## Lie properties of symmetric elements in regard to an oriented group involution

Alexander Holguín Villa \* † IME-USP, São Paulo, Brazil XXII Brazilian Algebra Meeting Salvador-Bahia, Brazil

July 15-20, 2012

## Abstract

Let  $\mathbb{F}G$  denote the group algebra of the group G over the field  $\mathbb{F}$  with  $char(\mathbb{F}) \neq 2$ , and let  $\dagger : \mathbb{F}G \to \mathbb{F}G$  denote the involution defined by  $\alpha = \Sigma \alpha_g g \mapsto \alpha^{\dagger} = \Sigma \alpha_g \sigma(g) g^*$ , where  $\sigma : G \to \{\pm 1\}$  is a group homomorphism (called an orientation morphism) and \* is an involution of the group G.

We denote  $\mathbb{F}G^+ = \{\alpha \in \mathbb{F}G : \alpha^{\dagger} = \alpha\}$  and  $\mathbb{F}G^- = \{\alpha \in \mathbb{F}G : \alpha^{\dagger} = -\alpha\}$  the set of symmetric and skew-symmetric elements of  $\mathbb{F}G$  under  $\dagger$ .

In an associative ring R, we define the Lie product via  $[x_1, x_2] = x_1x_2 - x_2x_1$  and, we can extended this recursively via

$$[x_1,...,x_n,x_{n+1}] = [[x_1,...,x_n],x_{n+1}].$$

Let S be a subset of R. We say that S is Lie nilpotent if there exists an  $n \geq 2$  such that  $[a_1, ..., a_n] = 0$  for all  $a_i \in S$ . The smallest such n is called index of nilpotency of S. For a positive integer n, we say that S is Lie n-Engel if

$$[a, \underbrace{b, ..., b}_{n \text{ times}}] = 0$$

for all  $a, b \in S$ . Obviously if S is Lie nilpotent then it is Lie n-Engel for some n.

Lie nilpotent (Lie *n*-Engel) group algebras have been the subject of a good deal of attention; indeed, it is interesting to know the extent to which the Lie properties of the *symmetric* (or skew-symmetric) elements determine the Lie properties of the whole group algebra.

In this poster we present some results about group algebras such that either  $\mathbb{F}G^+$  or  $\mathbb{F}G^-$  are Lie nilpotent (Lie *n*-Engel). For instance we show:

Let  $\zeta(G)$  be the center of G and suppose that  $\tilde{\zeta}(G) = \{z^{-1}z^* : z \in \zeta(G)\}$  is infinite. Then,  $\mathbb{F}G^+$  or  $\mathbb{F}G^-$  is Lie nilpotent of index n if and only if  $\mathbb{F}G$  is Lie nilpotent of index n

<sup>\*</sup>The author's research (Ph.D. Student, IME-USP) has been partially supported by Capes - Brazil.

<sup>†</sup>Ph.D.'s Advisor: Professor César Polcino Milies.