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Abstract

Let ~ : FG → FG denote the involution obtained as a linear extension of an
involution of G, twisted by the homomorphism σ : G → {±1}. In this survey we
gather some results concerning to the Lie properties of symmetric and skew-symmetric
elements and the corresponding group identities satisfied by the set of symmetric units,
and when these identities determine the structure of the whole group algebra FG (resp.
unit group U(FG)).

1 Introduction

Let FG denote the group algebra of the group G over the field F with char(F) 6= 2. Any
involution ∗ : G → G can be extended F-linearly to an algebra involution ∗ : FG → FG.
A natural involution on G is the so-called classical involution, which maps g ∈ G to g−1.

Let σ : G→ {±1} be a group homomorphism (called an orientation). If ∗ : G→ G is
a group involution, an oriented group involution of FG is defined by

α =
∑
g∈G

αgg 7→ α~ =
∑
g∈G

αgσ(g)g∗. (1)

Notice that, when σ is nontrivial, char(F) must be different from 2. It is clear that,
α 7→ α~ is an involution in FG if and only if gg∗ ∈ N = ker(σ) for all g ∈ G.

In the case that the involution on G is the classical involution, g 7→ g−1, the map ~
is precisely the oriented involution introduced by S. P. Novikov (1970) in the context of
K-theory, see [36].

We write FG+ = {α ∈ FG : α~ = α} and FG− = {α ∈ FG : α~ = −α} for the set
of symmetric and skew-symmetric elements of FG under ~, respectively and, let U+(FG)
denote the set of ~-symmetric units, i.e., U+(FG) = {α ∈ U(FG) : α~ = α}.

Let R be an F-algebra. Recall that a subset S of R satisfies a polynomial identity (S ∈
PI or S is PI) if there exists a nonzero polynomial f(x1, x2, .., xn) in the free associative
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F-algebra F{X} on the set countably infinite of non-commuting variables X = {x1, x2, ...}
such that f(s1, s2, ..., sn) = 0 for all si ∈ S. For instance, R is commutative if it satisfies
the polynomial identity f(x1, x2) = x1x2 − x2x1.

The conditions under which FG satisfies a polynomial identity were determined in
classical results due to Isaacs and Passman summarized in the following:

Recall that, for a prime p, a group G is called p-abelian if G′, the commutator subgroup
of G, is a finite p-group and 0-abelian means abelian.

Theorem 1.1. ([37, corollaries 3.8 and 3.10, p. 196-197]) Let F be a field of characteristic
p and G a group. Then FG satisfies a PI if and only if G has a p-abelian subgroup of
finite index.

Given an associative ring R, we define the Lie product by [x1, x2] = x1x2 − x2x1 and,
we can extended it recursively via [x1, ..., xn, xn+1] = [[x1, ..., xn], xn+1].

Let S be a subset of R. We say that S is Lie nilpotent if there exists an integer n ≥ 2
such that [a1, ..., an] = 0 for all ai ∈ S. The smallest such n is called the index of nilpotency
of S. For a positive integer n, we say that S is Lie n-Engel if

[a, b, ..., b︸ ︷︷ ︸
n times

] = 0

for all a, b ∈ S. Obviously, if S is Lie nilpotent, then it is Lie n-Engel for some n.
We will be interested in the group algebra FG and the set of symmetric (skew-

symmetric) elements FG+ (FG−); indeed, Lie nilpotent and Lie n-Engel group algebras
(special PI algebras) have been the subject of a good deal of attention. In the early 70’s,
as a consequence of Theorem 1.1, Passi, Passman and Sehgal characterized when a group
algebra is Lie nilpotent. Sehgal determined necessary and sufficient conditions for a group
algebra to be Lie n-Engel for some n. Their results are the followings.

Theorem 1.2. ([40, theorem V.4.4]) Let F be a field with char(F) = p ≥ 0, and let G be
a group. Then FG is Lie nilpotent if and only if G is nilpotent and p-abelian.

Theorem 1.3. ([40, theorem V.6.1]) Let FG be the group algebra of a group G over a field
F. If char(F) = 0, then FG is Lie n-Engel if and only if G is abelian. If char(F) = p > 0,
then FG is Lie n-Engel if and only if G is nilpotent and G has a p-abelian normal subgroup
of finite p-power index

Let R be a ring with 1R = 1 and ? an involution on R. Let us denote by R+ =
{r ∈ R : r? = r} and R− = {r ∈ R : r? = −r} the sets of symmetric and skew-symmetric
elements respectively of the ring R under the involution ?. We are going to write U(R) for
the unit group of R and U+(R) = U(R) ∩ R+ for the set of symmetric units. A question
of general interest is which properties of R+ or R− can be lifted to R. A similar question
may be posed for the set of the symmetric units or the subgroup that they generate, i.e.,
to determine the extent to which the properties of U+(R) determine either the properties
of the whole unit group U(R) or the whole ring R. After the fundamental work of Amitsur
[1, 2], and the interest in rings with involution developed from the 1970s by Herstein and
his collaborators, [24], it is natural to consider group algebras from this viewpoint.

If R is a F-algebra with involution ? such that λ? = λ, for all λ ∈ F, we may define an
involution on the free associative algebra F{X} (again X is a set countably infinite of non-
commuting variables) by setting x?2n+1 = x2n+2, for all n ≥ 0. Then, after renumbering
we get the free associative algebra with involution, F{X, ?} = F{x1, x?1, x2, x?2, ...}. Of
course, an element in this algebra is a polynomial in the variables xi and x?i , which do not
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commute. We say that 0 6= f(x1, x
?
1, ..., xn, x

?
n) ∈ F{x1, x?1, x2, x?2, ...} is a ?-polynomial

identity for a subset S of R, if f(s1, s
?
1, ..., sn, s

?
n) = 0 for all s1, s2, ..., sn ∈ S. With this

terminology in mind, the results of Amitsur can be summarized as follows.

Theorem 1.4. Let R (with or without identity) be an F-algebra with involution ?. If R
satisfies a ?-polynomial identity, then R satisfies a (in usual sense) polynomial identity.
In particular, if R+ or R− is PI, then R itself is PI.

Using the theorems 1.1 and 1.4, we get in the setting of group algebras the following
immediate theorem.

Theorem 1.5. Let F be a field with char(F) 6= 2 and G be a group. Let ~ an oriented
group involution. Then the following statements are equivalents.

(i) FG+ satisfies a PI;

(ii) FG satisfies a PI;

(iii) G has a p-abelian subgroup of finite index.

Notice that Amitsur’s result proves the existence of an ordinary polynomial identity
for the F-algebra R however, in general, does not give any information on its degree. The
reason for this failure is the following: the theorem was proved first for semi-prime rings
where, through structure theory, the degree of an identity for R is well related to that of
the given ?-identity; then the result was pushed to arbitrary rings by means of the so-
called Amitsur’s trick. In that procedure any information on the degree of the ?-identity
satisfied by R is lost. This problem was solved by Bahturin, Giambruno and Zaicev in
[3]. In fact, by using combinatorial methods pertaining to the asymptotic behaviour of a
numerical sequence attached to the algebra R, it was shown that one can relate the degree
of a ?-polynomial identity satisfied by R to the degree of a polynomial identity for R by
mean of an explicit function.

Another question in this direction is the following: if R satisfies some special kind
of ?-polynomial identity, what kind of ordinary identity can one get in Amitsur’s result?
Recalling that R− is a Lie subalgebra of R under the bracket operation [a, b] = ab− ba, it
is natural to ask if, in particular, the Lie nilpotence of R− implies the Lie nilpotence (or
some other special type of identity) of R. The best known result in this direction is due
to Zalesskii and Smirnov.

Theorem 1.6. Suppose that R = 〈R−, 1〉 as a ring and that char(R) 6= 2. If R− is Lie
nilpotent then R is Lie nilpotent.

In general 〈FG−, 1〉 6= FG. For instance, let Dk = 〈a, b : ak = b2 = (ab)2 = 1〉 be
a dihedral group, where k ≥ 3. If char(F) 6= 2, then the elements of order 1 and 2 do
not appear in the support of any skew elements of FDk. But for any i, (aib)2 = 1, hence
FD−k = F〈x〉−, which is commutative. However, Dk is not nilpotent unless it is a 2-group.
Thus, by Theorem 1.3, FDk is not Lie n-Engel.

However, from the identity 2g2 = 2+(g2−g−2)+(g−g−1)2, it follows that g2 ∈ 〈FG−, 1〉
for all g ∈ G. Thus if G is a finite group of odd order and char(F) 6= 2 then 〈FG−, 1〉 = FG.

In this short survey we shall review some results concerning the specific PI’s Lie nilpo-
tence, Lie n-Engel and commutativity (Lie properties) in the set of symmetric and skew-
symmetric elements and the corresponding group identities satisfied by the set of symme-
tric units, and when these identities determine the structure of the whole group algebra
FG or the whole group of units U(FG), respectively.
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2 Lie Identities

2.1 Classical Involution

The group algebra FG has a natural involution given by α = Σαgg 7→ α∗ = Σαgg
−1. This

involution, known as the classical involution, appears as a technical tool to obtain results
on units in a paper of G. Higman [25]. In particular, it is used there to prove that if G is a
finite abelian group, then ZG has non-trivial units unless either the orders of the elements
of G divide four, or six, in which case ZG has only trivial units.

Over the past three decades, a lot of attention has been devoted to determining if Lie
properties satisfied by FG+ or FG− under the classical involution are also satisfied by the
whole group algebra FG, (see, for instance [5, 18, 32]). In case F is a field with char(F) 6= 2
and FG is semiprime, then it follows from a result of Giambruno, Polcino Milies and Sehgal
[15] (Giambruno and Sehgal [18]) that FG+ is Lie n-Engel (resp. Lie nilpotent) if and
only if it is commutative. In [5] Broche Cristo characterized in an elegant manner when
for an arbitrary ring R and a group G the set FG+ forms a commutative ring. In order
to state the Broche Cristo’s results, a definition is required. Recall that a group G is a
Hamiltonian 2-group if G ∼= Q8 × E where Q8 = {x, y : x4 = 1, y2 = x2, xy = x−1} is the
quaternion group of order 8 and E is an elementary abelian 2-group, [39, Theorem 1.8.5].

Theorem 2.1. Let G be a group and let R be a commutative ring of characteristic different
from 2. Then RG+ is a commutative ring if and only if G is either an abelian group or a
Hamiltonian 2-group.

When char(R) = 2, Broche Cristo obtained the following result.

Theorem 2.2. Let G be a group and let R be a commutative ring with char(R) = 2. Then
RG+ is a commutative ring if and only if G is either an abelian group or the direct product
of an elementary abelian 2-group and a group H satisfying one of the following conditions:

(i) H has an abelian subgroup A of index 2 and an element b of order 4 such that
conjugation by b inverts each element of A;

(ii) H is either the direct product of the quaternion group of order 8 and the cyclic group
of order 4, or the direct product of two quaternion groups of order 8;

(iii) H is the central product of the group 〈x, y : x4 = y4 = 1, x2 = (y, x)〉 with the
quaternion group of order 8, where the non-trivial element common to the two central
factors is x2y2;

(iv) H is isomorphic to one of the groups H32 and H245, where

H32 = 〈x, y, u : x4 = y4 = 1, x2 = (y, x), y2 = u2 = (u, x), x2y2 = (u, y)〉,

y

H245 = 〈x, y, u, v : x4 = y4 = (u, v) = 1, x2 = v2 = (y, x) = (v, y),

y2 = u2 = (u, x), x2y2 = (u, y) = (v, x)〉.

The list of groups above was given by V. Bovdi, Kovács and Sehgal, in [4], answering the
question of when the set of symmetric units of a modular group ring RG is a multiplicative
group, assuming that R is a commutative ring of prime characteristic p and G is a locally
finite p-group.

Broche Cristo and Polcino Milies [8] studied necessary and sufficient conditions for
FG− to be commutative. Their characterization is the following.
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Theorem 2.3. Let R be a commutative ring with unity with char(R) 6= 2, 4 and let G be
any group. Then RG− is commutative if and only if one of the following conditions holds:

(i) G is abelian;

(ii) A = 〈g ∈ G : o(g) 6= 2〉 is a normal abelian subgroup of G;

(iii) G contains an elementary abelian 2-subgroup of index 2.

The study of Lie nilpotence of FG+ and FG− began with Giambruno and Sehgal, in
[18], where in the absence of 2-elements they proved that the Lie nilpotence of FG+ or
FG− implies the Lie nilpotence of FG. More exactly the result is the following.

Theorem 2.4. Let G be a group with no 2-elements and let F be a field with char(F) 6= 2.
Suppose that FG+ or FG− is Lie nilpotent.

(i) If char(F) = 0, then G is abelian group.

(ii) If char(F) = p > 0, then G is nilpotent and p-abelian.

Later G. Lee considered the case when FG+ has 2-elements. He obtained different
answers depending if G contains a copy of the quaternion group Q8 of order 8. The result
can be stated in the following theorem.

Theorem 2.5. Let F be a field with char(F) 6= 2 and let G be a group. If Q8 * G then
FG+ is Lie nilpotent if and only if FG is Lie nilpotent. In case Q8 ⊆ G, then FG+ is Lie
nilpotent if and only if one of the following conditions holds:

(i) p = 0 and G is a Hamiltonian 2-group;

(ii) p > 2 and G ∼= H ×P , where H is a Hamiltonian 2-group and P is a finite p-group.

Using the characterization of the Lie nilpotence of FG given by Passi, Passman and
Sehgal, Theorem 1.2 and, taking into account theorems 2.4 and 2.5, we get as an immediate
consequence that the Lie nilpotence of FG+ is equivalent to the Lie nilpotence of whole
algebra FG.

The study of the nilpotency of the set of skew-symmetric elements of group algebras
with elements of order 2 has been more complicated and took a rather long time. This
study began with Giambruno and Polcino Milies, in [14]. In that paper, Giambruno and
Polcino Milies exhibited a nontrivial example of a group G for which FG− is commutative,
so Lie nilpotent.

Lemma 2.1. Suppose that G contains an abelian subgroup A of index 2. If either A2 = 1
or (G \A)2 = 1, then [FG−,FG−] = 0.

Moreover, in case the group algebra FG is semiprime, Giambruno and Polcino Milies
proved that actually the example given in the last lemma is exhaustive of all possibilities.
The study of this Lie identity was recently completed by Giambruno and Sehgal in [19]
with the proof of the following result.

Theorem 2.6. Let FG be the group algebra of a group G over a field F with char(F) 6= 2
endowed with the classical involution. Then FG− is Lie nilpotent if and only one of the
following conditions holds:

(i) G has a nilpotent p-abelian subgroup H with (G \H)2 = 1;
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(ii) G has an elementary abelian 2-subgroup of index 2;

(iii) the p-elements of G form a finite normal subgroup P and G/P is an elementary
abelian 2-group.

We finish this section with the questions concerning to the study of Lie n-Engel pro-
perty. In [30], Lee characterized this property. Again in this case, the answer for FG+

depends on the fact that G contains or not a copy of the quaternion group or not. More
exactly the results can be given in the following theorem.

Theorem 2.7. Let F be a field with char(F) 6= 2 and let G be a group. If Q8 * G then
FG+ is Lie n-Engel for some n if and only if FG is Lie m-Engel for some m. In case
Q8 ⊆ G, then FG+ is Lie n-Engel if and only if one of the following conditions holds:

(i) p = 0 and G is a Hamiltonian 2-group;

(ii) p > 2 and G ∼= H × P , where H is a Hamiltonian 2-group and P is a nilpotent
p-group of bounded exponent containing a normal subgroup A of finite index such
that A′ is also finite.

In the case of the set FG−, in the same paper [30], Lee deals with groups without
2-elements and his answer is similar to that one from Giambruno and Sehgal with respect
to Lie nilpotence property, see Theorem 2.4.

Theorem 2.8. Let FG be the group algebra of a group G with no 2-elements over a field
F of characteristic different from 2 endowed with the classical involution. Then FG− is
Lie n-Engel for some n, if and only if FG is Lie m-Engel, for some m.

2.2 Group Involution

Recently, there has been a considerable amount of work on involutions of FG other than the
classical involution. Let ∗ : G→ G be a function satisfying (gh)∗ = h∗g∗ and (g∗)∗ = g for
all g, h ∈ G. Extending it F-linearly, we obtain an involution on FG, the so-called induced
involution (obviously, the classical involution is the one induced from g 7→ g−1 on G). In
particular, Jespers and Ruiz Maŕın in [28] gave a characterization for the commutativity
of the set of symmetric elements FG+ = {α ∈ FG : α∗ = α} with respect to the induced
involution ∗.

In order to state the result due to Jespers and Ruiz Maŕın, we need some definitions.
Let ζ(G) = ζ denote the center of the group G. We recall that an LC-group (short for
“limited commutativity”) is a nonabelian group G such that if g, h ∈ G satisfy gh = hg,
then at least one element of {g, h, gh} must be central. These groups were introduced by
Goodaire. By Goodaire et al. [23, Proposition III.3.6], a group G is an LC-group with
a unique nonidentity commutator s (obviously it has order 2) if and only if G/ζ(G) ∼=
C2 × C2. If G has an involution ∗, then we say that G is an special LC-group, or SLC-
group, if it is an LC-group, it has an unique nonidentity commutator s, and for all g ∈ G
we have g∗ = g if g ∈ ζ(G) and, otherwise, g∗ = sg. It is easy to see that if ∗ is the
classical involution, the SLC-groups are precisely the Hamiltonian 2-groups. The result
proved by Jespers and Ruiz Maŕın is the following.

Theorem 2.9. Let R be a commutative ring with char(R) 6= 2, G a non-abelian group with
an involution ∗ which is extended R-linearly to RG. Then the following are equivalent:

(i) RG+ is commutative;
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(ii) RG+ = ζ(RG),

(iii) G is an SLC-group.

Notice that if ∗ is the classical involution on G, we obtain the characterization of Broche
Cristo, Theorem 2.1, when RG+ form a ring or equivalently when RG+ is commutative.

The Theorem by Jespers and Ruiz Maŕın is particularly helpful in combination with
the following results due to Giambruno, Polcino Milies and Sehgal in [15] (the proof for
R− is essentially identical), in their study about the conditions under which FG+ is Lie
nilpotent and Lie n-Engel.

Lemma 2.2. (i) [15, Lemma 2.4] Let R be a semiprime ring with involution such that
2R = R. If R+ (resp. R−) is Lie n-Engel, then, [R+, R+] = 0 (resp. [R−, R−] = 0)
and R satisfies St4 the standard identity on 4 noncommuting variables.

(ii) [15, Proposition 3.2] Suppose that char(F) = p > 2, and FG+ is Lie n-Engel. Then
the p-elements of G form a (normal) subgroup of G.

We recall that a ring is said to be semiprime if it has no nonzero nilpotent ideals. The
semiprime group algebras were classified in a classical result due to Passman. Let CG(g)
be the centralizer of g in G. Denote by Φ(G) = {g ∈ G : [G : CG(g)] <∞} the FC centre
of G and by Φp(G) = 〈P ∩ Φ(G)〉 the subgroup generated by the p-elements in Φ(G).

Lemma 2.3. [37, theorems 4.2.12 and 4.2.13, p. 130-131] Let G be any group. If F is a
field of characteristic zero, then FG is semiprime. If char(F) = p > 0, then the following
statements are equivalent:

(i) FG is semiprime;

(ii) G has no finite normal subgroups with order divisible by p; and

(iii) Φp(G) = 1.

Notice that by the last lemma, every group algebra FG with char(F) = 0 is semiprime.
Thus, Lemma 2.2 solves this case completely, i.e., it completely determines when FG+

is Lie n-Engel or Lie nilpotent. By Lemma 2.2(ii) if char(F) = p > 2 the set P of the
p-elements of G is a normal subgroup. Also, P is ∗-invariant. Thus, if FG+ is Lie n-
Engel, then so is F (G/P )+. Since G/P has no p-elements, by Lemma 2.2(i), F(G/P )+ is
commutative and therefore by result of Jespers and Ruiz Maŕın, G/P is either abelian or
an LC-group with a unique nonidentity commutator.

In [15], Giambruno, Polcino Milies and Sehgal extended the results of the theorems
2.5 and 2.7 in this setting, i.e., they showed that in absence of 2-elements if FG+ is Lie
n-Engel for some n (resp. Lie nilpotent), then FG is Lie m-Engel for some (resp. Lie
nilpotent). This work was completed by Lee, Sehgal and Spinelli in [33]. The results are
the following.

Theorem 2.10. [33, theorems 1 and 2] Let G be a group with an involution ∗, F a field
with char(F) = p > 2. Suppose that FG is not Lie nilpotent (resp. m-Engel for any m).
Then the following conditions holds:

(i) FG+ is Lie nilpotent if and only if G is nilpotent, and G has a finite normal ∗-
invariant p-subgroup N such that G/N is an SLC-group.

(ii) FG+ is Lie n-Engel if and only if G is nilpotent, G has a p-abelian ∗-invariant
normal subgroup A of finite index, and G has a normal ∗-invariant p-subgroup N of
bounded exponent such that G/N is an SLC-group.
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The skew-symmetric elements of FG under group involutions also have been considered.
In [6], Broche Cristo et al. established the conditions under which FG− is commutative.
Let R2 = {r ∈ R : 2r = 0} and G+ = {g ∈ G : g∗ = g} the subset of ∗-symmetric elements
of G. The complete answer is the following.

Theorem 2.11. Let R be a commutative ring. Suppose G is a non-abelian group and
∗ is an involution on G. Then, RG− is commutative if and only if one of the following
conditions holds:

(i) K = 〈g ∈ G : g /∈ G+〉 is abelian (and thus K ∪Kx, where x ∈ G+, and k∗ = xkx−1

for all k ∈ K) and R2
2 = {0}.

(ii) R2 = {0} and G contains an abelian subgroup of index 2 that is contained in G+.

(iii) char(R) = 4, |G′| = 2, G/G′ = (G/G′)+, g2 ∈ G∗ for all g ∈ G, and G+ is
commutative in case R2

2 6= {0}.

(iv) char(R) = 3, |G′| = 3, G/G′ = (G/G′)+, g3 ∈ G∗ for all g ∈ G.

Just like in the case of the classical involution, work on group algebras whose skew-
symmetric elements satisfy a certain Lie identity is rather complicated. Suppose that
G is a torsion group with no elements of order 2 and FG is a semiprime. If FG− is
Lie nilpotent (Lie n-Engel for some n), then FG− is commutative by Lemma 2.2(i) and
therefore, by Theorem 2.11 (Broche Cristo et al.) either G is abelian or one of the above
four conditions holds. If (i) is satisfied, then [G : K] ≤ 2 (see [6, Theorem 2.5]) hence
the absence of elements of order 2 rules out (i) and (ii). Obviously, (iii) is not possible.
Finally, also (iv) is not possible as FG is semiprime. In conclusion if FG− is Lie nilpotent,
then G is abelian.

Giambruno, Polcino Milies and Sehgal in [17] classified the torsion groups G with no
2-elements for which FG− is Lie nilpotent. The main result in that work is the following.

Theorem 2.12. Let F be a field with char(F) = p 6= 2 and G a torsion group with no
elements of order 2. Let ∗ be an involution on FG induced by an involution of G. Then
FG− is Lie nilpotent if and only if FG is Lie nilpotent or p > 2 and the following conditions
hold:

(i) the set P of p-elements in G is a subgroup;

(ii) ∗ is trivial on G/P ;

(iii) there exist normal ∗-invariant subgroups A and B with B ≤ A such that B is a finite
central p-subgroup of G A/B is central in G/B with both G/A and {a ∈ A : aa∗ ∈ B}
is finite.

Recently Catino et al. in [11] classified the torsion groups G with no 2-elements such
that FG− is Lie n-Engel for some n. Their main result is the following.

Theorem 2.13. Let F be a field with char(F) = p 6= 2 and G a torsion group with no
elements of order 2. Let ∗ be an involution on G, and extended it F-linearly to FG. Then
FG− is Lie n-Engel for some n if and only if either

(i) FG is Lie m-Engel for some m;

(ii) p > 2, G has a p-abelian normal subgroup of finite index and G has a normal ∗-
invariant p-subgroup N of bounded exponent such that the induced involution on
G/N is trivial.
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2.3 Oriented Involutions

Given both a nontrivial homomorphism σ : G → {±1} (called an orientation homomor-
phism) and an involution ∗ : G→ G with gg∗ ∈ N = Ker(σ), we obtain an involution ~
on FG via (

∑
g∈G αgg)~ =

∑
g∈G αgσ(g)g∗. In the case that the involution on G is the

classical involution, g 7→ g−1, the map ~ is precisely the oriented involution introduced
by Novikov in the context of K-theory [36].

Recently, Castillo and Polcino Milies [10] studied the Lie nilpotence and the Lie n-Engel
properties in the sets FG+ and FG− under an oriented classical involution, obtaining
similar results to those ones in the case of the classical involution but interesting new
situations arise.

In the study of Lie nilpotence and Lie n-Engel properties in FG+ under the classical
involution (theorems 2.5 and 2.7) it was important to study the case when G = Q8. The
next lemma shows that FQ+

8 is Lie n-Engel (Lie nilpotent) only when the orientation σ is
trivial.

Lemma 2.4. ([10, Lemma 2.3]) Let FG a group algebra with char(F) 6= 2 and G a group
such that Q8 ⊆ G. Let σ a nontrivial orientation of G. If FG+ is Lie n-Engel for some
n, then Q8 ⊆ N .

In the same paper Castillo and Polcino Milies proved that if G does not contain 2-
elements and F is a field of characteristic p 6= 2, then the ~-symmetric elements of FG are
Lie nilpotent (Lie n-Engel for some n) if and only if FG is Lie nilpotent (Lie m-Engel for
some m).

If N denotes the kernel of σ, then N is a subgroup in G of index 2. It is clear that
the involution ~ coincides on the subalgebra FN with the algebra involution ∗. Also, we
have that the symmetric elements in G, under ~, are the symmetric elements in N under
∗. If we denote the set of symmetric elements in G, under ∗, by G+, then we can write
N+ = N ∩G+. Thus, if FG+ or FG− satisfies a Lie identity, then also FN satisfies a Lie
identity.

If FG+ is Lie n-Engel (Lie nilpotent) under the oriented classical involution with
Q8 ⊆ G, then using Lee’s results (theorems 2.5 and 2.7), Castillo and Polcino Milies
obtained the following characterizations.

Theorem 2.14. Let F be a field of characteristic p 6= 2, G a group with a nontrivial
orientation σ and x, y elements of G such that 〈x, y〉 ∼= Q8.

1. [10, Theorem 4.1] Then FG+ is Lie n-Engel, for some n ≥ 0 if and only if either

(i) char(F) = 0, N ∼= Q8 × E and G ∼= 〈Q8, g〉 × E, where E2 = 1, and g ∈ G \N
is such that (g, x) = (g, y) = 1 and g2 = x2; or,

(ii) char(F) = p > 2, N ∼= Q8 × E × P where P is a nilpotent p-group of bounded
exponent containing a normal p-abelian subgroup A of finite index and there
exists g ∈ G \N such that G ∼= 〈Q8, g〉 ×E × P , (g, x) = (g, y) = (g, t) = 1 for
all t ∈ P and g2 = x2.

2. [10, Theorem 4.2] FG+ is Lie nilpotent if and only if either

(i) char(F) = 0, N ∼= Q8 × E and G ∼= 〈Q8, g〉 × E, where E2 = 1 and g ∈ G \N
is such that (g, x) = (g, y) = 1 and g2 = x2; or,

(ii) char(F) = p > 2, N ∼= Q8 × E × P , where E2 = 1, P is a finite p-group and
there exists g ∈ G \N such that G ∼= 〈Q8, g〉 × E × P , (g, x) = (g, y) = 1 and
g2 = x2.
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G.T. Lee pointed out in [32, p. 86] that results regarding Lie properties of skew-
symmetric elements under the classical involution, obtained for groups with no elements
of order 2, cannot be extended to groups not containing quaternions. Similar difficulties
arise in the present context, [10, p. 4417].

Let Dk =
〈
x, y : xk = 1, y2 = 1, (xy)2 = 1

〉
be the dihedral group of order 2k. It is

possible to show that the only orientation σ such that FD+
k is Lie nilpotent is given by

σ(x) = 1 and σ(y) = −1. In this case N = ker(σ) = 〈x〉, G \N = {xiy : 0 ≤ i ≤ k − 1},
(G\N)2 = 1 and thus FD+

k is commutative but FDk is not Lie nilpotent when char(F) 6= 2.
Finally Castillo and Polcino Milies presented results in the case when G contains no

subgroup isomorphic to Q8 and the group algebra FG is semiprime. Their results are
following.

Theorem 2.15. [10, theorems 5.1 and 5.2] Let F be a field of characteristic p 6= 2 and
G a group such that Q8 6⊆ G with a nontrivial orientation σ. Suppose that g2 6= 1 for all
g ∈ G \N . Then FG+ is Lie n-Engel (resp. Lie nilpotent), for some n, if and only if FG
is Lie m-Engel for some m (resp. Lie nilpotent).

Remark 1. Suppose that (G \N)2 = 1 in the last theorem. Then, FG+ is Lie nilpotent
if and only if FN+ is Lie nilpotent.

Proposition 2.1. [10, Proposition 5.1] Let F be a field of characteristic different from 2
and G a group such that FG is semiprime and Q8 6⊆ G. Then FG+ is Lie n-Engel for
some n if and only if one of the followings holds:

(i) G is abelian;

(ii) N = Ker(σ) is abelian and (G \N)2 = 1.

In [7], Broche Cristo and Polcino Milies characterized when the set RG+ under the
oriented group involution given by expression (1) is commutative, where R is a commu-
tative ring with 1R and G is a group. Notice that if RG+ is commutative, then RN+

is commutative and by Theorem 2.9, the structure of N and the action of ∗ on N are
known. Regardless this it is not an easy task to describe G and the action of ∗ on G.
Their characterization is the following.

Theorem 2.16. [7, theorems 2.2 and 2.3] Let R be a commutative ring with 1R and let
G be a non-abelian group with involution ∗ and non-trivial orientation homomorphism σ.
Then

1. RG+ is commutative if and only if one of the following conditions holds:

(i) N is an abelian group and (G \N) ⊂ G+;

(ii) G and N have the LC-property, and there exists a unique nontrivial commutator
s such that the involution ∗ is given by

g∗ =

{
g, if g ∈ N ∩ ζ(G) or g ∈ (G \N) \ ζ(G);

sg, otherwise.

(iii) char(R) = 4, G has the LC-property, and there exists a unique nontrivial com-
mutator s such that the involution ∗ is the canonical involution, i.e., ∗ is given
by

g∗ =

{
g, if g ∈ ζ(G);

sg, otherwise.
(2)
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2. If ∗ is the classical involution, g∗ = g−1, then RG+ is commutative if and only if
one of the following conditions holds:

(i) N is an abelian group and (G \N)2 = 1;

(ii) N = ker(σ) ∼= 〈x, y : x4 = 1, x2 = y2, y−1xy = x−1〉 × E and

G ∼= 〈x, y, g : x4 = 1, x2 = y2 = g2, xy = x−1, xg = x, yg = y〉 × E,

where E is an elementary abelian 2-group;

(iii) char(R) = 4 and G is a Hamiltonian 2-group.

A ring R with involution a 7→ a? is said to be normal if aa? = a?a, for all a ∈ R. In
[24, p. 97] Herstein studied this special class of rings with involution.

Holgúın-Villa in his PhD thesis [26, cap. 2] characterized group algebras FG which
are normal in regard to a group involution ∗. The results depend on whether G is abelian
or an SLC-group. Using this characterization, in the same work an complete answer of
when FG is a normal group algebra with respect to the oriented group involution ~, is
obtained. The characterizations are following.

Theorem 2.17. Let g 7→ g∗ denote an involution on a group G and let σ : G → {±1}
be a nontrivial homomorphism with N = ker(σ). Let FG denote the group algebra of the
group G over the field F with char(F) 6= 2. Then we have the following.

1. [26, Teorema 2.3.1] FG is a normal group algebra with respect to the group involution
∗ if and only if G is either an abelian group or an SLC-group.

2. [26, Teorema 2.4.1] FG is a normal group algebra in regard to the oriented group
involution ~ given by (1) if and only if either G is an abelian group or one of the
following conditions holds:

(i) N = ker(σ) is an abelian group and, we have that x∗ = x for x ∈ G \ N ,
n∗ = a−1na for all n ∈ N and for all a ∈ G \N ;

(ii) G and N have the LC-property and there exists a central element g0 ∈ G such
that G = N ∪ Ng0 = N ∪ g0N , g∗0 = sg0 and the involution ∗ on N is the
canonical involution given by (2).

Currently, Castillo and Holgúın-Villa are investigating [9, In preparation] which prop-
erties of Lie known for any involution ∗ defined on a group G and for the oriented classical
involution, may be generalized to oriented group involutions, with some results already
obtained.

Let ζ = ζ(G) denote the center of group G. In [18, Corollary] it was proved that if ∗ is
the classical involution and ζ2 is infinite, and if FG+ or FG− is Lie nilpotent of index n,
then also FG is Lie nilpotent of index n. Also in [10, Proposition 2.1] Castillo and Polcino
Milies obtained a similar result for oriented classical involutions. We adapted the proof of
these results, to our situation.

Theorem 2.18. Let G be a group such that ζ̃(G) =
{
z−1z∗ : z ∈ ζ(G)

}
is infinite. Then,

FG− or FG+ is Lie nilpotent of index n if and only if FG is Lie nilpotent of index n.

In the case in which G is a group with no 2-elements such that FG is semiprime, we
have the following result.
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Theorem 2.19. Let F be a field of char(F) 6= 2 and let G be a group without elements of
order 2 such that FG is semiprime. If FG+ is Lie n-Engel for some n. Then, G is abelian
or N = ker(σ) is abelian and (G \N) ⊆ G+. Moreover, FG is a normal group algebra.

From last theorem, the main result in [7], Theorem 2.16(1), and the Theorem 2.17(2)
we get immediately.

Corollary 2.1. Let F be a field of char(F) 6= 2 and let G be a group without elements of
order 2 such that FG is semiprime. Then, the following conditions are equivalent:

(i) FG+ is Lie n-Engel for some n (resp. Lie nilpotent);

(ii) FG+ is commutative;

(iii) FG is a normal group algebra.

In [15, Lemma 2.8] it was proved that if σ ≡ 1 on G and ∗ is any involution on the
group G and, if FG+ (char(F) > 2) is Lie n-Engel for some n, then for every symmetric
element g ∈ G, gp

m
is central, for some m > 0. If we consider the oriented group involution

~, the result is the following.

Lemma 2.5. Let F be a field with char(F) = p > 2. Suppose that FG+ is Lie n-Engel. If
g ∈ N+, then gp

m
is central for some m.

We highlight that some previous results from [15], can not be extended with a nontrivial
σ.

Let G = D6 =
〈
x, y : x6 = 1 = y2, (xy)2 = 1

〉
be the dihedral group of order 12. It

is easy to see that ζ(D6) = {1, x3}. Let F a field with char(F) = 3, ∗ the classical
involution with σ(x) = 1 and σ(y) = −1. As an F-module FD+

6 is generated by the set
{1, x3} ∪ {x+ x5, x2 + x6} and thus FD+

6 is commutative. In this case, D′6 = {1, x2, x4}.
Therefore, D6/ζ(D6) ∼= D3. Since ζ(D3) = {1}, it follows that D6 is not nilpotent.

In general, we have the following.

Theorem 2.20. Let G be a finite group of even order. Assumme that G/P is abelian.
If (FG)+ is Lie n-Engel, then N is nilpotent. Moreover, if ζ(G) = 1, then G ∼= P o{
g ∈ G : σ(g) = 1 e g2 = 1

}
.

Remark 2. If g ∈ G is a torsion element of order odd, then σ(g) = 1. Hence, if G is
a finite group of odd order then σ(g) = 1 for all g ∈ G, i.e., σ is trivial on G. Thus, if
char(F) = p > 2 and FG+ is Lie n-Engel, then FG is Lie nilpotent (the same result in
[15, Theorem 2.12]).

For a given prime p, an element x ∈ G will be a called a p-element if its order is a
power of p. Let P = {x ∈ G : o(x) = pk for some k} be the set of the p-elements. Using
the Theorem 2.19 and [15, Proposition 3.2], we have the following.

Theorem 2.21. Let G be a torsion group without elements of order 2 and F a field of
char(F) = p > 2. If FG+ is Lie n-Engel, then P is a subgroup. Moreover, G/P is abelian
or N/P is abelian and (G \N)/P ⊆ (G/P )+.

Let F be a field with char(F) 6= 2 and let G be a group without elements of order
2. Suppose that FG+ is Lie n-Engel. Then FN+ also is Lie n-Engel and by Amitsur’s
theorem, Theorem 1.4, FN is PI. It then follows from a theorem of Passman [37, p. 196],
Theorem 1.1, that N has a normal p-abelian subgroup A of finite index. We can assume
A is ∗- invariant by replacing it by A ∩A∗; i.e., we have the following.

Theorem 2.22. If FG+ is Lie n-Engel (Lie nilpotent), then there exists a normal p-
abelian subgroup A of finite index of G, which is ∗-invariant and A ⊆ N .
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3 Group Identities

In this section we shall review some results concerning to group identities in the set of
symmetric units U+(FG), and when these properties (identities) can be lifted to U(FG) or
force FG to satisfy a PI. A motivation for this study is the classical theorem of Amitsur,
Theorem 1.4.

Let 〈x1, x2, ...〉 be the free group on a countable set of generators. A group H sa-
tisfies a group identity (H ∈ GI or H is GI) if there exists a non-trivial reduced word
ω(x1, x2, ..., xn) ∈ 〈x1, x2, ...〉 such that ω(h1, h2, ..., hn) = 1 for all hi ∈ H. For instance,
if we write (x1, x2) = x−11 x−12 x1x2 and (x1, x2, ..., xn, xn+1) = ((x1, x2, ..., xn), xn+1), for
all n ≥ 2, then H is abelian if it satisifies the group identity (x1, x2) and nilpotent if it
satisfies (x1, x2, ..., xn), for some n.

Some time ago and with idea of to establish a connection between the additive and
multiplicative structure of a group algebra FG, Brian Hartley made the following famous
conjecture:

Conjecture 3.1. (Hartley’s Conjecture, 1980) Let G be a torsion group and F a field.
If the unit group U(FG) of FG satisfies a group identity, then FG satisfies a polynomial
identity.

Giambruno, Jespers and Valenti [13] solved the conjecture for semiprime group rings,
and Giambruno, Sehgal and Valenti [20] solved it in general for group algebras over infinite
fields. By using the results of [20], Passman [38] gave necessary and sufficient conditions
for U(FG) to satisfy a group identity, when F infinite. Subsequently, Liu [34] confirmed
the conjecture for finite fields and Liu and Passman in [35] extended the results of [38]
to this case. The same question for groups with elements of infinite order was studied by
Giambruno, Sehgal and Valenti in [22]. For further details about these results, see G. T.
Lee [32, Chapter 1].

Let ∗ be an involution of a group G extended linearly to FG. Then we have the
analogue of Hartley’s Conjecture, [41, p. 77].

Conjecture 3.2. Let G be a torsion group and F a field. If the set U+(FG) of symmetric
units satisfies a group identity, then FG satisfies a polynomial identity.

In general, group identities on U+(FG) do not force group identities on U(FG). In
fact, it is easy to see that ζ(Q8) = Q′8 = {1, x2} and thus the quaternion group Q8 is
an SLC-group with a unique nonidentity commutator s = x2. Then by Jespers and Ruiz
Maŕın’s result, Theorem 2.9, for any field F with char(F) = p > 2, FQ+

8 is commutative,
hence U+(FQ8) is GI. However if F is a infinity field and G is a torsion group, then by a
theorem of Passman [38], the following are equivalent:

1. U(FG) is GI;

2. U(FG) satisfies the group identity (x, y)p
r

= 1, for some r ≥ 0;

3. G has a normal p-abelian subgroup of finite index and G′ is a p-group of bounded
exponent.

It follows that in this case, U(FG) does not satisfy a GI.
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3.1 Classical Involution

Giambruno, Sehgal and Valenti [21] showed that if G is a torsion group, F is infinite with
char(F) 6= 2, and U+(FG) satisfies a group identity then FG is PI. They also classified
groups such that U+(FG) is GI, in the case of the classical involution. Their result is the
following.

Theorem 3.1. Let FG be the group algebra of a torsion group G over an infinite field F
with char(F) 6= 2, endowed with the classical involution.

1. If car(F) = 0, U+(FG) satisfies a group identity if and only if G is either abelian or
a Hamiltonian 2-group.

2. If char(F) = p > 2, then U+(FG) satisfies a group identity if and only if FG satisfies
a polynomial identity and either Q8 * G and G′ is of bounded exponent pk for some
k ≥ 0 or Q8 ⊆ G and

(i) the p-elements of G form a (normal) subgroup P of G and G/P is a Hamiltonian
2-group;

(ii) G is of bounded exponent 4ps for some s ≥ 0.

The last result was extended to non-torsion groups, see [41, Theorem 10], under the
usual restriction for the only if part related to Kaplansky’s Conjecture (the units of FG
are trvial if G is a torsion-free group and F is a field). The following result goes in the
direction of the Hartley’s Conjecture and Theorem 3.1.

Theorem 3.2. Let FG be the group algebra of a group G with an element of infinite
order over an infinite field F of characteristic different from 2 endowed with the classical
involution. If U+(FG) satisfies a group identity, then the set P of p-elements of G forms
a normal subgroup and, if P is infinite, then FG satisfies a polynomial identity,

After of the result by Giambruno, Sehgal and Valenti [21], Theorem 3.1, it was of
interest to consider when U+(FG) satisfies special group identities. As the symmetric
units do not, in general, form a group, let us state that we mean specifically that U+(FG)
satisfies a group identity of the form (x1, x2, ..., xn) = 1 for some n ≥ 2.

Definition 3.1. Let H be any group and S a subset of H. If S satisfies (x1, x2, ..., xn) = 1,
then so does 〈S〉.

In [5] Broche Cristo showed that if G is a torsion group and R is a commutative ring
of odd prime characteristic, then RG+ is a commutative ring if and only if U+(RG) is an
abelian group. The same result holds if R is a field of prime characteristic p and G is a
locally finite p-group (Bovdi, et al., [4]), or if R is a G-favorable domain and G is a torsion
group (Bovdi, 2001, see [28, p. 728]).

Recall that the ring R is said to be G-favorable if for any g ∈ G of finite order o(g)

there is a nonzero αg ∈ R such that 1− αo(g)
g is invertible in R. Notice that every infinite

field is obviously G-favorable.
In [31, theorems 1 and 2] G. T. Lee determined the conditions in terms of the group

G under which U+(FG) is nilpotent. These conditions dependent on whether or not Q8

is contained in G. The results are the following.

Theorem 3.3. [31, theorems 1 and 2] Let F be a field of characteristic p 6= 2 and G a
torsion group.
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1. Suppose that Q8 * G. Then the following are equivalent:

(i) U+(FG);

(ii) U(FG); and,

(iii) G is nilpotent and p-abelian.

2. Suppose that Q8 ⊆ G. Then U+(FG) is nilpotent if and only if either

(i) p = 0 and G ∼= Q8 × E, where E is an elementary abelian 2-group;

(ii) p > 2 and G ∼= Q8 × E × P , where E is an elementary abelian 2-group and P
is a finite p-group.

Suppose F has characteristic zero. If U+(FG) is nilpotent, then by Giambruno et al.
[21, Theorem 7], Theorem 3.1, G is abelian or a Hamiltonian 2-group, i.e., G ∼= Q8 × E,
where E2 = 1. Conversely, if G is abelian or a Hamiltonian 2-group, then the symmetric
elements in FG commute, and thus the characteristic zero case is done.

Comparing the last theorem with Theorem 2.5, it is clear the following result.

Corollary 3.1. Let FG be the group algebra of a torsion group G over a field F of charac-
teristic different from 2 endowed with the classical involution. Then U+(FG) is nilpotent
if and only if FG+ is Lie nilpotent.

In 2007 Lee, Polcino Milies and Sehgal studied the non-torsion case, see [32, Section
4.6].

3.2 Group Involution

The result proved by Jespers and Ruiz Maŕın, Theorem 2.9, was crucial for the classifi-
cation of torsion group algebras endowed with an involution induced from an arbitrary
involution on G with symmetric units satisfying a group identity. The question was origi-
nally studied by Dooms and Ruiz [12, Theorem 3.1]. They proved the following.

Theorem 3.4. Let F be an infinite field with char(F) 6= 2 and let G be a non-abelian
group such that FG is regular. Let ∗ be an involution on G. Suppose one of the following
conditions holds:

1. F is uncountable,

2. All finite non-abelian subgroups of G which are ∗-invariant have no simple compo-
nents in their group algebra over F that are non-commutative division algebras other
than quaternion algebras.

Then U+(FG) is GI if and only if G is an SLC-group with canonical involution. More-
over, in this case FG+ is a ring contained in ζ(FG).

Using the last result and under some assumptions, Dooms and Ruiz proved that if
U+(FG) satisfies a group identity then FG is PI, giving an affirmative answer to the
Hartley’s Conjecture in this setting. They also characterized the groups for which the
symmetric units U+(FG) satisfy a group identity, when the prime radical η(FG) of FG is
nilpotent.

Giambruno, Polcino Milies and Sehgal [16] completely characterized group algebras
of torsion groups, with group involutions such that U+(FG) is GI. Their result is the
following.
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Theorem 3.5. Let F be an infinite field of characteristic p 6= 2, G a torsion group with
an involution ∗ which is extended linearly to FG. Then we have the following:

1. If FG is semiprime then U+(FG) is GI if and only if G is abelian or an SLC-group.

2. If FG is not semiprime then U+(FG) is GI if and only if, the p-elements of G form
a (normal) subgroup P , FG is PI and one of the following holds:

(i) G/P is abelian and G′ is of bounded p-power exponent.

(ii) G/P is SLC and G contains a normal ∗-invariant p-subgroup B of bounded
exponent such that P/B is central in G/B and ∗ is trivial on P/B.

Just like in the of the classical involution case (Broche Cristo [5], Bovdi, Kovács and
Sehgal [4] and Lee Theorem 3.3 and Corollary 3.1), it is evident the link between Lie
identities satisfied by FG+ and group identities satisfied by U+(FG). In this setting,
Jespers and Ruiz Maŕın [28, Theorem 4.1] obtained the following answer with respect to
the commutativity of the symmetric units.

Theorem 3.6. Let G be a torsion group and let R be a G-favorable integral domain. Then
U+(FG) is an abelian group if and only if FG+ is a commutative ring.

Lee, Sehgal and Spinelli [34] using the Theorem 3.5 confirm this link, finding necessary
and sufficient conditions so that U+(FG) is nilpotent by proving the following.

Theorem 3.7. Let F be an infinite field of characteristic different from 2, G a torsion
group with an involution ∗ and let FG have the induced involution. Then U+(FG) is
nilpotent if and only if FG+ is Lie nilpotent.

3.3 Oriented Group Involutions

Holgúın-Villa [27] extended the results obtained by Dooms and Ruiz [12] to the case of
the oriented group involution ~ given by the expression (1).

Recall that a ring R with identity is said to be (von Neumann) regular if for any x ∈ R
there exists an y ∈ R such that xyx = x. Villamayor [42] showed that the group algebra
FG is regular if and only if G is locally finite and has no elements of order p. Note that
in this case FG is semiprime.

In [27, Theorem 3.1] Holgúın-Villa classified the groups with a regular group algebra
over an infinite field F with char(F) 6= 2 for which the symmetric units satisfy a GI. The
characterization is the following.

Theorem 3.8. Let F be an infinite field with char(F) 6= 2 and let G be a non-abelian group
such that FG is regular. Let σ : G → {±1} be a nontrivial orientation and an involution
∗ on G. Suppose one of the following conditions holds:

1. F is uncountable,

2. All finite non-abelian subgroups of G which are ∗-invariant have no simple compo-
nents in their group algebra over F that are non-commutative division algebras other
than quaternion algebras.

Then U+(FG) ∈ GI if and only if one of the following conditions holds:

(i) N = ker(σ) is an abelian group and (G \N) ⊂ G+;
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(ii) G and N have the LC-property, and there exists a unique nontrivial commutator s
such that the involution ∗ is given by

g∗ =

{
g, if g ∈ N ∩ ζ(G) or g ∈ (G \N) \ ζ(G);

sg, otherwise.

Consequently, U+(FG) ∈ GI if and only if U+(FG) is an abelian group.

To handle group algebras which are not necessarily regular [27, Theorem 3.2], we need
some extra lemmas, [27, Lemmas 3.5 and 3.6].

Finally in the case when the prime radical η(FG) of FG is nilpotent we characterize
the groups for which the symmetric units U+(FG) do satisfy a group identity.

Theorem 3.9. Let g 7→ g∗ be an involution on a locally finite group G, σ : G → {±1} a
nontrivial orientation and F an infinite field with char(F) = p 6= 2. Suppose that the prime
radical η(FG) of FG is a nilpotent ideal and that one of the following conditions holds:

1. F is uncountable,

2. All finite non-abelian subgroups of G/P which are ∗-invariant have no simple com-
ponents in their group algebra over F that are non-commutative division algebras
other than quaternion algebras.

Then U+(FG) ∈ GI if and only if P is a finite normal subgroup and G/P is abelian or
G/P and N/P are as in the Theorem 3.8.

Suppose R is a G-favorable integral domain and g ∈ G of finite order o(g). Then,

there exists αg ∈ R such that (1 − αo(g)
g ) is invertible in R. Jespers and Ruiz Maŕın [28]

showed that (g − αg)(g∗ − αg) is a symmetric unit in the context of the group involution.
This idea was generalized by Broche and Polcino Milies in [7, Theorem 3.1] for oriented
involutions. Moreover, in the same theorem they showed the following.

Theorem 3.10. Let G be a torsion group, R be a G-favorable integral domain and ~ an
oriented group involution. Then, U+(RG) is commutative if and only if RG+ is commu-
tative.

Remark 3. There are other Lie identities on symmetric elements that allow us to discuss
the corresponding group identities on the symmetric units. We do not review these works
in the present survey. The results show how, in some sense, polynomial identities satisfied
by FG+ reflect group identities satisfied by U+(FG) and the latter ones can be lifted to the
whole unit group of FG. For more details we refer the reader to [41, theorems 31, 32 and
33] and [32].
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