally convergent. Therefore it pro-
duces diophantine approximations (pgk), ey pf.k_) 1,q®) such that

k
max; <i<n | i — Zék—:] < Ii;%% , where the o(1)-term decreases with
k (cf. claim (24) of this paper). However, it is not known how
the term is related to ¢(%),



The present paper for the first time presents a higher dimen-
sional continued fraction algorithm that produces approximations
with

(k) 1

D P . a—
max 12i — (a1 < fmpom

1<i<n

The algorithm is also ideally convergent and detects integer rela-
tions. It is presented in section 2, where its performance is stated
as a theorem. The theorem is proven in section 3.

2 The algorithm

For each b € R",.we denote by rb the projection of b to the
orthogonal complement of z. Hence the euclidean length [iwb|}
of 7b is the distance between b and the straightline z R. For
any basis {by,...,bs} of Z*, we denote by b} the projection of
b; to the orthogonal complement of the linear space spanned
by z,b1,...,bi-1. If b, # O, then the vector cp defined by
[e1,---ren) := ([b1y.-.,ba]t)"" is an integer relation for z (e},
so from now on we assume b% = 0 for the bases occuring. For
i € {1,...,n}, we denote by p;; the coordinates of b; with re-
spect to z,b%,...,b5_,, thus

n—1>
(1) bi=pio o+ + TiTipis b
(2)  lmbill® = 107112 + S5zs Il - NBS12

Our aim is to decrease the |u; ;| and the ||bf|| for 1 < j < i< n. To
this end, size reduction steps and exchange steps are performed.
Both transform one basis of Z™ to another one.

A size reduction step replaces b; by b; — [pi ;] - b; for one pair
(i,7) with 1 < j < i < n. Here [.] denotes the nearest integer.
This achieves |p}¢*| < 1/2. All b} and all us except the pig with
1 < j are unchanged. The performance of size reduction steps in
a nested loop for all i = 1 to n and for all j = i — 1 downto 1
achieves ju; ;| < 1/2forall1 <j<i<n.

An ezchange step i—i+1 (for 1 < i < n — 1) is allowed only if
6312 > 2-1|b744 ]2 Tt firstly performs — if jpiza,| > 1/2 - asize re-
duction step to achieve |gi41,] < 1/2. Then it interchanges b; and
biy1. This changes b, b7, and the g, g with {r,{}n{i,i+1} # 0.
The exchange step decreases ||b}||? by at least a factor v/3/2, and
increases ||b},,|? by the same factor. However, maxig;<n le31l is
not increased ([9,6]).

The Bergman Ferguson Forcade algorithm and the algorithm to
be presented here both perform size reduction and exchange steps,
but differ in where these steps are performed.

Higherdimensional cfa (21, *,Zn-1);

Step 1 (initialisation):
= (Zlv “tyTp-1y 1);
for i € {1,---,n} let b; be the i-the unit vector;
for all 1 < j < 4 < n compute b} and pij;
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Step 2 (exchange steps of the first basis vectors):
while 3i < 1 — 1 such that |||z > 2 - ||b},,|I* do
1) biyr i= bip1 — [pieri] -bis
ii.) interchange b; and bi41;
iii.) update b7, b7y, and the us;
Step 3 (size reduction):
for i =2tondo
for j = i — 1 downto 1 do
i) b= b = [pig) - s
ii.) update us;
output B® := {by,---,ba};
Step 4 (exchange step n— 1 & n):
interchange b, and by;
update us and b},_;, by;
ifbr, #0
then [e1,---y¢n) = ([by, -+, ba) )5
output integer relation ¢, for x;
else goto 2. [u]
Theorem: On input z1,---,Zn—1 € R the algorithm starts
with the standard basis of Z" and performs a sequence of elemen-
tary basis transformations. It outputs a subsequence (B®); of
the obtained bases.

a.) If the numbers z;,- -, 21,1 are Z-linearly independent, the
sequence (B(#); is infinite. Otherwise the algorithm stops
after finitely many steps and outputs an integer relation c.
for z.

b.) 1f § := dist(z R, b{"), then the basis B(*) is obtained after at
most O(n*(n + log 1/§)) elementary basis transformations.
Moreover, each basis B(*) fulfills

max dist(z R, by < Va—1.27 -1/
_i_ﬂ

c.) The first basis vector b{") = (P1y- -2 Pn-1,9) of each basis
(k) . ._pi|< = 2(n+2)/4 o
B fulfills maxi<i<n—1 I(t, ] | < t&%

3 Analysis of the algorithm

The purpose of this section is to proof the theorem of the last
section. Parts a and b are proven with methods similair to those
used in [6], and we omit the proofs in this extended abstract. The
proof of part ¢ is the main contribution of this paper. We use

(1
(3) maxjgicn- |z — B[ < e lql|' =l
This claim holds, since for each i € {1,...,n}

(4) B30 = (i) - <EHHRE - (20 DI
= dist((pi, )» (= 1)) R? < B8] -

Part ¢ now follows from Proposition 3.

Proposition 3: The first vector bg") of each outputbasis of
the generalized cfa fulfills

(5) “bgk)" < gn+l _9gn(n-1)(n—2)/2 . ”bgk)‘”—Zn(ﬂ—l)

u]



The proof of Proposition 3 will fill the rest of this section. We
have to bound [[6{)]|2 = 6{7*||2+ |u{%)2 - ||]|2 in terms of |[b{*)|.
We outline how to bound |u§"‘3l -|Iz|l, the length of the component
of bgk) parallel to z R.

We shall bound u® := max;cicn |u¥)| - ||| This will be done
by induction on k, the number of exchange steps n — 1 < n. The
induction will bound simultaneously p*)and V(*¥), the norm of a
linear map fB(“) :zRY =+ R.

For any basis B = {bi,...,bs} of the algorithm (not only
output bases) we define f5 : zRY — R by defining fp(7b;) :=
pig - ||z]| for 1 < i < n— 1. The map fg only depends on <
b1,. .., bn1 >>; we have

{?/+f3(y)~"—:ﬁ 1y € le} =< by, ybo1 >

For b €< by, ..., bs_y > the length of the component of b parallel
to z R is || fs(b)||. The length of this component is bounded by
||wb]| - V, where V is the norm of fz.

The exchange steps n — 1 +» n performed by our algorithm
interchange b,—1 and b, without size reduction. Hence they
do not change g := maxi<i<n |tiol - |lzl|. All the other basis
transformations performed by the algorithm do not change <
bi,...,bn_1 >, hence they leave fs and thus V unchanged.
These observations will enable us to bound by “parallel induction”
#®and V), the values of » and V for the bases B)(Lemma 4).

We now present the above sketched proof more completely and
firstly recall what is the norm of a linear map. Let £ C R be a
linear subspace, and f : E — R a linear map. Then the norm || f||
of f is defined by ||f|| := sup,eg =1 1f(¥)]- I {01, ..., 0} is an
orthonormal basis of E such that f(o;) = 7; foralli € {1,...,7},
then by Riesz’ lemma ([14], p. 43) we know || f|| = lI(r1, ..., 75)I|-
The vector (71,...,7s) is called the representing vector of f with
respect to {o1,...,0,}.

Now we turn to the above mentioned maps fs: Every basis
B(Moutput by our algorithm fulfills b7, = 0, since otherwise the
algorithm had stopped previously. As the reader may verify, the

representing vector of fg with respect to {][%A,]]v FEE “'g:';i“ isV-
Nt-D,where V = ||2[|-(#1,0, - --» 1,0}, D = (8i5/ 1071 gisign—1

and N = ((p;,j)lsi‘an_l)_ . Here §;; is the Kronecker delta.

This implies
(6) |l fsll =1lV-N¢-DJ| .

The output basis B(Fis the basis Before the k-th exchange step
n—1en, and we denote by A® = {a{V,...,a} the ba-
sis of the algorithm After the k-th exchange step n — 1 < n, so
AR = p® ] pB 8 pE) Y for k > 1. By A© we denote
the standard basis consisting of the unit vectors e, ..., €.

Then the value of p is the same for B(*)and A*). Moreover,
the maps f4x-1) and fg and thus their norms are equal. We
shall bound u(¥)by looking at B and V(*)by looking at f4x-1)-
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Lemma 4: The following inequalities hold:

(M) VO <l s

(8) uM < (n+1) TS Nlerl™* 5

(9) v < vlk-1) 4 F%‘W S (no- 12 (152
p=1) forallk>2 ;

(10) p® < pt=1) £ YE =1 kD7) forallk>2 . O

Proof of (7): For all y € zR* we have f ) - Tty E<
€15...,€6n-1 >, hence fy) m +y €< €1,...,6n—1 >. This

implies [[yl] > Il/4o(®)-exll = 4B 50 we proved V) < la].

[l=I]
The claim follows from 1 det(L(z,e1,...,6n-1)) = |iz|| -
n—1 |
=1 el -

Proof of (8): Since {wbﬁl),...,wa,l)} is size reduced, we have
[m) < (n— 1)1/2 for all § € {1,...,n}. Since b{" e<
€1,--.,€n—1 > for these j, this implies

(11)  maxigign WLl < (Ime{Y)- vO

(7)
< (n= YT flesll =
It remains to bound Iugl‘,)ll -zl -
We have b} = en + v for some v €< €1,...,6,-1 >. The
bounds ||rbY)| < (n - 1)V/2 and ||men)| < 1 imply |jwo|| <
1+ (n~1)"/?, and thus | < v, Z; > | < (14 (n - 1)1/2).v©), So

we have :
a2) 18-zl

< |<en,ﬁ>l+l<v,ra;>l
< 1+(1+(n-1)?%). V0O
< (n+ VTG el

Claim (8) follows from (11) and (12).

Proof of (9): Let g = (g1,...,9n-1) be the representing vec-
Hk=1)% (k=1)e

. n—1 - —
tor of fpx—1) with resprect to ”—b‘{;_—]yﬂ,,"—bgﬂ} and § =
(§1,---,9n—1) the representing vector of f -1 with respect to

S(k=1)e (k—1)» _ A
(e i ) - Then V6D = [lg] and V& = 3]
%3 %n—1

We have g = v+ N*- D and § = V - Nt - d, with the following
notations:

k— fo—
V=l - 5, eES)
Y N k- k-1
7 = ol - iy o085V

— (¢, kD -1,
N= ((“‘J )15-',1'57;71) i .
¥ = (( AEZ_I))ISi,an-]) where
g, if i#En-1
i = Hn,js if i=n-1 !
— (k=1)x i

D = (dihigijen-1 = G /N0 Dicijan-r
b = (d-',j)15.-,j5,,_1 where

g = d;; ,if i#£n—-1
7 bnera /eSS i i=n—1
Since g; = §; for all i € {1,...,m — 2}, we have

(13) “(gh .. -7gn—2)" < ”g" < V(k—l) .
Since all fi;; are of absolute value at most 1/2, each entry of

the matrix N is of absolute value at most (1.5)*~2 With this



observation one checks

(14) g1l < |T7+W (n =12 (152 plkD)
Gn—y

Since V(¥ = ||g{|, the inequalities (13) and (14) yield the desired
bound.

Proof of (10): The bound is proven similair to bound (8). One
bounds separately maxi<j<n—1 ||| |&j0l and ||z]|-|zn 0] Inequal-
ities (15) and (16) are used.

(15) [Imo{M||? < 271 -y

n~1

[|? foralll€{1,...,n}and k> 1 .
(16) [6¥3112 < 272 - bk V¥|2 for all k > 2.

Inequality (15) holds, since 21612 = max;<i<n 2i||p{¥) |2
and since {ﬂbgk), .. .,wbs.k)} is size reduced. Inequality (16) holds
by virtue of

IBR217 < maxcign 1671 < 2028750712
We do not go to further details here.

Lemma 5 turns the bounds of Lemma 4 into non-inductive
bounds. The proof is an induction on k, and is not carried out

here. We only mention that claim (17) — with the notation
1692% ]} := 1 — is used.

25 i T 5 i | 2 | 552
A7) ey = iy gl S 207/ forallk 22,

Lemma 5: For all ¥ > 1 we have

ILSENI | g(k=1)2n-1) apq

k-
1= 1a8250

k-1 {
o0

k-1 [}
e

(18) V¥ <

_+_ .
e
i lletll

u(k) < 1 on . 9(k=1)(2n-1)

n—1 n
i llegll

Here the empty product as usual is defined to be 1.

(19)
o

Now we are ready to complete the proof of Proposition 3 (claim
(5)). We use lattice theory (cf. eg. [9]). For each basis
{b1,...,b,} of Z" occuring in our algorithm, the (linearly inde-
pendent) vectors 7by, . .., Tb,_; Span the lattice L = 77} wb; Z.
The determinant det(L) of the lattice is defined by [T*=! ||b1|; it is
invariant under elementary basis transformations of by,...,bn_1.
Hence we have det(S"n nb{ 2) = det(Xnc} wal™" 7) for all

i=1

1 > 1; we call this size D;. Then D; = [} |lez| and
2% . .
mf“% = D—?:; , S0 inequality (19) can be rewritten as u(®) <

2~ . 2(k=1)@n=1) /D, Thus since [|6{7) < [|6%)*]| + u* we have
(k) 9nt1.9(k=1)(2n-1)

(20) 1677l < F=Fp = .

Since D; < 1 and D%.T < 1foralli> 1, weknow

(21) k-1<logD;? .

The bases B, k > 1, fulfill |u;;] < 1/2forall1<j<i<n—1
and [|67]|% < 2- |63 1[12 forall 1 < i < n—2, s0 {xb{®, ..., 7.}
is reduced in the sence of [9]. This implies (cf. [9])
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(22) o) < 2tn-2/4. DD

Applying (21) and then (22) to (20) proves Proposition 3. a

4 Remarks on the algorithm

First remark: If we apply inequality (22) of the last section to
(20) without using (21), we obtain the bound

on+1 . 9(n=1)(n-2)/4 , 2(k~1)(2n—1)

o) <
” 1 ” = “bgk),“n_l )
and thus
_ A «const{n).-20k-1)2n—1)
(23)  maxigign- o - B < LI R

Thus the vectors bﬁk) produced by our algorithm fulfill the
Dirichlet-bound up to some constant depending on 7 and z, and
up to a latter factor increasing with k. May be, the latter fac-
tor comes from the inductive proof technique, and may be the
algorithm really meets the Dirichlet-bound up to a constant de-
pending on 7 (and ||z{|).

Second remark: The problem of diophantine approximations
alone, without the intention to generalize the cfa, was investi-
gated by Lagarias [8] in 1982. He proposed an algorithm for
rational inputs, which can be immediately be carried over to real
ones. The algorithm on input z1,--+,Zn—1 and @ > 0 produces
in polynomial time a diophantine approximation (p1, -+ +,Pn-1,9)
for z1,---,Zn—1 such that |¢| < @ and

. on/2.
max |z - g S
1<i<n—1 q |q|1+,._1

So the Dirichlet bound is met up to some constant factor. More-
over, Lagarias proofs several NP-completeness results that sug-
gest, that it may be hard to find approximations within the
Dirichlet-bound. A higher dimensional cfa, however, must con-
struct a sequence of bases of Z™ by performing elementary basis
transformations.
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