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Introduction

Let FG denote the group algebra of the groupG over the field F with
char(F) 6= 2. Any involution ∗ : G → G can be extended F-linearly to
an algebra involution ∗ : FG → FG. A natural involution on G is the
so-called classical involution, which maps g ∈ G to g−1.
Let σ : G → {±1} be a homomorphism. If ∗ : G → G is a group
involution, an oriented group involution of FG is defined by

α =
∑
g∈G

αgg 7→ α† =
∑
g∈G

αgσ(g)g∗.

We denote FG+ = {α ∈ FG : α† = α} and FG− = {α ∈ FG : α† = −α}
the set of symmetric and skew-symmetric elements of FG under †, re-
spectively. In this poster we present some results about group algebras
such that either FG+ or FG− are Lie nilpotent (Lie n-Engel).

In the case that the involution onG is the classical involution, g 7→ g−1,
the map † is precisely the oriented involution introduced by S. P.
Novikov (1970) in the context of K-theory (see [CP11]).
In an associative ring R, we define the Lie product via [x1, x2] =
x1x2 − x2x1 and, we can extended this recursively via

[x1, ..., xn, xn+1] = [[x1, ..., xn], xn+1].

Let S be a subset of R. We say that S is Lie nilpotent if there exists an
n ≥ 2 such that [a1, ..., an] = 0 for all ai ∈ S. The smallest such n is
called the nilpotency index of S. For a positive integer n, we say that
S is Lie n-Engel if

[a, b, ..., b︸ ︷︷ ︸
n times

] = 0

for all a, b ∈ S. Obviously if S is Lie nilpotent then it is Lie n-Engel for
some n.
Lie nilpotent (Lie n-Engel) group algebras have been the subject of a
good deal of attention; indeed, it is interesting to know the extent to
which the Lie properties of the symmetric (or skew-symmetric) ele-
ments determine the Lie properties of the whole group algebra.

• Began with Giambruno and Sehgal, in [GS93], under classical invo-
lution.
•G. Lee (see [L10, Section 3.3]).
•G. Lee also advanced in the knowledge of the Lie n-Engel property

in FG+, [L10, Sections 3.1 and 3.2].
•Giambruno, Polcino Milies and Sehgal [GPS09], studied Lie proper-

ties in FG+, under group involution.
• Lee, Sehgal and Spinelli [LSS09], completed the last work.
• Recently, Castillo and Polcino Milies [CP11] have studied the Lie

nilpotence and the Lie n-Engel properties in FG+ and FG−, under
oriented classical involution.

In this poster we present some results about group algebras such that
either FG+ or FG− are Lie nilpotent (Lie n-Engel) under oriented
group involutions; in particular we study the Lie nilpotence of FG+

in the case when ζ̃(G) = {z−1z∗ : z ∈ ζ(G)} is an infinite set and, in
this case, Lie nilpotence either FG+ or FG−, is equivalent to the Lie
nilpotence of FG.

Preliminaries

Let F be a field and let G be a group with a nontrivial homomorphism
σ : G → {±1} and an involution ∗ : G → G. Since σ is nontrivial,
char(F) must be different from 2.
If N denotes the kernel of σ, then N is a subgroup in G of [G : N ] = 2.
It is clear that the involution † coincides on the subalgebra FN with
the algebra involution ∗. Also, we have that the symmetric elements
in G, under †, are the symmetric elements in N under ∗. If we denote
the set of symmetric elements in G, under ∗, by G+, then we can write
N+ = N ∩G+. It is easy to see that, as an F-module, FG+ is generated
by the set

S = N+ ∪ {g + g∗ : g ∈ N \N+} ∪ {g − g∗ : g ∈ G \N, g∗ 6= g}

and FG− is generated by

L = (G\N)∩G+∪{g+g∗ : g ∈ G\N, g∗ 6= g}∪{g−g∗ : g ∈ N, g∗ 6= g}.

In general, to classify Lie nilpotent group algebras FG, we use PI-
theory. Recall that a F-algebra A satisfies a polynomial identity (we
say that A is PI or A ∈ PI for short) if there exists a nonzero polyno-
mial f (x1, x2, .., xn) in the free associative F-algebra on noncommuting
variables x1, x2, ..., xn such that f (a1, a2, ..., an) = 0 for all {ai}ni=1 ⊆ A.
Therefore Lie nilpotent (Lie n-Engel) algebras FG are PI group alge-
bras satisfying a special identity. Group algebras satisfying a PI were
classified by Passman and Isaacs-Passman, (see [P77, Corollaries 3.8
and 3.10]).
For a given prime p, an element x ∈ G will be a called a p-element if
its order is a power of p and it is called p′-element if its order is finite

and, not divisible by p. The multiplicative commutator g−1h−1gh of
g, h ∈ G is denoted by (g, h).
We begin this section with a lemma for oriented group involutions,
which appears in Giambruno and Sehgal [GS93] for the classical in-
volution, then in Giambruno, Polcino Milies and Sehgal [GPS09] for
group involutions.
Lemma 1. Let R be a semiprime ring with involution ∗ such that 2R = R.
If R− (respectively R+) is Lie n-Engel, then, [R−, R−] = 0 (respectively
[R+, R+] = 0) and R satisfies St4 the standard identity in four noncommut-
ing variables, i.e., R satisfies

St4(x1, x2, x3, x4) =
∑
ρ∈S4

(sgnρ)xρ(1)xρ(2)xρ(3)xρ(4).

We shall assume for the rest of the subsection that † is the classical
oriented involution, i.e.,

α =
∑
g∈G

αgg 7→ α† =
∑
g∈G

αgσ(g)g−1.

Lemma 2. If FG− is Lie n-Engel, for some n, then every element of order 2
in N is central.
We make use of the following technical lemma to obtain (Corollary 1),
a known result, in a simpler way.
Lemma 3. Let g and h be elements of G with g2 6= 1 and h2 6= 1. The
following properties hold.

(i) If [g + g−1, h + h−1] = 0, then either gh = hg or (gεhη)2 = 1 for all
ε, η ∈ {−1, 1}.

(ii) If [g − g−1, h − h−1] = 0, then either gh = hg or (gεhη)2 = 1 for all
ε, η ∈ {−1, 1}.

(iii) If [g − g−1, h + h−1] = 0, then either gh ∈ {hg, h−1g} or o(g) = 4 = o(h)
and g2 = h2.

Corollary 1. Assume that char(F) = p > 2 and that FG− is Lie pm-Engel
(respectively FG+) for some m ≥ 1. Let g and h be elements of G such that
g2 6= 1 6= h2pm. If σ(g) = σ(h) = 1 (respectively σ(g) = σ(h) = −1) then(
g, hp

m)
= 1.

Lie nilpotence when |ζ̃(G)| =∞

Let ζ = ζ(G) denote the center of group G. In [GS93] it was proved
that if ∗ is the classical involution and ζ2 is infinite, and if FG+ or FG−
is Lie nilpotent of index n, then also FG is Lie nilpotent of index n.
Also in [CP11] Castillo and Polcino Milies obtened a similar result for
oriented classical involutions (Proposition 2.1). We adapted the proof
of these results, to our situation.
Lemma 4. LetG be a group such that ζ̃(G) =

{
z−1z∗ : z ∈ ζ(G)

}
is infinite.

If α ∈ FG is such that
(
σ(z)z−1z∗ − 1

)
α = 0, for all z ∈ ζ , then α = 0.

Let now F
{
x1, x

∗
1, ..., xn, x

∗
n, ...

}
be the free algebra with involution and

R an F-algebra. Then 0 6= f (x1, x
∗
1, ..., xn, x

∗
n) ∈ F

{
x1, x

∗
1, ..., xn, x

∗
n, ...

}
is called a ∗-polynomial identity for R if f (a1, a

∗
1, ..., an, a

∗
n) = 0 for all

{ai}ni=1 ⊆ R.

Theorem 1. Let G be a group such that ζ̃ is infinite. If FG satisfies a †-
polynomial identity († − P.I) of degree n, then FG satisfies a polynomial
identity of degree less than or equal to n.
Remark 1. The proof of this theorem shows that if f is a multilinear †-P.I of
degree n, then (σ(zi)z

−1
i z∗i − 1)ng vanishes in FG for all z ∈ ζ and g is the

sum of all monomials of f containing no ∗.
Corollary 2. Let G be a group such that ζ̃ is infinite. Then, FG− or FG+ is
Lie nilpotent of index n if and only if FG is Lie nilpotent of index n and, so G
is nilpotent and p-abelian.
Let σ be a nontrivial orientation from G onto U(F), where U(F) = F×
is the group of units of the field F and, we consider the oriented group
involution associated, α† = Σαgσ(g)g∗, then we have the following
generalization of the last result:
Proposition 1. Let FG denote the group algebra of the group G over the
field F with char(F) 6= 2 (or equivalently, there exists at least g ∈ G, such
that σ(g) = −1), and let † : FG → FG denote the involution defined by
α = Σαgg 7→ α† = Σαgσ(g)g∗, where σ : G → U(F) is a group homo-
morphism and ∗ is an involution of the group G. Then, FG+ or FG− is Lie
nilpotent of index n if and only if FG is Lie nilpotent of index n.

Groups without elements of order 2

Let G be a group without elements of order 2. Recall that a group G
is said to be p-abelian if G′, the commutator subgroup of G, is finite
p-group, and 0-abelian will be taken to mean abelian.
It what follows, for a normal subgroup N of G we denote by ∆(G,N)

the kernel of the natural map FG Ψ−→ F(G/N) defined by∑
g∈G

αgg 7−→
∑
g∈G

αggN

and ∆(G,G) = ∆(G) is the augmentation ideal.
Lemma 5. Let G be a group without elements of order 2 and char(F) = p.
Assume that FG+ or FG− be Lie nilpotent. If the center of G has a nontrivial
p′-element, then G is p-abelian.

In [GPS09, Lemma 2.8] it was proved that if σ ≡ 1 and ∗ is any involu-
tion on the group G and, if FG+ (char(F) > 2) is Lie n-Engel for some
n, then for every symmetric element g ∈ G, gp

m
is central, for some

m > 0. Currently, Castillo, Holguín and Polcino Milies are investigat-
ing (in preparation) which properties of Lie known for any involution
∗ defined on a group G and for the oriented classical involution, may
be generalized to oriented group involutions, with some partial results
already obtained; for instance, the oriented version of the lemma above
mentioned, i.e., if char(F) > 2 and FG+ is Lie n-Engel respect to ori-
ented group involution † and, if g ∈ N+, then gp

m
is central for some

m.

In [Her76] Herstein studied a special class of rings with involution,
called semi-normal rings.

Definition 1. A ringR with involution ∗ is said to be semi-normal if rr∗ = 0
implies r∗r = 0, for all r ∈ R.

We clearly have two immediate classes of semi-normal rings:

• rr∗ = 0 only if x = 0, in this case ∗ is called positive definite on R.

• rr∗ = r∗r for all r ∈ R. Such a ring we call normal.

In the following result we establish necessary and sufficient conditions
onG andN = ker (σ) under which the group algebra FG is normal, i.e.,
such that the †-identity αα† = α†α is satisfied.

Proposition 2. Let g 7→ g∗ denote an involution on a group G and let
σ : G→ {±1} be a nontrivial homomorphism with N = ker(σ). Let FG de-
note the group algebra of the group G over a commutative ring F with unity.
Then, FG is normal if and only if one of the following conditions holds:

(i)G is abelian;

(ii)N = ker(σ) is abelian, [G : N ] = 2 and we have that x∗ = x for x ∈ G\N ,
n∗ = a−1na for all n ∈ N and for all a ∈ G \N ;

(iii) Both N and G are SLC-groups with canonical involution.

Theorem 2. Let F be a field of char(F) 6= 2 and let G be a group without
2-elements such that FG is semiprime. If FG is Lie n-Engel for some n. Then,
G is abelian or N = ker(σ) is abelian and (G \N) ⊆ G+. Moreover, FG is a
normal group algebra.

Remark 2. Let G be a finite group of odd order. It is easy to see that the
unique orientation σ that we can define on G is the trivial. In fact, for g ∈ G
g|G| = 1, so σ(g)|G| = σ(g|G|) = σ(1) = 1. Since G is odd, we get that
σ(g) = 1. Therefore, if char(F) = p > 2 and FG+ is Lie n-Engel, then FG is
Lie nilpotent.
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