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Algebras, groups & involutions

Let F a field and R an F-algebra with involution ?2 s.t F? ⊆ F
and let X = {x1, x2, ..., } be a fixed countable infinite set:

It is possible define...

F {x1, x2, ..., } =⇒︸︷︷︸
Renumbering we obtain

F {x1, x
?
1 , x2, x

?
2 , ...}

〈x1, x2, ...〉 =⇒︸︷︷︸
Renumering again...

〈x1, x
?
1 , x2, x

?
2 , ...〉

by setting x?
1 = x2, x

?
3 = x4, and so forth.

Definition

An F-algebra R ∈ ?-PI, if there exists a nonzero polyno-
mial f (x1, x

?
1 , .., xn, x

?
n ) = f (x ; x?) ∈ F {x1, x

?
1 , x2, x

?
2 , ...}, s.t

f (a1, a
?
1, .., an, a

?
n) = f (a; a?) = 0 for all a1, a2, ..., an ∈ R.

2? is an anti-automorphism of R of order 2.
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A famous result

Let R+ = {α ∈ R : α? = α} and R− = {α ∈ R : α? = −α}
be the sets of symmetric and skew elements of R under ∗
respectively.

We are going to denote by U(R) the group of units of R and by
U+(R) := U(R) ∩R+ the set of symmetric units.

A general question of interest is which properties of R+ or R−
can be lifted to R.

A classical result of Amitsur [Her76, Theorem 6.5.1] says:

Theorem (Amitsur 1968)

If R satisfies a P.I of the form p(x ; x?) = 0 of degree d, then
R satisfies a P.I in the usual sense. In particular, if R+ or R−
is P.I, then R is P.I.
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Involutions in FG

Let FG be a group algebra endowed with a F-linear involution
∗, i.e.,

∗ : FG −→ FG

α =
∑
g∈G

αgg 7→ α∗ =
∑
g∈G

αgg∗.

Definition

FG + = {α ∈ FG : α∗ = α}: Symmetric Elements of FG
under ∗.

U+(FG ) := U(FG ) ∩ FG +.

FG− = {α ∈ FG : α∗ = −α}: Skew-Symmetric Ele-
ments of FG under ∗.
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Lie nilpotent & Lie n-Engel

In an associative ringR, we define the Lie product via [x1, x2] =
x1x2 − x2x1 and, recursively via

[x1, ..., xn, xn+1] = [[x1, ..., xn], xn+1].

Definition

1 A S ⊆ R is said to be Lie nilpotent if there exists an
n ≥ 2 such that [a1, ..., an] = 0 for all ai ∈ S. The smallest
such n is called the nilpotency index of S.

2 For a positive integer n, we say that S is Lie n-Engel if

[a, b, ..., b︸ ︷︷ ︸
n times

] = 0, for all a, b ∈ S.

Obviously if S is Lie nilpotent then it is Lie n-Engel for some
n.
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Known results

Assume that FG is endowed with a F-linear involution. If FG +

and/or FG− satisfies a Lie identity, what can you say about FG ?

For Lie nilpotent (Lie n-Engel) group algebras it is known:

Giambruno and Sehgal, in [GS93];

G. Lee (see [Lee10, Section 3.3]);

G. Lee also advanced in the knowledge of the Lie n-Engel
property in FG +, [Lee10, Sections 3.1 and 3.2], (classical
involution).

Giambruno, Polcino Milies and Sehgal [GPS09], studied
Lie properties in FG +;

Lee, Sehgal and Spinelli [Lee10, Section 7.3], completed
the last work, (group involutions).

Recently, Castillo and Polcino Milies [CP12] have studied
the Lie nilpotence and the Lie n-Engel properties in FG +

and FG−, (oriented classical involutions).
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Notation

Definition

Given both an orientation σ : G → {±1} and a group involution
∗ : G → G , an oriented group involution of FG is defined by

α =
∑
g∈G

αgg 7→ α~ =
∑
g∈G

αgσ(g)g∗, N = ker(σ).

As usual, we write G +, FG + (FG−), the set of symmetric
(skew-symmetric) elements of G and FG under ~, respec-
tively.
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Lie properties
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Groups without elements of order 2

Let ζ(G ) be the center of G and ζ̃(G ) =
{

z−1z∗ : z ∈ ζ(G )
}

:

Theorem (H., 2013)

Let G be a group such that |ζ̃(G )| = ∞. Then, FG− or FG +

is Lie nilpotent of index n iff FG is Lie nilpotent of index n.

Recall that, for any prime p, a group G is called p-abelian if its
G ′ is a finite p-group and 0-abelian means abelian.

Proposition (H., 2013)

Let G be a group without elements of order 2 and char(F) 6= 2.
Assume that FG + or FG− is Lie nilpotent. If the center of G
has a non-symmetric non-trivial p′-element, then G is p-abelian.
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Recall that, for any prime p, a group G is called p-abelian if its
G ′ is a finite p-group and 0-abelian means abelian.

Proposition (H., 2013)

Let G be a group without elements of order 2 and char(F) 6= 2.
Assume that FG + or FG− is Lie nilpotent. If the center of G
has a non-symmetric non-trivial p′-element, then G is p-abelian.
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Normality & Lie n-Engel properties

Suppose that FG is a normal group algebra, i.e.,

αα~ = α~α, for all α ∈ FG .

Theorem (H., 2013)

Let F be a field of char(F) 6= 2 and let G be a group without
elements of order 2 such that FG is semi-prime. Then, the
following are equivalent:

1 FG + is Lie n-Engel for some n (or Lie nilpotent);

2 FG + is a subring in FG ;

3 FG is a normal group algebra.
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Further results

These results is a research project in colaboration with John H.
Castillo, Universidad de Nariño, San Juan de Pasto, Colombia.

We highlight that some previous results from [GPS09], can not
be extended with a nontrivial σ.

Theorem (Castillo & H., 2013)

Let F be a field of char(F) > 2, G a group with involution ∗ and
σ 6≡ 1 an orientation. Suppose that FG + is Lie n-Engel under
~.Then the following are hold:

1 If G is a torsion group and exp(G ) is odd, then P is a
subgroup. Moreover, G/P is abelian or N/P is abelian
and (G \ N)/P ⊆ (G/P)+.

2 Let G be a finite group of odd order, then FG is Lie
n-Engel.

3 If g ∈ N+, then gpm ∈ ζ(G ), for some m.
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A result showing the impossibility of σ 6≡ 1:

Theorem (Castillo & H., 2013)

Let G be a finite group of even order. Assumme that G/P is
abelian. If (FG )+ is Lie n-Engel, then N is nilpotent. Moreover,
if ζ(G ) = 1, then G ∼= P o

{
g ∈ G : σ(g) = 1 e g 2 = 1

}
.

Let F a field of char(F) = 3, ∗ the classical involution with
σ(x) = 1 and σ(y) = −1:

Example

Consider D6 =
〈
x , y : x6 = 1 = y 2, (xy)2 = 1

〉
: ζ(D6) ={

1, x3
}

and FD+
6 is commutative. D′6 =

{
1, x2, x4

}
. There-

fore, G = D6/ζ(D6) ∼= D3 and D6 is not nilpotent.

∴ D3
∼= 〈a〉o 〈b〉 .
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Thanks for your attention!!
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