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Introduction

After the fundamental work of Amit-
sur and the interest in rings with in-
volution developed from the 1970s by
Herstein and collaborators, it is na-
tural to consider group algebras from
this viewpoint.



Some time ago and with idea of to establish a connection between
the additive and multiplicative structure of a group algebra FG ,
Brian Hartley made the following famous conjecture:

Conjecture (Hartley’s Conjecture, 1980)

Let G be a torsion group and F a field. If U(FG )
satisfies a group identity, then FG satisfies a polyno-
mial identity, [Lee10, Section 1.1].
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Algebras, groups & involutions

Let F a field and R an F-algebra with involution ?2 s.t F? ⊆ F and
let X = {x1, x2, ..., } be a fixed countable infinite set:

It is possible define...

F {x1, x2, ..., } =⇒︸︷︷︸
Renumbering we obtain

F {x1, x?
1 , x2, x

?
2 , ...}

〈x1, x2, ...〉 =⇒︸︷︷︸
Renumering again...

〈x1, x?
1 , x2, x

?
2 , ...〉

by setting x?
1 = x2, x

?
3 = x4, and so forth.

Definition
An F-algebra R ∈ ?-PI, if there exists a nonzero polynomial f =
f (x ; x?) = f (x1, x

?
1 , .., xn, x

?
n ) ∈ F {x1, x?

1 , x2, x
?
2 , ...}, such that

f (a1, a
?
1, .., an, a

?
n) = f (a; a?) = 0 for all a1, a2, ..., an ∈ R.

2? is an anti-automorphism of R of order 2.



Algebras, groups & involutions

Let F a field and R an F-algebra with involution ?2 s.t F? ⊆ F and
let X = {x1, x2, ..., } be a fixed countable infinite set:

It is possible define...

F {x1, x2, ..., } =⇒︸︷︷︸
Renumbering we obtain

F {x1, x?
1 , x2, x

?
2 , ...}

〈x1, x2, ...〉 =⇒︸︷︷︸
Renumering again...

〈x1, x?
1 , x2, x

?
2 , ...〉

by setting x?
1 = x2, x

?
3 = x4, and so forth.

Definition
An F-algebra R ∈ ?-PI, if there exists a nonzero polynomial f =
f (x ; x?) = f (x1, x

?
1 , .., xn, x

?
n ) ∈ F {x1, x?

1 , x2, x
?
2 , ...}, such that

f (a1, a
?
1, .., an, a

?
n) = f (a; a?) = 0 for all a1, a2, ..., an ∈ R.

2? is an anti-automorphism of R of order 2.



Algebras, groups & involutions

Let F a field and R an F-algebra with involution ?2 s.t F? ⊆ F and
let X = {x1, x2, ..., } be a fixed countable infinite set:

It is possible define...

F {x1, x2, ..., } =⇒︸︷︷︸
Renumbering we obtain

F {x1, x?
1 , x2, x

?
2 , ...}

〈x1, x2, ...〉 =⇒︸︷︷︸
Renumering again...

〈x1, x?
1 , x2, x

?
2 , ...〉

by setting x?
1 = x2, x

?
3 = x4, and so forth.

Definition
An F-algebra R ∈ ?-PI, if there exists a nonzero polynomial f =
f (x ; x?) = f (x1, x

?
1 , .., xn, x

?
n ) ∈ F {x1, x?

1 , x2, x
?
2 , ...}, such that

f (a1, a
?
1, .., an, a

?
n) = f (a; a?) = 0 for all a1, a2, ..., an ∈ R.

2? is an anti-automorphism of R of order 2.



Algebras, groups & involutions

Let F a field and R an F-algebra with involution ?2 s.t F? ⊆ F and
let X = {x1, x2, ..., } be a fixed countable infinite set:

It is possible define...

F {x1, x2, ..., } =⇒︸︷︷︸
Renumbering we obtain

F {x1, x?
1 , x2, x

?
2 , ...}

〈x1, x2, ...〉 =⇒︸︷︷︸
Renumering again...

〈x1, x?
1 , x2, x

?
2 , ...〉

by setting x?
1 = x2, x

?
3 = x4, and so forth.

Definition
An F-algebra R ∈ ?-PI, if there exists a nonzero polynomial f =
f (x ; x?) = f (x1, x

?
1 , .., xn, x

?
n ) ∈ F {x1, x?

1 , x2, x
?
2 , ...}, such that

f (a1, a
?
1, .., an, a

?
n) = f (a; a?) = 0 for all a1, a2, ..., an ∈ R.

2? is an anti-automorphism of R of order 2.



A famous result

LetR+ = {α ∈ R : α? = α} andR− = {α ∈ R : α? = −α} be the
sets of symmetric and skew elements of R under ∗ respectively.

We are going to denote by U(R) the group of units of R and by
U+(R) := U(R) ∩R+ the set of symmetric units.

A general question of interest is which properties of R+ or R− can
be lifted to R?

A classical result of Amitsur [Her76, Theorem 6.5.1] says:

Theorem (Amitsur 1968)

If R satisfies a P.I of the form p(x ; x?) = 0 of degree d, then R
satisfies a P.I in the usual sense. In particular, if R+ or R− is P.I,
then R is P.I.



A famous result

LetR+ = {α ∈ R : α? = α} andR− = {α ∈ R : α? = −α} be the
sets of symmetric and skew elements of R under ∗ respectively.

We are going to denote by U(R) the group of units of R and by
U+(R) := U(R) ∩R+ the set of symmetric units.

A general question of interest is which properties of R+ or R− can
be lifted to R?

A classical result of Amitsur [Her76, Theorem 6.5.1] says:

Theorem (Amitsur 1968)

If R satisfies a P.I of the form p(x ; x?) = 0 of degree d, then R
satisfies a P.I in the usual sense. In particular, if R+ or R− is P.I,
then R is P.I.



A famous result

LetR+ = {α ∈ R : α? = α} andR− = {α ∈ R : α? = −α} be the
sets of symmetric and skew elements of R under ∗ respectively.

We are going to denote by U(R) the group of units of R and by
U+(R) := U(R) ∩R+ the set of symmetric units.

A general question of interest is which properties of R+ or R− can
be lifted to R?

A classical result of Amitsur [Her76, Theorem 6.5.1] says:

Theorem (Amitsur 1968)

If R satisfies a P.I of the form p(x ; x?) = 0 of degree d, then R
satisfies a P.I in the usual sense. In particular, if R+ or R− is P.I,
then R is P.I.



Involutions FG ...
Let FG be a group algebra endowed with a F-linear involution ∗:

∗ : FG −→ FG

α =
∑
g∈G

αgg 7→ α∗ =
∑
g∈G

αgg∗. In a similar way...

FG+, U+(F) and FG− under ∗.

Main Questions

1. To know the extent to which the properties of the symmet-
ric (skew-symmetric) elements determine the properties of the
whole group algebra.

2.
To know the extent to which the properties of the symmetric
units determine either the properties of the whole unit group
or the properties of the whole group algebra.
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Affirmative answers to Hartley’s Conjecture

Let F be an infinite field (or ring) and G a group:

I Giambruno, Jespers and Valenti, in [Lee10, Section 1.2]
(Semiprime).

I Giambruno, Sehgal and Valenti (see [Lee10, Section 1.2]).

I Passman, [Lee10, Section 1.3].

If F is finite are know:

I Liu [Lee10, Section 1.2].

I Liu and Passman [Lee10, Section 1.3]

Remark

I If G is finite, then FG always is PI, but

I If char(F) = 0, then U(FG ) is GI ⇔ G is abelian.
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Symmetric units & Hartley’s Conjecture

Let F be an infinite field and G a group:

I Giambruno, Sehgal and Valenti, in [GSV98]. (Classical
involution).

I Dooms and Ruiz, in [DMR07] - Regular group algebras.

I Giambruno, Polcino Milies and Sehgal, [GPS09i]. (Group
involution).
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Some lemmata

Lemma
Let R be a semisimple K -algebra with involution ?, where K is an
infinite field with char(K ) 6= 2.

1. Suppose that R is finite dimensional and U+(R) is GI. Then
R is a direct sum of simple algebras of dimension at most four
over their centers and the symmetric elements R+ are central
in R, i.e., [GPS09i]

A ∼= D1 ⊕ D2 ⊕ ...⊕ Dk ⊕M2(F1)⊕M2(F2)⊕ ...⊕M2(Fl).

2. Suppose one of the following conditions holds, [DMR07]:

I K is uncountable,
I A has no simple components that are non-commutative

division algebras other than quaternion algebras.

Then U+(A) ∈ GI if and only if A+ is central in A.
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Notation

Definition
Given both an orientation σ : G → {±1} and a group involution
∗ : G → G , an oriented group involution of FG is defined by

α =
∑
g∈G

αgg 7→ α~ =
∑
g∈G

αgσ(g)g∗, N = ker(σ).

Group algebras and regularity

R with 1R is said to be (von Neumann) regular if for any x ∈ R
there exists an y ∈ R such that xyx = x .

(Villamayor-1959) FG is regular if and only if G is locally finite
and has no elements of order p in case char(F) = p.
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Group involution

Lemma (Dooms & Ruiz - 2007)

Let F be an infinite field with char(F) 6= 2 and let G be a non-
abelian group such that FG is regular. Let ∗ be an involution on G .
Suppose one of the following conditions, (C), holds:

(i) F is uncountable,

(ii) All finite non-abelian subgroups of G which are ∗-invariant have
no simple components in their group algebra over F that are
non-commutative division algebras other than quaternion alge-
bras.
Then U+(FG ) ∈ GI ⇔ G is an SLC-group with canonical in-
volution.
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Regular case

Theorem (H., 2013)

Let F be an infinite field with char(F) 6= 2 and let G be a non-
abelian group such that FG is regular. Let σ : G → {±1} be a
nontrivial orientation and an involution ∗ on G . Suppose one of the
conditions (C) above holds:

Then U+(FG ) ∈ GI if and only if one of the following conditions
holds:

1. N = ker(σ) is an abelian group and (G \ N) ⊂ G+;

2. G and N have the LC-property, and there exists a unique
nontrivial commutator s such that the involution ∗ is given by

g∗ =

{
g , if g ∈ N ∩ ζ(G ) or g ∈ (G \ N) \ ζ(G );

sg , if otherwise.
(1)
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Non-regular case

Theorem (H., 2013)

Let g 7→ g∗ be an involution on a locally finite group G, σ : G →
{±1} a nontrivial orientation with N = ker(σ) and F an infinite
field with char(F) = p 6= 2. Suppose that U+(FG ) ∈ GI and that
one of the (C) above holds:

Then we have that

1. G = G/P is abelian, or

2. N = N/P = ker(σ) is abelian and (G \ N) ⊂ G+, or

3. G and N have the LC-property and there exists a unique non-
trivial commutator s such that the involution ∗ in G is given
by

g∗ =

{
g , if g ∈ N ∩ ζ(G ) or g ∈ (G \ N) \ ζ(G );

sg , if otherwise.
(2)
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Characterization

Recall that

(i) CG (g) = {h ∈ G : hg = gh}: Centralizer of g ∈ G ,

(ii) Φ(G ) = {g ∈ G : [G : CG (g)] <∞}, Φp = 〈P ∩ Φ〉: FC-
subgroup,

(iii) η(FG ): Prime radical.

Theorem (H., 2013)

Let g 7→ g∗ be an involution on a locally finite group G, σ 6≡ with
N = ker(σ) and F an infinite field with char(F) = p 6= 2. Suppose
that the prime radical η(FG ) of FG is a nilpotent ideal and that one
of the (C) above holds.
Then U+(FG ) ∈ GI if and only if P is a finite normal subgroup
and G/P is abelian or G/P and N/P are as in the Theorem of the
regular case.
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