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University of São Paulo - USP, Brazil
Supported by CAPES - Brazil
aholguin@ime.usp.br

Introduction

Let RG denote the group algebra of the group G over a commuta-
tive ring R with unity. The group ring RG has a natural involution
given by α = Σαgg 7→ α∗ = Σαgg

−1. This involution, known
as the classical involution, appears as a technical tool to obtain
results on units in a paper of G. Higman [Hig40]. In particular, it
is used there for prove that if G is a finite abelian group, then ZG
has non-trivial units unless either the orders of the elements of G
divide four, or six, in which case ZG has only trivial units.

Given both a nontrivial homomorphism σ : G→ {±1} (called an
orientation) and an involution ∗ : G→ G extended linearly to the
group algebra RG, an oriented involution of RG is defined by

α =
∑
g∈G

αgg 7→ α† =
∑
g∈G

αgσ(g)g∗.

Notice that, as σ is nontrivial, char(R) must be different from
2. It is clear that, α 7→ α† is an involution of RG if and only if
gg∗ ∈ N = ker(σ) = {g ∈ G : σ(g) = 1} for all g ∈ G. RG is
said to be normal if and only if αα† = α†α, for all α ∈ RG.

In the case that the involution on G is the classical involution,
g 7→ g−1, the map † is precisely the oriented involution introduced
by S. P. Novikov (1970) in the context of K-theory (see [CP11]).

Let now R
{
x1, x

∗
1, ..., xn, x

∗
n, ...

}
be the free associative al-

gebra with involution and A an R-algebra. Then 0 6=
f (x1, x

∗
1, ..., xn, x

∗
n) ∈ R

{
x1, x

∗
1, ..., xn, x

∗
n, ...

}
is called a ∗-

polynomial identity for A if f (a1, a
∗
1, ..., an, a

∗
n) = 0 for all

{ai}ni=1 ⊆ A. Equivalently, the R-algebra A is called a PI-
algebra. For instance, any commutative algebra would satisfy
x1x2 − x2x1 = 0. The expression [x1, x2] = x1x2 − x2x1 is
called the commutator of x1 and x2.

We denote A+ = {α ∈ A : α∗ = α} and A− = {α ∈ A :
α∗ = −α} the set of symmetric and skew-symmetric elements of
A under ∗, respectively. A question of general interest is to deter-
mine the extent to which the properties of A+ or A− determine
the properties of the whole algebra A. One of the most famous
and lovely results in this direction is the following theorem due to
Amitsur (see [Her76, Theorem 6.5.2]):

Theorem 1. Let R be a commutative ring with identity and A an
R-algebra with involution ∗. If A satisfies a ∗-polynomial identity,
then A satisfies a polynomial identity. In particular, if A+ or A− is
PI, then A is PI.

Of course, the polynomial identity which is satisfied by the R-
algebra A is not necessarily the same as the one which is satisfied
by the symmetric (skew-symmetric) elements.

Notice that normal group algebras RG are PI group algebras sat-
isfying the special †-identity αα† = α†α. Group algebras satisfying
a PI were classified by Passman and Isaacs-Passman, (see [P77,
Corollaries 3.8 and 3.10]).

Let ζ(G) = ζ denote the center of the group G and recall that G
is called LC -group if it is nonabelian and for every pair of elements
g, h ∈ G, we have that gh = hg if and only if either g ∈ ζ, or
h ∈ ζ, or gh ∈ ζ. A group is SLC if it is LC and has a unique
nontrivial commutator.

Using unpublished results of Felzenszwab, Giambruno, Leal and
Polcino, under group involution, we characterize group algebras RG
which are normal in regard to an oriented group involution. The
results depend on whether N is either abelian or an SLC-group.

Preliminaries

Let R be a commutative ring with unity and let G be a group
with a nontrivial homomorphism σ : G→ {±1} and an involution
∗ : G → G. If N denotes the kernel of σ, then N is a subgroup
in G of [G : N ] = 2. It is clear that the involution † coincides on
the subring RN with the ring involution ∗. Also, we have that the
symmetric elements in G, under †, are the symmetric elements in
N under ∗. If we denote the set of symmetric elements in G, under
∗, by G+, then we can write N+ = N ∩G+.

The groups G with the LC-property (“limited commutativity”)
were introduced by Goodaire and, have been described in Goodaire
et al., [GJP96, Theorem III.3.3]. Moreover, by [GJP96, Proposi-
tion III.3.6] such groups are precisely those noncommutative groups
with G/ζ(G) ∼= C2×C2, where C2 is the cyclic group of order 2.
Now, if G is SLC -group endowed with an involution ∗, then it has

a unique nonidentity commutator s and the involution ∗ is defined
by

g∗ =

{
g if g is central

sg otherwise
(1)

and we refer to this as the canonical involution on an SLC-group.
The additive commutator αβ − βα, for α, β ∈ RG, will be de-

noted by the Lie bracket [α, β] and the multiplicative commutator
g−1h−1gh of g, h ∈ G will be denoted by (g, h).

Remark 1. If G is a group with the LC-property, then for all
g ∈ G g2 = gg is central. Thus, since (g, h) = g−1h−1gh =
g−2gh−1gh−1h2 = g−2(gh−1)2h2, commutators are central in a
LC-group G.

Now, suppose that RG is a normal ring and let N = ker(σ).
Then RN is also normal, and thus, by [FGLM10], N is an abelian
group or N is an SLC -group with canonical involution.

Some lemmas

We begin with some lemmas, which are the extended version of
those established in [FGLM10].

Lemma 1. Suppose that RG is normal and let g, h ∈ G, then:
(i) If σ(g)σ(h) = 1, then either gh = hg or gh = g∗h∗.
(ii) If σ(g)σ(h) = −1, then either gh = hg or gh = (gh)∗.

Lemma 2. Suppose that RG is normal and let g ∈ G. Then one
of the following conditions holds:

(i) If either σ(g) = σ(h) = 1 or if σ(g) = −1 and σ(h) = 1, then
g2h = hg2.

(ii) If either σ(g) = 1 and σ(h) = −1 or sif σ(g) = σ(h) = −1,
then g2h = (g2h)∗.

In particular, for n,m ∈ N , (n2,m) = 1.

Lemma 3. If RG is a normal group algebra, then

N+ = N ∩G+ ⊆ ζ(G).

In particular, for all g ∈ G, gg∗ = g∗g.

Lemma 3. Let g, h ∈ G such that (g, h) 6= 1 and RG a normal
group algebra. Then one of the following conditions holds:

(i) σ(g) = σ(h) = 1, g∗ = (g, h)g, h∗ = (g, h)h, γ2(〈g, h〉) has
order 2;

(ii) σ(g) = −1 and σ(h) = 1, g∗ = g, h∗ = (g, h)h, (g2, h) = 1,
(gh)2 = (hg)2, γ2(〈g, h〉) has order 2;

(iii) σ(g) = 1 and σ(h) = −1, g∗ = (g, h)g, h∗ = h, (h2, g) = 1,
(gh)2 = (hg)2;

(iv) σ(g) = σ(h) = −1, g∗ = g, h∗ = h, (g2, h) = 1,
(h2, g) = 1, (gh)2 = (hg)2.

Main results

In [Her76] Herstein studied a special class of rings with involution,
called semi-normal rings.

Definition 1. A ring R with involution ∗ is said to be semi-normal
if rr∗ = 0 implies r∗r = 0, for all r ∈ R.

Clearly normal rings are semi-normal. The involution ∗ of the ring
R is called positive definite if r = 0 implies rr∗ = 0.

Other celebrated theorem due to Amitsur [Her76, Theorem 6.5.1]
and that extends the Theorem 1, establishes a relationship between
∗-polynomial identities and the identities which does not include
variables with ∗, satisfied for a ring R. More exactly we have:

Theorem 2. If f (x1, x
∗
1, ..., xr, x

∗
r) is a polynomial identity of de-

gree d for the F-algebra R, then R satisfies St2d(x1, x2, ..., x2d)
m

for some m, the standard identity in 2d variables. If R is semi-prime
then m = 1.

If R is normal ring, by the last theorem, R satisfies
St4(x1, x2, x3, x4)m an if R is semi-prime then R satisfies
St4(x1, x2, x3, x4), so is imbeddable in 2× 2 matrices over a com-
mutative ring.

This result, with rr∗ = r∗r for all r ∈ R, can be obtained also
by completely elementary arguments.

In the following result we establish necessary and sufficient condi-
tions on G and N = ker (σ) under which the group algebra FG is
normal, i.e., such that the †-identity αα† = α†α is satisfied.

Theorem 3. Let g 7→ g∗ denote an involution on a group
G and let σ : G → {±1} be a nontrivial homomorphism with
N = ker(σ). Let FG denote the group algebra of the group G
over a commutative ring F with unity. Then, FG is normal if and
only if one of the following conditions holds:

(i) G is abelian;

(ii) N = ker(σ) is abelian, [G : N ] = 2 and we have that x∗ = x
for x ∈ G \N , n∗ = a−1na for all n ∈ N and for all a ∈ G \N ;

(iii) Both N and G are SLC-groups with canonical involution.

Examples (i) Let N = 2n with n ≥ 1 and let G be the group
given by G =< a, b : a2N = b2 = 1, ba = aN+1b >. Then,
G/ζ(G) = G/ < a2 >∼= C2 × C2. Thus, by [GJP96, Proposition
III.3.6] G is an SLC-group.

(ii) Let G be the group presented as follows

G = 〈x1, x2, x3 : x4
i = (x2

i , xj) = ((xi, xj), xk) = 1; i 6= j 6= k〉.

Then, exp(G/ζ(G)) = 2 and g, h /∈ ζ(G) are such that (g,h)=1,
if and only if they lie in the same coset of the ζ(G). Therefore,
G has the LC-property, but G has three nonidentity commutators
(x1, x2), (x1, x3) and (x2, x3). Thus, the LC-property and the
presence of a unique commutator 1 6= s in a group G, are indepen-
dent conditions.

(iii) Let R be a ring with an involution ∗ (in particular if R = RG)
and, for r ∈ R, define respectively (see [GJP96]) the trace and
norm of r by

t(r) = r + r∗ and n(r) = rr∗.

If R is a normal ring, then for all r1, r2 ∈ R, t(r1r2) = t(r2r1),
since

t(r1r2) = n(r1 + r∗2)− n(r1)− n(r∗2)

= n(r∗1 + r2)− n(r∗1)− n(r2)

= t(r2r1). (2)
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