Alexander Holguín Villa¹

To Prof. César Polcino Milies on the occasion of his 70th birthday.

Escuela de Matemáticas - UIS Bucaramanga - Colombia

GROUPS, RINGS & GROUP RINGS UBATUBA - SÃO PAULO, BRAZIL July 21st to 26th, 2014

Ubatuba, July 25

¹Partially supported by CAPES - Brazil

VIE - UIS & Decanatura Facultad de Ciencias 🐵 🛛 🖘 🖘 👘 🖉 🗠

Content

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras & Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Notations & Definitions

- Main question for symmetric and skew-symmetric elements
- Group algebras & Involutions
- Lie properties
- 2 Group algebras & oriented involutions
 - Groups without elements of order 2
 - Further results

References

Algebras, groups & involutions

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Let \mathbb{F} a field and \mathcal{R} an \mathbb{F} -algebra with involution \star^2 s.t $\mathbb{F}^{\star} \subseteq \mathbb{F}$ and let $X = \{x_1, x_2, ..., \}$ be a fixed countable infinite set:

Facultad de Ciencias Escuela de Matemáticas Universidad ndustrial de Santander

Algebras, groups & involutions

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras & Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Let \mathbb{F} a field and \mathcal{R} an \mathbb{F} -algebra with involution \star^2 s.t $\mathbb{F}^* \subseteq \mathbb{F}$ and let $X = \{x_1, x_2, ..., \}$ be a fixed countable infinite set: It is possible define...

$$\mathbb{F}\left\{x_{1}, x_{2}, \ldots, \right\} \qquad \Longrightarrow \qquad \mathbb{F}\left\{x_{1}, x_{1}^{\star}, x_{2}, x_{2}^{\star}, \ldots\right\}$$

Renumbering we obtain

²* is an anti-automorphism of \mathcal{R} of order-2. (\mathbb{P}) (\mathbb{P}) (\mathbb{P}) \mathbb{P} (\mathbb{P})

Facultad de Ciencias Escuela de Matemática Universidad ndustrial de Santander

Algebras, groups & involutions

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Let \mathbb{F} a field and \mathcal{R} an \mathbb{F} -algebra with involution \star^2 s.t $\mathbb{F}^* \subseteq \mathbb{F}$ and let $X = \{x_1, x_2, ..., \}$ be a fixed countable infinite set: It is possible define...

$$\mathbb{F}\left\{x_{1}, x_{2}, \ldots, \right\} \qquad \Longrightarrow \qquad \mathbb{F}\left\{x_{1}, x_{1}^{\star}, x_{2}, x_{2}^{\star}, \ldots\right\}$$

Renumbering we obtain

 $\langle x_1, x_2, \ldots \rangle$

 $\langle x_1, x_1^{\star}, x_2, x_2^{\star}, ... \rangle$

Renumering again...

Facultad de Ciencias Escuela de Matemática Universidad ndustrial de Santander

Algebras, groups & involutions

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions Lie properties

Group algebras & oriented

Groups without elements of order 2 Eurther results

References

Let \mathbb{F} a field and \mathcal{R} an \mathbb{F} -algebra with involution \star^2 s.t $\mathbb{F}^* \subseteq \mathbb{F}$ and let $X = \{x_1, x_2, ..., \}$ be a fixed countable infinite set: It is possible define...

$$\mathbb{F}\left\{x_{1}, x_{2}, \ldots, \right\} \qquad \Longrightarrow \qquad \mathbb{F}\left\{x_{1}, x_{1}^{\star}, x_{2}, x_{2}^{\star}, \ldots\right\}$$

Renumbering we obtain

$$\langle x_1, x_2, \ldots \rangle$$

$$\langle x_1, x_1^{\star}, \rangle$$

 $x_2, x_2^{\star}, ... \rangle$

Renumering again...

by setting $x_1^{\star} = x_2, x_3^{\star} = x_4$, and so forth.

Facultad de Ciencias Escuela de Matemática Universidad ndustrial de Santander

Algebras, groups & involutions

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras & Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Let \mathbb{F} a field and \mathcal{R} an \mathbb{F} -algebra with involution \star^2 s.t $\mathbb{F}^* \subseteq \mathbb{F}$ and let $X = \{x_1, x_2, ..., \}$ be a fixed countable infinite set: It is possible define...

$$\mathbb{F}\left\{x_{1}, x_{2}, \dots, \right\} \qquad \Longrightarrow \qquad \mathbb{F}\left\{x_{1}, x_{1}^{\star}, x_{2}, x_{2}^{\star}, \dots\right\}$$

Renumbering we obtain

$$\langle x_1, x_2, \ldots \rangle$$

$$\Rightarrow$$

$$\langle x_1, x_1^{\star}, x_2, x_2^{\star}, \dots$$

Renumering again...

by setting $x_1^{\star} = x_2, x_3^{\star} = x_4$, and so forth.

Definition

An \mathbb{F} -algebra $\mathcal{R} \in \star$ -PI, if there exists a nonzero polynomial $f(x_1, x_1^{\star}, ..., x_n, x_n^{\star}) = f(x; x^{\star}) \in \mathbb{F}\{x_1, x_1^{\star}, x_2, x_2^{\star}, ...\}, s.t$ $f(a_1, a_1^{\star}, ..., a_n, a_n^{\star}) = f(a; a^{\star}) = 0$ for all $a_1, a_2, ..., a_n \in \mathbb{R}$.

²* is an anti-automorphism of $\mathcal R$ of order=2. Approx $A \equiv A \equiv A \equiv A = A$

A famous result

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements

Group algebras & Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Eurther results

References

Let $\mathcal{R}^+ = \{ \alpha \in \mathcal{R} : \alpha^* = \alpha \}$ and $\mathcal{R}^- = \{ \alpha \in \mathcal{R} : \alpha^* = -\alpha \}$ be the sets of symmetric and skew elements of \mathcal{R} under * respectively.

We are going to denote by $\mathcal{U}(\mathcal{R})$ the group of units of \mathcal{R} and by $\mathcal{U}^+(\mathcal{R}) := \mathcal{U}(\mathcal{R}) \cap \mathcal{R}^+$ the set of symmetric units.

A famous result

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements

Group algebras & Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Let $\mathcal{R}^+ = \{ \alpha \in \mathcal{R} : \alpha^* = \alpha \}$ and $\mathcal{R}^- = \{ \alpha \in \mathcal{R} : \alpha^* = -\alpha \}$ be the sets of symmetric and skew elements of \mathcal{R} under * respectively.

We are going to denote by $\mathcal{U}(\mathcal{R})$ the group of units of \mathcal{R} and by $\mathcal{U}^+(\mathcal{R}) := \mathcal{U}(\mathcal{R}) \cap \mathcal{R}^+$ the set of symmetric units.

A general question of interest is which properties of \mathcal{R}^+ or \mathcal{R}^- can be lifted to $\mathcal{R}.$

A classical result of Amitsur [Her76, Theorem 6.5.1] says:

A famous result

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements

Group algebras & Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Let $\mathcal{R}^+ = \{ \alpha \in \mathcal{R} : \alpha^* = \alpha \}$ and $\mathcal{R}^- = \{ \alpha \in \mathcal{R} : \alpha^* = -\alpha \}$ be the sets of symmetric and skew elements of \mathcal{R} under * respectively.

We are going to denote by $\mathcal{U}(\mathcal{R})$ the group of units of \mathcal{R} and by $\mathcal{U}^+(\mathcal{R}) := \mathcal{U}(\mathcal{R}) \cap \mathcal{R}^+$ the set of symmetric units.

A general question of interest is which properties of \mathcal{R}^+ or \mathcal{R}^- can be lifted to $\mathcal{R}.$

A classical result of Amitsur [Her76, Theorem 6.5.1] says:

Theorem (Amitsur 1968)

If \mathcal{R} satisfies a P.I of the form $p(x; x^*) = 0$ of degree d, then \mathcal{R} satisfies a P.I in the usual sense. In particular, if \mathcal{R}^+ or \mathcal{R}^- is P.I, then \mathcal{R} is P.I.

Involutions in $\mathbb{F}G$

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetr elements

Group algebras & Involutions

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Let $\mathbb{F}G$ be a group algebra endowed with a \mathbb{F} -linear involution *, i.e.,

Involutions in $\mathbb{F}G$

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements

Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Eurther results

References

Let $\mathbb{F} G$ be a group algebra endowed with a $\mathbb{F}\text{-linear}$ involution *, i.e.,

*:
$$\alpha = \sum_{g \in G}^{\mathbb{F}G} \alpha_g g \quad \longrightarrow \quad \alpha^* = \sum_{g \in G}^{\mathbb{F}G} \alpha_g g^*.$$

Involutions in $\mathbb{F}G$

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements

Group algebras & Involutions

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Let $\mathbb{F} G$ be a group algebra endowed with a $\mathbb{F}\text{-linear}$ involution *, i.e.,

*:
$$\mathbb{F}G \longrightarrow \mathbb{F}G$$

 $\alpha = \sum_{g \in G} \alpha_g g \mapsto \alpha^* = \sum_{g \in G} \alpha_g g^*.$

Definition

$$\mathcal{U}^+(\mathbb{F}G) := \mathcal{U}(\mathbb{F}G) \cap \mathbb{F}G^+.$$

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetr elements Group algebra & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

In an associative ring \mathcal{R} , we define the Lie product via $[x_1, x_2] = x_1x_2 - x_2x_1$ and, recursively via

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Oriented group involutions in group algebras

 $\begin{array}{c} \mathrm{ALEX} \ \text{-} \ \mathrm{UIS} \\ \mathrm{GRGR's2014} \end{array}$

Notations & Definitions

Main question for symmetric and skew-symmetr elements Group algebra

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

In an associative ring \mathcal{R} , we define the Lie product via $[x_1, x_2] = x_1x_2 - x_2x_1$ and, recursively via

$$[x_1, ..., x_n, x_{n+1}] = [[x_1, ..., x_n], x_{n+1}].$$

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

In an associative ring \mathcal{R} , we define the Lie product via $[x_1, x_2] = x_1x_2 - x_2x_1$ and, recursively via

$$[x_1, ..., x_n, x_{n+1}] = [[x_1, ..., x_n], x_{n+1}].$$

Definition

A S ⊆ R is said to be Lie nilpotent if there exists an n ≥ 2 such that [a₁,..., a_n] = 0 for all a_i ∈ S. The smallest such n is called the nilpotency index of S.

2 For a positive integer n, we say that S is Lie n-Engel if

$$[a, \underbrace{b, ..., b}_{n \text{ times}}] = 0, \quad \text{ for all } a, b \in S.$$

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

In an associative ring \mathcal{R} , we define the Lie product via $[x_1, x_2] = x_1x_2 - x_2x_1$ and, recursively via

$$[x_1, ..., x_n, x_{n+1}] = [[x_1, ..., x_n], x_{n+1}].$$

Definition

A S ⊆ R is said to be Lie nilpotent if there exists an n ≥ 2 such that [a₁,..., a_n] = 0 for all a_i ∈ S. The smallest such n is called the nilpotency index of S.

2 For a positive integer n, we say that S is Lie n-Engel if

$$[a, \underbrace{b, ..., b}_{n \text{ times}}] = 0, \quad \text{ for all } a, b \in S.$$

Obviously if *S* is Lie nilpotent then it is Lie n-Engel for some *n*.

Oriented group involutions in group algebras

 $\begin{array}{c} \mathrm{ALEX} \ \text{-} \ \mathrm{UIS} \\ \mathrm{GRGR's2014} \end{array}$

Notations & Definitions

Main question for symmetric and skew-symmetr elements Group algebra & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Assume that $\mathbb{F}G$ is endowed with a \mathbb{F} -linear involution. If $\mathbb{F}G^+$ and/or $\mathbb{F}G^-$ satisfies a Lie identity, what can you say about $\mathbb{F}G$?

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Assume that $\mathbb{F}G$ is endowed with a \mathbb{F} -linear involution. If $\mathbb{F}G^+$ and/or $\mathbb{F}G^-$ satisfies a Lie identity, what can you say about $\mathbb{F}G$? For Lie nilpotent (Lie *n*-Engel) group algebras it is known:

- Giambruno and Sehgal, in [GS93];
- G. Lee (see [Lee10, Section 3.3]);
- G. Lee also advanced in the knowledge of the Lie *n*-Engel property in 𝔽𝑘⁺, [Lee10, Sections 3.1 and 3.2], (classical involution).

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ● ● ● ● ●

Oriented group involutions in group algebras

Alex - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Assume that $\mathbb{F}G$ is endowed with a \mathbb{F} -linear involution. If $\mathbb{F}G^+$ and/or $\mathbb{F}G^-$ satisfies a Lie identity, what can you say about $\mathbb{F}G$? For Lie nilpotent (Lie *n*-Engel) group algebras it is known:

- Giambruno and Sehgal, in [GS93];
- G. Lee (see [Lee10, Section 3.3]);
- G. Lee also advanced in the knowledge of the Lie *n*-Engel property in 𝔽𝑘⁺, [Lee10, Sections 3.1 and 3.2], (classical involution).
- Giambruno, Polcino Milies and Sehgal [GPS09], studied Lie properties in 𝔽𝑍⁺;
- Lee, Sehgal and Spinelli [Lee10, Section 7.3], completed the last work, (group involutions).

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ● ● ● ● ●

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Assume that $\mathbb{F}G$ is endowed with a \mathbb{F} -linear involution. If $\mathbb{F}G^+$ and/or $\mathbb{F}G^-$ satisfies a Lie identity, what can you say about $\mathbb{F}G$? For Lie nilpotent (Lie *n*-Engel) group algebras it is known:

- Giambruno and Sehgal, in [GS93];
- G. Lee (see [Lee10, Section 3.3]);
- G. Lee also advanced in the knowledge of the Lie *n*-Engel property in $\mathbb{F}G^+$, [Lee10, Sections 3.1 and 3.2], (classical involution).
- Giambruno, Polcino Milies and Sehgal [GPS09], studied Lie properties in FG⁺;
- Lee, Sehgal and Spinelli [Lee10, Section 7.3], completed the last work, (group involutions).
- Recently, Castillo and Polcino Milies [CP12] have studied the Lie nilpotence and the Lie *n*-Engel properties in FG⁺ and FG⁻, (oriented classical involutions).

Notation

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetr elements Group algebras

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Definition

Given both an orientation $\sigma : G \to \{\pm 1\}$ and a group involution $* : G \to G$, an oriented group involution of $\mathbb{F}G$ is defined by

Notation

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Definition

Given both an orientation $\sigma : G \to \{\pm 1\}$ and a group involution $* : G \to G$, an oriented group involution of $\mathbb{F}G$ is defined by

$$\alpha = \sum_{g \in G} \alpha_g g \mapsto \alpha^{\circledast} = \sum_{g \in G} \alpha_g \sigma(g) g^*, \ \mathsf{N} = \mathsf{ker}(\sigma).$$

Notation

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras & Involutions

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Definition

Given both an orientation $\sigma : G \to \{\pm 1\}$ and a group involution $* : G \to G$, an oriented group involution of $\mathbb{F}G$ is defined by

$$\alpha = \sum_{g \in G} \alpha_g g \mapsto \alpha^{\circledast} = \sum_{g \in G} \alpha_g \sigma(g) g^*, \ N = \ker(\sigma).$$

As usual, we write G^+ , $\mathbb{F}G^+$ ($\mathbb{F}G^-$), the set of **symmetric** (skew-symmetric) elements of G and $\mathbb{F}G$ under \circledast , respectively.

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetr elements Group algebra

& Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Lie properties

Groups without elements of order 2

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Let $\zeta(G)$ be the center of G and $\tilde{\zeta}(G) = \{z^{-1}z^* : z \in \zeta(G)\}$:

Theorem (H., 2013)

Let G be a group such that $|\tilde{\zeta}(G)| = \infty$. Then, $\mathbb{F}G^-$ or $\mathbb{F}G^+$ is Lie nilpotent of index n iff $\mathbb{F}G$ is Lie nilpotent of index n.

Groups without elements of order 2

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements

& Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Let $\zeta(G)$ be the center of G and $\tilde{\zeta}(G) = \{z^{-1}z^* : z \in \zeta(G)\}$:

Theorem (H., 2013)

Let G be a group such that $|\tilde{\zeta}(G)| = \infty$. Then, $\mathbb{F}G^-$ or $\mathbb{F}G^+$ is Lie nilpotent of index n iff $\mathbb{F}G$ is Lie nilpotent of index n.

Recall that, for any prime p, a group G is called p-abelian if its G' is a finite p-group and 0-abelian means **abelian**.

Groups without elements of order 2

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras

& Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Let $\zeta(G)$ be the center of G and $\tilde{\zeta}(G) = \{z^{-1}z^* : z \in \zeta(G)\}$:

Theorem (H., 2013)

Let G be a group such that $|\tilde{\zeta}(G)| = \infty$. Then, $\mathbb{F}G^-$ or $\mathbb{F}G^+$ is Lie nilpotent of index n iff $\mathbb{F}G$ is Lie nilpotent of index n.

Recall that, for any prime p, a group G is called p-abelian if its G' is a finite p-group and 0-abelian means **abelian**.

Proposition (H., 2013)

Let G be a group without elements of order 2 and char(\mathbb{F}) \neq 2. Assume that $\mathbb{F}G^+$ or $\mathbb{F}G^-$ is Lie nilpotent. If the center of G has a non-symmetric non-trivial p'-element, then G is p-abelian.

Normality & Lie *n*-Engel properties

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetr elements Group algebra

& Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Suppose that $\mathbb{F}G$ is a **normal** group algebra, i.e.,

$$\alpha \alpha^{\circledast} = \alpha^{\circledast} \alpha$$
, for all $\alpha \in \mathbb{F}G$.

Normality & Lie *n*-Engel properties

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Suppose that $\mathbb{F}G$ is a **normal** group algebra, i.e.,

 $\alpha \alpha^{\circledast} = \alpha^{\circledast} \alpha$, for all $\alpha \in \mathbb{F}G$.

Theorem (H., 2013)

Let \mathbb{F} be a field of char(\mathbb{F}) $\neq 2$ and let G be a group without elements of order 2 such that $\mathbb{F}G$ is semi-prime. Then, the following are equivalent:

Normality & Lie *n*-Engel properties

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Suppose that $\mathbb{F}G$ is a **normal** group algebra, i.e.,

 $\alpha \alpha^{\circledast} = \alpha^{\circledast} \alpha$, for all $\alpha \in \mathbb{F}G$.

Theorem (H., 2013)

Let \mathbb{F} be a field of char(\mathbb{F}) $\neq 2$ and let G be a group without elements of order 2 such that $\mathbb{F}G$ is semi-prime. Then, the following are equivalent:

1 $\mathbb{F}G^+$ is Lie *n*-Engel for some *n* (or Lie nilpotent);

2 $\mathbb{F}G^+$ is a subring in $\mathbb{F}G$;

③ $\mathbb{F}G$ is a normal group algebra.

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetr elements Group algebra

Lie propertie

Group algebras & oriented involutions

Groups withou elements of order 2

Further results

References

These results is a research project in colaboration with John H. Castillo, Universidad de Nariño, San Juan de Pasto, Colombia.

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetr elements Group algebra: & Involutions

Lie propertie

Group algebras & oriented involutions

Groups withou elements of order 2

Further results

References

These results is a research project in colaboration with John H. Castillo, Universidad de Nariño, San Juan de Pasto, Colombia. We highlight that some previous results from [GPS09], can not be extended with a nontrivial σ .

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ● ● ● ● ●

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2

Further results

References

These results is a research project in colaboration with John H. Castillo, Universidad de Nariño, San Juan de Pasto, Colombia. We highlight that some previous results from [GPS09], can not be extended with a nontrivial σ .

Theorem (Castillo & H., 2013)

Let \mathbb{F} be a field of char(\mathbb{F}) > 2, G a group with involution * and $\sigma \neq 1$ an orientation. Suppose that $\mathbb{F}G^+$ is Lie n-Engel under \circledast . Then the following are hold:

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

These results is a research project in colaboration with John H. Castillo, Universidad de Nariño, San Juan de Pasto, Colombia. We highlight that some previous results from [GPS09], can not be extended with a nontrivial σ .

Theorem (Castillo & H., 2013)

Let \mathbb{F} be a field of char(\mathbb{F}) > 2, G a group with involution * and $\sigma \neq 1$ an orientation. Suppose that $\mathbb{F}G^+$ is Lie n-Engel under \circledast . Then the following are hold:

- If G is a torsion group and exp(G) is odd, then P is a subgroup. Moreover, G/P is abelian or N/P is abelian and (G \ N)/P ⊆ (G/P)⁺.
- 2 Let G be a finite group of odd order, then 𝔽G is Lie n-Engel.

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

These results is a research project in colaboration with John H. Castillo, Universidad de Nariño, San Juan de Pasto, Colombia. We highlight that some previous results from [GPS09], can not be extended with a nontrivial σ .

Theorem (Castillo & H., 2013)

Let \mathbb{F} be a field of char(\mathbb{F}) > 2, G a group with involution * and $\sigma \neq 1$ an orientation. Suppose that $\mathbb{F}G^+$ is Lie n-Engel under \circledast . Then the following are hold:

- If G is a torsion group and exp(G) is odd, then P is a subgroup. Moreover, G/P is abelian or N/P is abelian and (G \ N)/P ⊆ (G/P)⁺.
- 2 Let G be a finite group of odd order, then 𝔽G is Lie n-Engel.
- If $g \in N^+$, then $g^{p^m} \in \zeta(G)$, for some m.

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebra

Lie propertie

Group algebras & oriented involutions

Groups withou elements of order 2

Further results

References

A result showing the impossibility of $\sigma \neq 1$:

◆□ → ◆□ → ◆三 → ◆三 → ○へ⊙

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetri elements Group algebras & Involutions

Lie propertie

algebras & oriented involutions

Groups withou elements of order 2

Further results

References

A result showing the impossibility of $\sigma \not\equiv 1$:

Theorem (Castillo & H., 2013)

Let G be a finite group of even order. Assume that G/P is abelian. If $(FG)^+$ is Lie n-Engel, then N is nilpotent. Moreover, if $\zeta(G) = 1$, then $G \cong P \rtimes \{g \in G : \sigma(g) = 1 \text{ e } g^2 = 1\}$.

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras

Lie propertie

Group algebras & oriented involutions

Groups without elements of order 2

Further results

References

A result showing the impossibility of $\sigma \neq 1$:

Theorem (Castillo & H., 2013)

Let G be a finite group of even order. Assume that G/P is abelian. If $(FG)^+$ is Lie n-Engel, then N is nilpotent. Moreover, if $\zeta(G) = 1$, then $G \cong P \rtimes \{g \in G : \sigma(g) = 1 \text{ e } g^2 = 1\}$.

Let \mathbb{F} a field of $char(\mathbb{F}) = 3$, * the classical involution with $\sigma(x) = 1$ and $\sigma(y) = -1$:

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2

Poforoncoc

A result showing the impossibility of $\sigma \not\equiv 1$:

Theorem (Castillo & H., 2013)

Let G be a finite group of even order. Assume that G/P is abelian. If $(FG)^+$ is Lie n-Engel, then N is nilpotent. Moreover, if $\zeta(G) = 1$, then $G \cong P \rtimes \{g \in G : \sigma(g) = 1 \text{ e } g^2 = 1\}$.

Let \mathbb{F} a field of $char(\mathbb{F}) = 3$, * the classical involution with $\sigma(x) = 1$ and $\sigma(y) = -1$:

Example

Consider
$$D_6 = \langle x, y : x^6 = 1 = y^2, (xy)^2 = 1 \rangle$$
:

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

A result showing the impossibility of $\sigma \not\equiv 1$:

Theorem (Castillo & H., 2013)

Let G be a finite group of even order. Assume that G/P is abelian. If $(FG)^+$ is Lie n-Engel, then N is nilpotent. Moreover, if $\zeta(G) = 1$, then $G \cong P \rtimes \{g \in G : \sigma(g) = 1 \text{ e } g^2 = 1\}$.

Let \mathbb{F} a field of $char(\mathbb{F}) = 3$, * the classical involution with $\sigma(x) = 1$ and $\sigma(y) = -1$:

Example

Consider
$$\mathcal{D}_6 = \langle x, y : x^6 = 1 = y^2, (xy)^2 = 1 \rangle$$
: $\zeta(\mathcal{D}_6) = \{1, x^3\}$ and $\mathbb{F}\mathcal{D}_6^+$ is commutative.

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

elements of order 2

References

A result showing the impossibility of $\sigma \not\equiv 1$:

Theorem (Castillo & H., 2013)

Let G be a finite group of even order. Assume that G/P is abelian. If $(FG)^+$ is Lie n-Engel, then N is nilpotent. Moreover, if $\zeta(G) = 1$, then $G \cong P \rtimes \{g \in G : \sigma(g) = 1 \text{ e } g^2 = 1\}$.

Let \mathbb{F} a field of $char(\mathbb{F}) = 3$, * the classical involution with $\sigma(x) = 1$ and $\sigma(y) = -1$:

Example

Consider $\mathcal{D}_6 = \langle x, y : x^6 = 1 = y^2, (xy)^2 = 1 \rangle$: $\zeta(\mathcal{D}_6) = \{1, x^3\}$ and $\mathbb{F}\mathcal{D}_6^+$ is commutative. $\mathcal{D}'_6 = \{1, x^2, x^4\}$. Therefore, $G = \mathcal{D}_6/\zeta(\mathcal{D}_6) \cong \mathcal{D}_3$ and \mathcal{D}_6 is not nilpotent.

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements Group algebras & Involutions

Lie properties

Group algebras & oriented involutions

elements of order 2

References

A result showing the impossibility of $\sigma \neq 1$:

Theorem (Castillo & H., 2013)

Let G be a finite group of even order. Assumme that G/P is abelian. If $(FG)^+$ is Lie n-Engel, then N is nilpotent. Moreover, if $\zeta(G) = 1$, then $G \cong P \rtimes \{g \in G : \sigma(g) = 1 \text{ e } g^2 = 1\}$.

Let \mathbb{F} a field of $char(\mathbb{F}) = 3$, * the classical involution with $\sigma(x) = 1$ and $\sigma(y) = -1$:

Example

Consider $\mathcal{D}_6 = \langle x, y : x^6 = 1 = y^2, (xy)^2 = 1 \rangle$: $\zeta(\mathcal{D}_6) = \{1, x^3\}$ and $\mathbb{F}\mathcal{D}_6^+$ is commutative. $\mathcal{D}'_6 = \{1, x^2, x^4\}$. Therefore, $G = \mathcal{D}_6/\zeta(\mathcal{D}_6) \cong \mathcal{D}_3$ and \mathcal{D}_6 is not nilpotent.

 $:: \mathcal{D}_3 \cong \langle a \rangle \rtimes \langle b \rangle \,.$

References

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetr elements

Group algebras & Involutions Lie properties

Group algebras & oriented

Groups without elements of order 2

References

J. H. Castillo Gómez and C. Polcino Milies. *Lie properties of symmetric elements under oriented involutions*. Commun. Algebra **40** (2012), 4404-4419.

- A. Giambruno, C. Polcino Milies and S. K. Sehgal. *Lie properties of symmetric elements in group rings.* J. Algebra **321** (2009):890-902.
- A. Giambruno and S. K. Sehgal. *Lie nilpotence of group rings*. Comm. Algebra **21** (1993):4253-4261.

A. Holguín Villa. *Involuções de grupo orientadas em álgebras de grupo*, Tese de Doutorado, Universidade de São Paulo (2013), São Paulo, Brasil.

▲□ → ▲□ → ▲□ → ▲□ → □ → ○ ○ ○

References

Oriented group involutions in group algebras

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetric elements

Group algebras & Involutions Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

- J. H. Castillo Gómez and C. Polcino Milies. *Lie properties of symmetric elements under oriented involutions*. Commun. Algebra **40** (2012), 4404-4419.
- A. Giambruno, C. Polcino Milies and S. K. Sehgal. *Lie properties of symmetric elements in group rings*. J. Algebra **321** (2009):890-902.
- A. Giambruno and S. K. Sehgal. *Lie nilpotence of group rings*. Comm. Algebra **21** (1993):4253-4261.

A. Holguín Villa. *Involuções de grupo orientadas em álgebras de grupo*, Tese de Doutorado, Universidade de São Paulo (2013), São Paulo, Brasil.

I.N. Herstein. *Rings with involution*. University of Chicago Press, Chicago (1976).

G. T. Lee. Group Identities on Units and Symmetric Units of Group Rings. Springer-Verlag, London (2010).

C. Polcino Milies and S. K. Sehgal. An Introduction to Group Rings. Kluwer, Dordrecht (2002).

ALEX - UIS GRGR's2014

Notations & Definitions

Main question for symmetric and skew-symmetr elements Group algebras

Lie properties

Group algebras & oriented involutions

Groups without elements of order 2 Further results

References

Thanks for your attention!!