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It is possible define...

F{x1,x, ... — F{x1,x7, X0, %5, ...
RN { 1, X2, 7} . , { 1, X1y X2, X0, }
Definitions Renumbering we obtain
* *
(X1, %2, ...) = (X1, XT3 X2, X5 5 ...)

Renumering again...

by setting xi' = x2, X3 = xa, and so forth.

Definition

An F-algebra R € x-Pl, if there exists a nonzero polyno-
mial f(x1,x7, .., xn, xp) = f(x;x*) € F{xi,x{,x2,x3,...}, s.t
f(a1,as,..,an,ay) = f(a;a*) =0 for all a1,az,...,a, € R.

24 is an anti-automorphism of R of order-2.
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involutions be the sets of symmetric and skew elements of R under %

in group

algebras reSpeCtiVer-

S \\We are going to denote by U(R) the group of units of R and by
UT(R) :=U(R)NRT the set of symmetric units.

Wi resifer A general question of interest is which properties of R* or R~

for symmetric

Shew-symmetric can be lifted to R.

elements

A classical result of Amitsur [Her76, Theorem 6.5.1] says:

If R satisfies a P.I of the form p(x; x*) = 0 of degree d, then
R satisfies a P.l in the usual sense. In particular, if R™ or R~
is P.I, then R is P.I.
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UT(FG) :=UFG)NFG™.

e FG™ = {a € FG : a* = —a}: Skew-Symmetric Ele-
ments of FG under *.
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In an associative ring R, we define the Lie product via [x1, x2] =
X1Xo — xox1 and, recursively via

T Pty o Xm Xaa] = [bets oo Xol, ]

@ A S CR issaid to be Lie nilpotent if there exists an
n > 2 such that [a1, ...,a,] = 0 for all a; € S. The smallest
such n is called the nilpotency index of S.

@ For a positive integer n, we say that S is Lie n-Engel if

iented

involutions [a, b, ceey b — O, fOr all a, b € S.

n times

Obviously if S is Lie nilpotent then it is Lie n-Engel for some
n.

v
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involutions and/or FG ™~ satisfies a Lie identity, what can you say about FG?

in group . . .
algebras For Lie nilpotent (Lie n-Engel) group algebras it is known:
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@ G. Lee (see [Leel0, Section 3.3]);

@ G. Lee also advanced in the knowledge of the Lie n-Engel
property in FG™, [Leel0, Sections 3.1 and 3.2], (classical
involution).

Lie properties @ Giambruno, Polcino Milies and Sehgal [GPS09], studied
Lie properties in FGT;

@ Lee, Sehgal and Spinelli [Leel0, Section 7.3], completed
the last work, (group involutions).

@ Recently, Castillo and Polcino Milies [CP12] have studied
the Lie nilpotence and the Lie n-Engel properties in FG™T
and FG~, (oriented classical involutions).
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Notation

Oriented
group
involutions Defl n ition
in group
algebras

Given both an orientation o : G — {£1} and a group involution
P - G — G, an oriented group involution of FG is defined by

a=) agga® =) ag0(g)g", N=ker(o).
geG geG

Group
algebras &

e e As usual, we write G, FGT (FG™), the set of symmetric
(skew-symmetric) elements of G and FG under ®, respec-
tively.
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Let G be a group such that |((G)| = co. Then, FG~ or FG™*
Defin is Lie nilpotent of index n iff TFG is Lie nilpotent of index n.

Notat

Recall that, for any prime p, a group G is called p-abelian if its
G' is a finite p-group and 0-abelian means abelian.

Proposition (

Let G be a group without elements of order 2 and char(F) # 2.

Seidill  Assume that FG™ or FG™ is Lie nilpotent. If the center of G

order 2 o . . . .
has a non-symmetric non-trivial p’-element, then G is p-abelian.

References



Oriented

group s o
e Suppose that FG is a normal group algebra, i.e.,
in group

algebras

aa® = a®aq, for all o € FG.

Groups without
elements of
order 2



Oriented

group s o
e Suppose that FG is a normal group algebra, i.e.,
in group

algebras

aa® = a®aq, for all o € FG.

Theorem ( )

Let F be a field of char(F) # 2 and let G be a group without
elements of order 2 such that FG is semi-prime. Then, the
following are equivalent:

Groups without
elements of
order 2




Oriented
group
involutions
in group
algebras

Groups without
elements of
order 2

References

Suppose that FG is a normal group algebra, i.e.,

aa® = a®aq, for all o € FG.

Theorem ( )

Let F be a field of char(F) # 2 and let G be a group without
elements of order 2 such that FG is semi-prime. Then, the

following are equivalent:
@ FG™ is Lie n-Engel for some n (or Lie nilpotent);
Q@ FG™ is a subring in FG;
© FG is a normal group algebra.
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These results is a research project in colaboration with John H.
Castillo, Universidad de Narifio, San Juan de Pasto, Colombia.

We highlight that some previous results from [GPS09], can not
be extended with a nontrivial o.

Theorem (

Let F be a field of char(F) > 2, G a group with involution x and
o # 1 an orientation. Suppose that FG™ is Lie n-Engel under
®. Then the following are hold:

Q If G is a torsion group and exp(G) is odd, then P is a
subgroup. Moreover, G/P is abelian or N/P is abelian
and (G\ N)/P C (G/P)*.

@ Let G be a finite group of odd order, then FG is Lie
n-Engel.
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These results is a research project in colaboration with John H.
Castillo, Universidad de Narifio, San Juan de Pasto, Colombia.

We highlight that some previous results from [GPS09], can not
be extended with a nontrivial o.

Theorem (

Let F be a field of char(F) > 2, G a group with involution x and
o # 1 an orientation. Suppose that FG™ is Lie n-Engel under
®. Then the following are hold:

Q If G is a torsion group and exp(G) is odd, then P is a
subgroup. Moreover, G/P is abelian or N/P is abelian
and (G\ N)/P C (G/P)*.

@ Let G be a finite group of odd order, then FG is Lie
n-Engel.

Q Ifg € NT, then gP" € ((G), for some m.
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