Algunas propiedades de Lie en álgebras de grupo

Sustentación trabajo de grado

Gerson Leonel Barajas Ávila Director: Alexander Holguín-Villa

Universidad Industrial de Santander Escuela de Matemáticas

Bucaramanga, Febrero 8.

Índice

- Preliminares
 - Grupos
 - Anillos
 - Anillos de grupo
 - Propiedades de Lie
- Involución de grupo orientada generalizada
- 3 Involución clásica orientada generalizada
- 4 Álgebras de grupo semiprimas

Sean G un grupo $y*: G \to G$ una aplicación de grupos. Se dice que * es una involución para G, si

- $(i) (gh)^* = h^*g^*, para todos g, h \in G,$
- $(ii) (g^*)^* = g$, para todo $g \in G$.

Sean G un grupo $y*: G \to G$ una aplicación de grupos. Se dice que * es una involución para G, si

- $(i) (qh)^* = h^*q^*, para todos q, h \in G,$
- $(ii) (q^*)^* = q$, para todo $q \in G$.

Definición 1.2

Sean G un grupo y \mathbb{F} un cuerpo. Si $\sigma: G \to \mathcal{U}(\mathbb{F})$ es un homomorfismo de grupos, σ es llamado una orientación de grupo.

Sean G un grupo $y*: G \to G$ una aplicación de grupos. Se dice que * es una involución para G, si

- $(i) (qh)^* = h^*q^*, para todos q, h \in G,$
- $(ii) (q^*)^* = q$, para todo $q \in G$.

Definición 1.2

Sean G un grupo y \mathbb{F} un cuerpo. Si $\sigma: G \to \mathcal{U}(\mathbb{F})$ es un homomorfismo de grupos, σ es llamado una orientación de grupo.

Definición 1.3

Un grupo G se dice que posee la propiedad de "conmutatividad limitada" (o que es un LC - grupo), si para cualquier par de elementos $g, h \in G$, tales gh = hg, implica que g, h, o gh es central en G.

 $Un\ anillo\ R\ se\ dice\ semiprimo,\ si\ no\ tiene\ ideales\ nilpotentes\ no\ triviales,$

Un anillo R se dice **semiprimo**, si no tiene ideales nilpotentes no triviales, o equivalentemente, si la intersección de todos sus ideales primos es $\{0\}$.

Un anillo R se dice **semiprimo**, si no tiene ideales nilpotentes no triviales, o equivalentemente, si la intersección de todos sus ideales primos es {0}.

Sea R un anillo con unidad, si la aplicación $\star: R \to R$ es un anti- automorfismo de orden 2, \star es llamada una involución y R un anillo con involución.

Un anillo R se dice **semiprimo**, si no tiene ideales nilpotentes no triviales, o equivalentemente, si la intersección de todos sus ideales primos es {0}.

Sea R un anillo con unidad, si la aplicación $\star: R \to R$ es un anti- automorfismo de orden 2, \star es llamada una involución y R un anillo con involución.

Definición 1.5

Un anillo R con involución \star es llamado **semi-normal** si $rr^{\star} = 0$ implica que $r^{\star}r=0$, para todo $r\in R$.

Un anillo R se dice semiprimo, si no tiene ideales nilpotentes no triviales, o equivalentemente, si la intersección de todos sus ideales primos es $\{0\}$.

Sea R un anillo con unidad, si la aplicación $\star:R\to R$ es un anti- automorfismo de orden 2, \star es llamada una involución y R un anillo con involución.

Definición 1.5

Un anillo R con involución \star es llamado **semi-normal** si $rr^{\star} = 0$ implica que $r^{\star}r = 0$, para todo $r \in R$. En este caso, \star es llamada **definida positiva** sobre R.

Un anillo R se dice **semiprimo**, si no tiene ideales nilpotentes no triviales, o equivalentemente, si la intersección de todos sus ideales primos es {0}.

Sea R un anillo con unidad, si la aplicación $\star: R \to R$ es un anti- automorfismo de orden 2, \star es llamada una involución y R un anillo con involución.

Definición 1.5

Un anillo R con involución \star es llamado **semi-normal** si $rr^{\star} = 0$ implica que $r^*r = 0$, para todo $r \in R$. En este caso, \star es llamada definida positiva sobre R.

Si $rr^* = r^*r$ para todo $r \in R$, R será llamado anillo normal.

$$RG = \left\{ \sum_{g \in G} r_g g \mid r_g \in R, \text{ c.s. } \alpha_g = 0 \right\}.$$

$$RG = \left\{ \sum_{g \in G} r_g g \mid r_g \in R, \text{ c.s. } \alpha_g = 0 \right\}.$$

(+)
$$\sum_{g \in G} r_g g + \sum_{g \in G} s_g g = \sum_{g \in G} (r_g + s_g) g$$
,

$$RG = \left\{ \sum_{g \in G} r_g g \mid r_g \in R, \text{ c.s. } \alpha_g = 0 \right\}.$$

(+)
$$\sum_{g \in G} r_g g + \sum_{g \in G} s_g g = \sum_{g \in G} (r_g + s_g) g$$
,

$$(\cdot) \left(\sum_{g \in G} r_g g\right) \left(\sum_{h \in G} s_h h\right) = \sum_{i \in G} t_i i, \text{ donde } t_i = \sum_{gh = i} (r_g s_h).$$

$$RG = \left\{ \sum_{g \in G} r_g g \mid r_g \in R, \text{ c.s. } \alpha_g = 0 \right\}.$$

$$(+) \sum_{g \in G} r_g g + \sum_{g \in G} s_g g = \sum_{g \in G} (r_g + s_g) g,$$

$$(\cdot) \left(\sum_{g \in G} r_g g\right) \left(\sum_{h \in G} s_h h\right) = \sum_{i \in G} t_i i, \text{ donde } t_i = \sum_{gh = i} (r_g s_h).$$

RG bajo estas operaciones es un anillo con 1_{RG} .

Se define ahora el producto entre elementos de R y elementos de RG de la siguiente manera:

Se define ahora el producto entre elementos de R y elementos de RG de la siguiente manera:

$$\lambda\left(\sum_{g\in G} r_g g\right) = \sum_{g\in G} (\lambda r_g) g$$
, con $\lambda\in R$.

Se define ahora el producto entre elementos de R y elementos de RG de la siguiente manera:

$$\lambda\left(\sum_{g\in G} r_g g\right) = \sum_{g\in G} (\lambda r_g)g, \text{ con } \lambda \in R.$$

Note que con este producto se puede ver a RG como un R-módulo.

Se define ahora el producto entre elementos de R y elementos de RG de la siguiente manera:

$$\lambda\left(\sum_{g\in G} r_g g\right) = \sum_{g\in G} (\lambda r_g)g, \text{ con } \lambda \in R.$$

Note que con este producto se puede ver a RG como un R-módulo.

Además cuando R es conmutativo, RG es llamado el álgebra de grupo de G sobre R.

Se define ahora el producto entre elementos de R y elementos de RG de la siguiente manera:

$$\lambda\left(\sum_{g\in G} r_g g\right) = \sum_{g\in G} (\lambda r_g)g, \text{ con } \lambda \in R.$$

Note que con este producto se puede ver a RG como un R-módulo.

Además cuando R es conmutativo, RG es llamado el álgebra de grupo de Gsobre R.

Proposición 1.6 (Involución en RG)

Sean R un anillo conmutativo y G un grupo con involución *. Si σ es una orientación sobre G, la aplicación $\circledast : RG \to RG$ definida por

$$\left(\sum_{g \in G} r_g g\right)^{\circledast} = \sum_{g \in G} r_g \sigma(g) g^*,$$

es una involución sobre RG.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ - 臺

Definimos los conjuntos de elementos simétricos y anti-simétricos de FG, denotados por $(FG)^+$ y $(FG)^-$ respectivamente, como:

Definimos los conjuntos de elementos simétricos y anti-simétricos de FG, denotados por $(FG)^+$ y $(FG)^-$ respectivamente, como:

$$(FG)^+ = \{ \alpha \in FG : \alpha^{\circledast} = \alpha \},\$$

$$(FG)^{-} = \{ \alpha \in FG : \alpha^{\circledast} = -\alpha \}.$$

Definimos los conjuntos de elementos simétricos y anti-simétricos de FG. denotados por $(FG)^+$ y $(FG)^-$ respectivamente, como:

$$(FG)^+ = \{ \alpha \in FG : \alpha^{\circledast} = \alpha \},\$$

$$(FG)^{-} = \{ \alpha \in FG : \alpha^{\circledast} = -\alpha \}.$$

Definición 1.8 (Corchete de Lie)

Sobre un anillo asociativo R definimos el "corchete de Lie" como

$$[x_1, x_2] = x_1 x_2 - x_2 x_1$$

Definimos los conjuntos de elementos simétricos y anti-simétricos de FG. denotados por $(FG)^+$ y $(FG)^-$ respectivamente, como:

$$(FG)^+ = \{ \alpha \in FG : \alpha^{\circledast} = \alpha \},\$$

$$(FG)^{-} = \{ \alpha \in FG : \alpha^{\circledast} = -\alpha \}.$$

Definición 1.8 (Corchete de Lie)

Sobre un anillo asociativo R definimos el "corchete de Lie" como

$$[x_1, x_2] = x_1 x_2 - x_2 x_1$$

y de forma recursiva se tiene que

$$[x_1, x_2, \dots, x_n, x_{n+1}] = [[x_1, x_2, \dots, x_n], x_{n+1}]$$

Sea S un subconjunto de R un anillo asociativo. Decimos que S es Lie nilpotente si existe $n \geq 2$ tal que para todo $a_i \in S$,

$$[a_1, a_2, \ldots, a_n] = 0.$$

Sea S un subconjunto de R un anillo asociativo. Decimos que S es Lie nilpotente si existe $n \geq 2$ tal que para todo $a_i \in S$,

$$[a_1, a_2, \ldots, a_n] = 0.$$

Escribiremos $S \in \eta_L$ para decir que S es Lie nilpotente.

Definición 1.10 (Lie n-Engel)

Sea S un subconjunto de R. Decimos que S es Lie n-Engel si existe $n \geq 2$ tal que para todo $a,b \in S$,

$$[a, \underbrace{b, \dots, b}_{n \text{ veces}}] = 0$$

Sea S un subconjunto de R un anillo asociativo. Decimos que S es Lie nilpotente si existe $n \geq 2$ tal que para todo $a_i \in S$,

$$[a_1, a_2, \ldots, a_n] = 0.$$

Escribiremos $S \in \eta_L$ para decir que S es Lie nilpotente.

Definición 1.10 (Lie n-Engel)

Sea S un subconjunto de R. Decimos que S es Lie n-Engel si existe $n \geq 2$ tal que para todo $a, b \in S$,

$$[a, \underbrace{b, \dots, b}_{n \text{ veces}}] = 0$$

Escribiremos $S \in \xi_L$ para decir que S es Lie n-Engel.

 $Sea\ S\ un\ subconjunto\ de\ R\ un\ anillo\ asociativo.\ Decimos\ que\ S\ es\ Lie$ nilpotente si existe $n \geq 2$ tal que para todo $a_i \in S$,

$$[a_1, a_2, \ldots, a_n] = 0.$$

Escribiremos $S \in \eta_L$ para decir que S es Lie nilpotente.

Definición 1.10 (Lie n-Engel)

Sea S un subconjunto de R. Decimos que S es Lie n-Engel si existe $n \geq 2$ tal que para todo $a, b \in S$,

$$[a, \underbrace{b, \dots, b}_{n \text{ veces}}] = 0$$

Escribiremos $S \in \xi_L$ para decir que S es Lie n-Engel.

Claramente si $S \in \eta_L$ entonces $S \in \xi_L$.

Involución de grupo orientada Generalizada

Lema 2.1

Sea G un grupo tal que $\tilde{\zeta}(G) = \{z^{-1}z^* : z \in \zeta(G)\}$ es infinito. Si $\alpha \in \mathbb{F}G$ es tal que $(\sigma(z)z^{-1}z^* - 1)$ $\alpha = 0$, para todo $z \in \zeta$, entonces $\alpha = 0$.

Involución de grupo orientada Generalizada

Lema 2.1

Sea G un grupo tal que $\tilde{\zeta}(G) = \{z^{-1}z^* : z \in \zeta(G)\}$ es infinito. Si $\alpha \in \mathbb{F}G$ es tal que $(\sigma(z)z^{-1}z^* - 1)$ $\alpha = 0$, para todo $z \in \zeta$, entonces $\alpha = 0$.

Teorema 2.2

Sea G un grupo tal que $\tilde{\zeta}(G) = \{z^{-1}z^* : z \in \zeta(G)\}$ es un conjunto infinito. Si $\mathbb{F}G$ satisface una \circledast - IP (con $g \stackrel{\circledast}{\mapsto} \sigma(g)g^*$) de grado n, entonces $\mathbb{F}G$ satisface una IP de grado $\partial \leq n$.

Involución de grupo orientada Generalizada

Lema 2.1

Sea G un grupo tal que $\tilde{\zeta}(G) = \{z^{-1}z^* : z \in \zeta(G)\}$ es infinito. Si $\alpha \in \mathbb{F}G$ es tal que $(\sigma(z)z^{-1}z^* - 1)$ $\alpha = 0$, para todo $z \in \zeta$, entonces $\alpha = 0$.

Teorema 2.2

Sea G un grupo tal que $\tilde{\zeta}(G) = \{z^{-1}z^* : z \in \zeta(G)\}$ es un conjunto infinito. Si $\mathbb{F}G$ satisface una \circledast - IP (con $g \stackrel{\circledast}{\mapsto} \sigma(g)g^*$) de grado n, entonces $\mathbb{F}G$ satisface una IP de grado $\partial \leq n$.

Corolario 2.3

Sea G un grupo tal que $\tilde{\zeta}(G)$ es un conjunto infinito. Entonces, $\mathbb{F}G^+$ o $\mathbb{F}G^-$ es Lie nilpotente de índice n, si y solo si, $\mathbb{F}G$ es Lie nilpotente de índice n.

Lema 3.1

Sean $g,h \in G$ tales que $g^2 \neq 1$ y $h^2 \neq 1$, y $\sigma: G \to \mathcal{U}(\mathbb{F})$ una orientación no trivial. Las siguientes afirmaciones son verdaderas:

Lema 3.1

Sean $g,h \in G$ tales que $g^2 \neq 1$ y $h^2 \neq 1$, y $\sigma: G \to \mathcal{U}(\mathbb{F})$ una orientación no trivial. Las siguientes afirmaciones son verdaderas:

- (i) $Si [g + g^{-1}, h + h^{-1}] = 0$, entonces:
 - (a) $qh \in \{hq, hq^{-1}, h^{-1}q\}$ o, (b) $(q^{\alpha}h^{\beta})^2 = 1, \forall \alpha, \beta \in \{-1, 1\}.$

Lema 3.1

Sean $q, h \in G$ tales que $q^2 \neq 1$ y $h^2 \neq 1$, y $\sigma : G \to \mathcal{U}(\mathbb{F})$ una orientación no trivial. Las siguientes afirmaciones son verdaderas:

- (i) $Si [q + q^{-1}, h + h^{-1}] = 0$, entonces:

 - (a) $qh \in \{hq, hq^{-1}, h^{-1}q\}$ o, (b) $(q^{\alpha}h^{\beta})^2 = 1, \forall \alpha, \beta \in \{-1, 1\}.$
- (ii) $Si [q-q^{-1}, h-h^{-1}] = 0$, entonces:
 - (a) $qh = ha \ o$.

- (b) $(a^{\alpha}h^{\beta})^2 = 1, \forall \alpha, \beta \in \{-1, 1\}.$
- (iii) Si $[q-q^{-1}, h+h^{-1}]=0$, entonces:
 - (a) $qh \in \{hq, h^{-1}q\}$ o.

(b) $o(g) = 4 = o(h) y g^2 = h^2$.

Lema 3.1

Sean $g,h \in G$ tales que $g^2 \neq 1$ y $h^2 \neq 1$, y $\sigma: G \to \mathcal{U}(\mathbb{F})$ una orientación no trivial. Las siguientes afirmaciones son verdaderas:

- (i) $Si [g + g^{-1}, h + h^{-1}] = 0$, entonces:
 - (a) $gh \in \{hg, hg^{-1}, h^{-1}g\}$ o,
- (b) $(g^{\alpha}h^{\beta})^2 = 1, \forall \alpha, \beta \in \{-1, 1\}.$
- (ii) $Si [g g^{-1}, h h^{-1}] = 0$, entonces:
 - (a) $qh = hq \ o$,

- (b) $(g^{\alpha}h^{\beta})^2 = 1, \forall \alpha, \beta \in \{-1, 1\}.$
- (iii) Si $[g g^{-1}, h + h^{-1}] = 0$, entonces:
 - (a) $gh \in \{hg, h^{-1}g\}$ o,

- (b) $o(g) = 4 = o(h) y g^2 = h^2$.
- (iv) Si $[g + g^{-1}, h + \sigma(h)h^{-1}] = 0$ y $\sigma(h) \neq \pm 1$, entonces:
 - (a) $gh \in \{hg, hg^{-1}\}\ o$,
- (b) $o(g) = 4 = o(h) y g^2 = h^2$.
- (v) $Si [g + \sigma(g)g^{-1}, h + \sigma(h)h^{-1}] = 0, \ \sigma(g) \neq \pm 1 \ y \ \sigma(h) \neq \pm 1, \ entonces :$
 - (a) $gh \in \{hg, hg^{-1}\}\ o$,
- (b) $o(g) = 4 = o(h) y g^2 = h^2$.
- (vi) Si $[g g^{-1}, h + \sigma(h)h^{-1}] = 0$ y $\sigma(h) \neq \pm 1$, entonces:

Suponga que $\mathbb{F}G^+$ es Lie n - Engel para algún n, con $char(\mathbb{F}) \neq 2$. Entonces, todo elementos $g \in N$ de orden 2 es central en G.

Suponga que $\mathbb{F}G^+$ es Lie n - Engel para algún n, con $char(\mathbb{F}) \neq 2$. Entonces, todo elementos $g \in N$ de orden 2 es central en G.

Lema 3.3

Sea $G=\langle a,b\rangle,\ con\ a,b\ tales\ que\ b^{-1}ab=a^{-1}$. Si G no tiene elementos de orden 2, entonces $\mathbb{F} G^+$ y $\mathbb{F} G^-$ no son Lie n - Engel.

Suponga que $\mathbb{F}G^+$ es Lie n - Engel para algún n, con $char(\mathbb{F}) \neq 2$. Entonces, todo elementos $g \in N$ de orden 2 es central en G.

Lema 3.3

Sea $G = \langle a, b \rangle$, con a, b tales que $b^{-1}ab = a^{-1}$. Si G no tiene elementos de orden 2, entonces $\mathbb{F}G^+$ y $\mathbb{F}G^-$ no son Lie n - Engel.

Lema 3.4

Sea $G = \langle g, h \rangle$ con g, h tales que $[g + c_1 g^{-1}, h + c_2 h^{-1}] = 0$ para algunos c_1 y c_2 en \mathbb{F} . Suponga que G no contiene elementos de orden 2. Si $\mathbb{F}G^+$ o $\mathbb{F}G^-$ es Lie n - Engel, entonces G es abeliano.

Suponga que $\mathbb{F}G^+$ es Lie n - Engel para algún n, con $char(\mathbb{F}) \neq 2$. Entonces, todo elementos $g \in N$ de orden 2 es central en G.

Lema 3.3

Sea $G = \langle a, b \rangle$, con a, b tales que $b^{-1}ab = a^{-1}$. Si G no tiene elementos de orden 2, entonces $\mathbb{F}G^+$ y $\mathbb{F}G^-$ no son Lie n - Engel.

Lema 3.4

Sea $G = \langle g, h \rangle$ con g, h tales que $[g + c_1 g^{-1}, h + c_2 h^{-1}] = 0$ para algunos c_1 y c_2 en \mathbb{F} . Suponga que G no contiene elementos de orden 2. Si $\mathbb{F}G^+$ o $\mathbb{F}G^-$ es Lie n - Engel, entonces G es abeliano.

Sea G un grupo sin elementos de orden 2 y \mathbb{F} un cuerpo con char(\mathbb{F}) $\neq 2$. Suponga que $\mathbb{F}G^+$ o $\mathbb{F}G^-$ es Lie n - Engel para algún n. Las siguientes afirmaciones son verdaderas:

- (i) Si char(\mathbb{F}) = 0, entonces G es abeliano.
- (ii) Si char(\mathbb{F}) = p > 2, entonces $G^{p^m} \subseteq \zeta(G)$, para algún m > 0.

Sea G un grupo sin elementos de orden 2 y \mathbb{F} un cuerpo con char(\mathbb{F}) $\neq 2$. Suponga que $\mathbb{F}G^+$ o $\mathbb{F}G^-$ es Lie n - Engel para algún n. Las siguientes afirmaciones son verdaderas:

- (i) Si char(\mathbb{F}) = 0, entonces G es abeliano.
- (ii) Si char(\mathbb{F}) = p > 2, entonces $G^{p^m} \subseteq \zeta(G)$, para algún m > 0.

Teorema 3.6

Sea \mathbb{F} un cuerpo con $char(\mathbb{F}) \neq 2$ y G un grupo sin elementos de orden 2. Entonces $\mathbb{F}G^+$ (o $\mathbb{F}G^-$) es Lie n - Engel, para algún n, si y solo si, $\mathbb{F}G$ es Lie m - Engel, para algún m.

Sea G un grupo sin elementos de orden 2 y \mathbb{F} un cuerpo con char(\mathbb{F}) $\neq 2$. Suponga que $\mathbb{F}G^+$ o $\mathbb{F}G^-$ es Lie nilpotente. Si el centro $\zeta(G)$ contiene un elemento z de orden infinito, entonces $\mathbb{F}G$ es Lie nilpotente.

Sea G un grupo sin elementos de orden 2 y \mathbb{F} un cuerpo con char(\mathbb{F}) $\neq 2$. Suponga que $\mathbb{F}G^+$ o $\mathbb{F}G^-$ es Lie nilpotente. Si el centro $\zeta(G)$ contiene un elemento z de orden infinito, entonces $\mathbb{F}G$ es Lie nilpotente.

Teorema 3.8

Sea \mathbb{F} un cuerpo con $char(\mathbb{F}) \neq 2$ y G un grupo sin elementos de orden 2, tal que existe $z \in \zeta(G)$ con $z^q = 1$ y (p,q) = 1. Suponga que \mathbb{F} no contiene raíces q - ésimas de la unidad. Entonces $\mathbb{F}G^+$ (o $\mathbb{F}G^-$) es Lie nilpotente, si y solo si, $\mathbb{F}G$ es Lie nilpotente.

Demostración.

Si
$$\operatorname{char}(F)=0,$$
 del Lema 3.5 $G\in\mathcal{A}$

Demostración.

Si char(F) = 0, del Lema 3.5 $G \in \mathcal{A}$

Si char(F) = p, del Lema 3.5 es posible mostrar que G es nilpotente.

Demostración.

Si
$$char(F) = 0$$
, del Lema 3.5 $G \in \mathcal{A}$

Si char(F) = p, del Lema 3.5 es posible mostrar que G es nilpotente.

Si
$$|\zeta(G)| = \infty$$
, como $G_2 = \emptyset |\zeta^2(G)| = \infty$, así $\mathbb{F}G \in \eta_L$

Demostración.

Si
$$char(F) = 0$$
, del Lema 3.5 $G \in \mathcal{A}$

Si char(F) = p, del Lema 3.5 es posible mostrar que G es nilpotente.

Si
$$|\zeta(G)| = \infty$$
, como $G_2 = \emptyset |\zeta^2(G)| = \infty$, así $\mathbb{F}G \in \eta_L$

Si $|\zeta(G)| < \infty$, supongamos que para todo grupo H con clase de nilpotencia menor G, entonces H' es p - grupo finito.

Supongamos que $\zeta(G)$ es un p - grupo. Como la clase de nilpotencia de $G/\zeta(G)$ es menor que la de G, $(G/\zeta(G))'$ es un p - grupo finito

$$(G/\zeta(G))' = G\zeta(G)/\zeta(G) \simeq G'/(G' \cap \zeta(G))$$

Sea R un anillo semiprimo con involución \star de char(\mathbb{F}) $\neq 2$. Si R^- (o R^+) es Lie n - Engel, entonces $[R^-,R^-]=0$ (respectivamente $[R^+,R^+]=0$).

Sea R un anillo semiprimo con involución \star de $char(\mathbb{F}) \neq 2$. Si R^- (o R^+) es Lie n - Engel, entonces $[R^-, R^-] = 0$ (respectivamente $[R^+, R^+] = 0$).

Teorema 4.2

Sean $\mathbb F$ un cuerpo de char $(\mathbb F) \neq 2$, G un grupo sin elementos de orden 2 tales que $\mathbb F G$ es semiprima. Suponga que $\mathbb F G^+$ es Lie n - Engel para algún n (o Lie nilpotente). Entonces, G es abeliano o $N=\ker(\sigma)$ es abeliano y $(G\setminus N)\subseteq G^+$. Luego, $\mathbb F G$ es un álgebra de grupo normal.

Sean \mathbb{F} un cuerpo de char $(\mathbb{F}) \neq 2$ y G un grupo sin elementos de orden 2 tal que $\mathbb{F}G$ es semiprima, entonces las siguientes condiciones son equivalentes:

Sean \mathbb{F} un cuerpo de char $(\mathbb{F}) \neq 2$ y G un grupo sin elementos de orden 2 tal que $\mathbb{F}G$ es semiprima, entonces las siguientes condiciones son equivalentes:

(i) $\mathbb{F}G^+$ es Lie n - Engel (o Lie nilpotente).

Sean \mathbb{F} un cuerpo de char $(\mathbb{F}) \neq 2$ y G un grupo sin elementos de orden 2 tal que $\mathbb{F}G$ es semiprima, entonces las siguientes condiciones son equivalentes:

- (i) $\mathbb{F}G^+$ es Lie n Engel (o Lie nilpotente).
- (ii) $\mathbb{F}G^+$ es conmutativo.

Sean \mathbb{F} un cuerpo de char $(\mathbb{F}) \neq 2$ y G un grupo sin elementos de orden 2 tal que $\mathbb{F}G$ es semiprima, entonces las siguientes condiciones son equivalentes:

- (i) $\mathbb{F}G^+$ es Lie n Engel (o Lie nilpotente).
- (ii) $\mathbb{F}G^+$ es conmutativo.
- (iii) $\mathbb{F}G$ es normal.

Sean \mathbb{F} un cuerpo de char $(\mathbb{F}) \neq 2$ y G un grupo sin elementos de orden 2 tal que $\mathbb{F}G$ es semiprima, entonces las siguientes condiciones son equivalentes:

- (i) $\mathbb{F}G^+$ es Lie n Engel (o Lie nilpotente).
- (ii) $\mathbb{F}G^+$ es conmutativo.
- (iii) $\mathbb{F}G$ es normal.

Demostración.

Como $\mathbb{F}G^+$ conmutativo implica ser Lie nilpotente, entonces por la demostración de la primera parte del Teorema 4.2, (i) y (ii) son equivalentes.

Sean \mathbb{F} un cuerpo de char $(\mathbb{F}) \neq 2$ y G un grupo sin elementos de orden 2 tal que $\mathbb{F}G$ es semiprima, entonces las siguientes condiciones son equivalentes:

- (i) $\mathbb{F}G^+$ es Lie n Engel (o Lie nilpotente).
- (ii) $\mathbb{F}G^+$ es conmutativo.
- (iii) $\mathbb{F}G$ es normal.

Demostración.

Como $\mathbb{F}G^+$ conmutativo implica ser Lie nilpotente, entonces por la demostración de la primera parte del Teorema 4.2, (i) y (ii) son equivalentes. Ahora bien, de la demostración de la segunda parte del Teorema 4.2 (ii) implica (iii).

Sean \mathbb{F} un cuerpo de char $(\mathbb{F}) \neq 2$ y G un grupo sin elementos de orden 2 tal que $\mathbb{F}G$ es semiprima, entonces las siguientes condiciones son equivalentes:

- (i) $\mathbb{F}G^+$ es Lie n Engel (o Lie nilpotente).
- (ii) $\mathbb{F}G^+$ es conmutativo.
- (iii) $\mathbb{F}G$ es normal.

Demostración.

Como $\mathbb{F}G^+$ conmutativo implica ser Lie nilpotente, entonces por la demostración de la primera parte del Teorema 4.2, (i) y (ii) son equivalentes. Ahora bien, de la demostración de la segunda parte del Teorema 4.2 (ii) implica (iii).

Finalmente, dado que $G_2 = \emptyset$ se obtiene de la condición (iii) que los elementos en $\mathbb{F}G^+$ conmutan.

Sea G un grupo finito, \mathbb{F} un cuerpo con char $(\mathbb{F}) = p > 2$. Suponga que $\mathbb{F}G^+$ es Lie n - Engel. Entonces, el conjunto P de los p - elementos es un subgrupo de G.

Sea G un grupo finito, \mathbb{F} un cuerpo con char $(\mathbb{F}) = p > 2$. Suponga que $\mathbb{F}G^+$ es Lie n - Engel. Entonces, el conjunto P de los p - elementos es un subgrupo de G.

Proposición 4.5

Sea \mathbb{F} un cuerpo con char(\mathbb{F}) = $p \neq 2$ y G un grupo finito. Suponga que $\mathbb{F}G^+$ (o $\mathbb{F}G^-$) Lie n - Engel, las siguientes afirmaciones son verdaderas:

Sea G un grupo finito, \mathbb{F} un cuerpo con $char(\mathbb{F}) = p > 2$. Suponga que $\mathbb{F}G^+$ es Lie n - Engel. Entonces, el conjunto P de los p - elementos es un subgrupo de G.

Proposición 4.5

Sea \mathbb{F} un cuerpo con char(\mathbb{F}) = $p \neq 2$ y G un grupo finito. Suponga que $\mathbb{F}G^+$ (o $\mathbb{F}G^-$) Lie n - Engel, las siguientes afirmaciones son verdaderas:

(i) Si char(\mathbb{F}) = 0, entonces $\mathbb{F}G^+$ (o $\mathbb{F}G^-$) es conmutativo.

Sea G un grupo finito, \mathbb{F} un cuerpo con $char(\mathbb{F}) = p > 2$. Suponga que $\mathbb{F}G^+$ es Lie n - Engel. Entonces, el conjunto P de los p - elementos es un subgrupo de G.

Proposición 4.5

Sea \mathbb{F} un cuerpo con char(\mathbb{F}) = $p \neq 2$ y G un grupo finito. Suponga que $\mathbb{F}G^+$ (o $\mathbb{F}G^-$) Lie n - Engel, las siguientes afirmaciones son verdaderas:

- (i) Si char(\mathbb{F}) = 0, entonces $\mathbb{F}G^+$ (o $\mathbb{F}G^-$) es conmutativo.
- (ii) Si char(\mathbb{F}) = p > 2, entonces $\mathbb{F}(G/P)^+$ (o $\mathbb{F}(G/P)^-$) es conmutativo.

Bibliografía

- O. Broche Cristo, C. Polcino Milies, Symmetric elements under oriented involutions in group rings, Comm. Algebra 34 (2006), 3347-3356.
- J. H. Castillo Gómez, C. Polcino Milies, Lie properties of symmetric elements under oriented involutions. To appear in Commun. Algebra (2012).
- A. Giambruno, C. Polcino Milies, S. K. Sehgal, *Lie properties of symmetric elements in group rings*, J. Algebra **321** (2009), 890-902.
- A. Giambruno, S. K. Sehgal, A Lie property in group rings, Proc. Amer. Math. Soc. 105 (1989), 287-291.
- A. Giambruno, S. K. Sehgal, *Lie nilpotency in group rings*, Comm. Algebra **21** (1993), 4253-4261.
- A. Holguín Villa, *-Identidades em álgebras de Grupo (2012), Ph.D. thesis, Universidade de São Paulo, São Paulo, Brazil.

Bibliografía

- G. T. Lee, Group rings whose symmetrics elements are Lie nilpotent, Proc. Amer. Math. Soc. 127 (1999), no.11, 3153-3159. MR 1641124 (2000b:16052)
- G. T. Lee, *The Lie n-Engel property in group rings*, Comm. Algebra 28 (2000), no.2, 867-881. MR 1736769 (2001b:16027).
- G. T. Lee, Group identities on units and symmetric units of group rings, Algebra and Applications, vol. 12, Springer-Verlag, London, 2010.
- I. B. S. Passi, D. S. Passman, S. K. Sehgal, Lie solvable group rings, Canad. J. Math. 25 (1973), 748-757.
 - D. S. Passman, *The algebraic structure of group rings*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1977.
- C. Polcino Milies, S. K.Sehgal, An introduction to group rings (2002). Dordrecht: Kluwer Academic Publishers.

Gracias por su atención

Universidad Industrial de Santander

