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Abstract

We study the twisted local zeta function associated to a polynomial in two variables
with coefficients in a non—Archimedean local field of arbitrary characteristic. Under the
hypothesis that the polynomial is arithmetically non degenerate, we obtain an explicit
list of candidates for the poles in terms of geometric data obtained from a family of
arithmetic Newton polygons attached to the polynomial. The notion of arithmetical
non degeneracy due to Saia and Zuniga-Galindo is weaker than the usual notion of non
degeneracy due to Kouchnirenko. As an application we obtain asymptotic expansions

for certain exponential sums attached to these polynomials.



Resumen

En esta disertacién estudiamos la funcion zeta local torcida asociada a polinomios
en dos variables con coeficientes en un campo local no Arquimediano de caracteristica
arbitraria. Bajo la hipdtesis que el polinomio es aritméticamente no degenerado, obte-
nemos una lista explicita de candidatos a polos, en términos de los datos geométricos
obtenidos de una familia de poligonos aritméticos de Newton asociada al polinomio.
La nocién de aritméticamente no degenerado en el sentido de Saia y Zuniga-Galindo es
mas general que la nocién usual de no degeneracion de Kouchnirenko. Ademaés como
una aplicacion obtenemos expansiones asintéticas para ciertas sumas exponenciales

asociadas a estos polinomios.
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Overview

The local zeta functions over local fields, i.e. R,C,Q,,F,((T)), are ubiquitous ob-
jects in mathematics and mathematical physics see e.g. [2,5-7,10,12,15,17-19, 22,
26, 28, 30, 32-34, 36-38]. For instance these objects are deeply connected with string
and Feynman amplitudes. Let us mention that the works of Speer [28] and Bollini,
Giambiagi and Gonzédlez Dominguez [7] on regularization of Feynman amplitudes in
quantum field theory are based on the work of Gel’fand and Shilov [17] on the analytic
continuation of Archimedean local zeta functions. For connections with String theory
see e.g. [9] and the references therein. In the non-Archimedean setting, for instance in
the p-adic case, the local zeta functions are related to the number of polynomial congru-
ences mod p" and exponential sums mod p™. There are many intriguing conjectures
connecting the poles of non-Archimedean local zeta functions, with the topology of
complex singularities, see e.g. [12-14,16,19,25,27,30-32, 35,37, 38|.

Let K be a non—Archimedean local field of arbitrary characteristic with valuation
v, let Ok be its ring of integers with group of units O, let Px be the maximal ideal
in Og. We fix a uniformizer parameter p of Ox. We assume that the residue field
of Ok is F,, the finite field with ¢ elements. The absolute value for K is defined
by |z] = |zlx = ¢7"®, and for z € K*, we define the angular component of z by
ac(z) = zp~"#). We consider f(x,y) € Oglzr,y] a non-constant polynomial and y
a character of Oy, that is, a continuous homomorphism from O to the unit circle,
considered as a subgroup of C*. When x(z) = 1 for any z € O, we will say that x is
the trivial character and it we denote it as x4, We associate to these data the local

zeta function,

Zuﬁm:/QWﬁmwnﬂamwmwuse@

Ok

where Re(s) > 0, and |dzdy| denotes the Haar measure of (K2, +) normalized such

that the measure of O3% is one.
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It is not difficult to see that Z(s, f,x) is holomorphic on the half plane Re(s) > 0.
Furthermore, in the case of characteristic zero, Igusa [20] and Denef [11] proved that
Z(s, f,x) is a rational function of ¢—*%, for an arbitrary polynomial in several variables.
When char(K) > 0, new techniques are needed since there is no a general theorem
of resolution of singularities, nor an equivalent method of p- adic cell decomposition.
In [21] Igusa introduced the stationary phase formula (SPF) and conjectured that by
using it, the rationality of the local zeta functions can be established in arbitrary
characteristic. This conjecture has been verified in several cases, see e.g. [23,27,37]
and the references therein.

A considerable advance in the study of local zeta functions in arbitrary characteristic
has been obtained for a large class of polynomials which satisfy a non—-degeneracy con-
dition. Roughly speaking, the idea is to attach a Newton polyhedron to the polynomial
f and then define a non degeneracy condition with respect to the Newton polyhedron.
Then one may construct a toric variety associated to the Newton polyhedron, and use
toric resolution of singularities in order to establish a meromorphic continuation of
Z(s, f,x), see e.g. [2,25] for a good discussion about the Newton polyhedra technique
in the study of local zeta functions. The first use of this approach was pioneered by
Varchenko [29] in the Archimedean case. After Varchenko’s article, several authors
have been used his methods to study local zeta functions, oscillatory integrals, and
exponential sums, see for instance [13,14,24,25,27,32,37] and the references therein.

In this dissertation we study local zeta functions for arithmetically non-degenerate
polynomials. In [27] Saia and Zuniga-Galindo introduced the notion of arithmetically
non—degeneracy for polynomials in two variables, this notion is weaker than the classi-
cal notion of non—degeneracy due to Kouchnirenko, see e.g. [2]. They used this notion
to study local zeta functions Z(s, f, x4riw) When f is an arithmetically non—-degenerate
polynomial with coefficients in a non—Archimedean local field of arbitrary characteris-
tic. They established the existence of a meromorphic continuation for Z(s, f, xiriv) as
a rational function of ¢~%, and gave an explicit list of candidate poles for Z(s, f, Xtriv)

in terms of a family of arithmetic Newton polygons which are associated with f. In

Contents



Contents il

this dissertation, we extend the results of Saia and Zuniga-Galindo to twisted local
zeta function Z (s, f, x), for x arbitrary, and f a polynomial in two variables with coef-
ficients in a local field of arbitrary characteristic which is non-degenerate in the sense
of Saia and Zuniga-Galindo.

By using the techniques of [27] we obtain an explicit list of candidate poles of
Z(s, f,x) in terms of the equations of the straight segments defining the boundaries of
the arithmetic Newton polygon attached to f.

The following result describes the poles of the meromorphic continuation of Z (s, f, x)
for arbitrary x:

Theorem 2.5.1  Let f(z,y) € K[x,y] be a non-constant polynomial. If f(x,y)
is arithmetically non-degenerate with respect to its arithmetic Newton polygon TA(f),

then the real parts of the poles of Z(s, f,x) belong to the set

{=1}UP@T™(f) UPITA(S)).

In addition Z(s, f,x) vanishes for almost all x.

The main contribution of this dissertation is the study of the exponential sums
mod p"" attached to arithmetically non-degenerate polynomials. Exponential sums
mod p™ have been studied intensively, see e.g. [3,4,14,16,37].

By fixing an additive character ¥ : K — C, exponential sums mod p"™ can written
as

B(e.f) = [ W(afo) |do dyl,
O%
where z = p™u, u € Of. A central problem consists in describing the asymptotic
behavior of E(z, f) as |z] — co. Our main result about exponential sums mod p™ for
arithmetically non-degenerate polynomials is the following:

Theorem 3.1.1  Let f(x,y) € K[z,y| be a non constant polynomial which is

arithmetically modulo p non—degenerate with respect to its arithmetic Newton polygon.

Assume that C; C f~1(0) and assume all the notation introduced previously. Then the

Contents
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following assertions hold.

1. For |z| big enough, E(z, f) is a finite linear combination of functions of the form

X(ac 2)|z*(log, [2])™,

with coefficients independent of z, and X € C a pole of Z(s, f,x) (with x|14p0, =
Xtriv) or (1 - qisil)Z<S7 fa Xtm'v); where

‘ 0 if X is a stmple pole
I =
0,1 4f X is a double pole.

Moreover all the poles \ appear effectively in this linear combination.

2. Assume that 5 := max{Prgeom, ﬁrgx} > —1. Then for|z| > 1, there exist a positive
constant C(K), such that

Bz, f)] < C(K)|2|"log, |z].

The results presented in this dissertation will be published in an article written
in collaboration with Professor Edwin Ledn-Cardenal in the Journal de Théorie des
Nombres de Bordeaux. I am very grateful to Professor Wilson A. Zuiniga-Galindo for
suggesting me the thematic for this dissertation and for their kind guidance during the
whole development of the present work.

This dissertation is organized as follows. In Chapter 1, we review some basic facts
about local zeta functions and exponential sums mod p™. We also review Igusa’s
stationary phase formula, which will be used along this dissertation. In Chapter 2, we
prove Theorem 2.5.1 and give some examples. The full calculation of these examples
is very long, for this reason in Chapter 2 we only sketch a small part of them. In
Chapter 3, we prove Theorem 3.1.1. In Appendices A and B we have included the full
calculation of the examples sketched in Section 2.3 of Chapter 2.

Contents
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Finally we want to mention that as a future project we would like to study the
extension of the ideas in this document to the case of polynomials in an arbitrary
number if variables. One of the main difficulties in this task is to find the “right”
generalization of the arithmetic Newton polyhedron of a polynomial function f in

more than two variables.
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Chapter 1

Preliminaries

For the sake of completeness, we review some basic concepts about the theory of local
zeta functions on non-Archimedean fields of arbitrary characteristic. We also make a
brief presentation of Igusa’s stationary phase formula as in [37], in section 1.2.2 we
review the basic aspects of exponential sums mod p" defined over non—Archimedean
local fields. Finally we present an explicit formula for Z(s, f, x) for polynomials that
are non-degenerate with respect to their Newton polyhedron, see sections 1.3, 1.3.1

and 1.3.2.

1.1 Local Zeta Functions

Let K be a non—Archimedean local field, which is a locally compact topological field
with respect to a non-discrete topology. By a well-known theorem, see e.g. [33], a such
field is isomorphic (as a topological field) to a finite extension of the field of p-adic
numbers Q,, or isomorphic to a finite extension of F,((7")), the field of formal Laurent
series with coefficients in a finite field IF,. Let |- |k := || be the absolute value of K (K
is a complete metric space for the distance induced by | - |). Let O be the valuation
ring of K which is
Ok ={z € K;|z| < 1}.

Let Pk be the unique maximal ideal of O, which is a principal ideal. We fix a generator

p of Pk, which is also called a uniformizer parameter of O . The quotient field O / Pk
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is called the residue field of K, and it is the finite field of cardinality ¢ = p°, p a prime
number. The group of units of Ok is O = {x € Ok : |z| = 1}. We will assume that |- |
is a normalized absolute value, which means that || = ¢=*®), where v(x) € ZU{o0} is
a valuation on K. The canonical mapping Ox — O /Px = F, is called the reduction

mod p. We denote by Rk a fixed set of representatives of F, in Og. Then every

element = of K \ {0} can be represented as a convergent series with respect to | - | as
follows:
o
xr = pmo Z ampm, am € Ry, ag 7& 0,
m=0

where mg = v(x).

Example 1.1.1. The field of p-adic numbers Q, is defined as the completion of the

field of rational numbers with respect to the p— adic norm | - |,, which is defined as

0 ifx=0
|J7|p:

p" ifr=p"g,

where a and b are integers co-prime with p.

The group (K™, +) is a locally compact group, where K" is endowed with the
product topology. We denote by |dz| = |dxy---dz,| the Haar measure on (K™, +)
normalized so that fo;g |dz| = 1.

A quasicharacter of K* is a continuous homomorphism w : K* — C*. The set
of quasicharacters, that we will denote by Q (K*), has an Abelian group structure,
and to a given complex number s we may associate a quasicharacter ws € Q (K*) by

setting ws (x) = |x|}%. Once we pick w (p) = ¢~ %, for every w € Q (K*), one has

w(z) = ws () x (ac ), (1.1.1)

where y := w |O[x(, is a group homomorphism with finite image. Put formally x(0) = 0.

For z € K, we define the angular component of z by ac(z) = zp~**). Equation (1.1.1)

1.1. Local Zeta Functions
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shows that

Q(K*) ~C/(2rv=1/Inq) x (0%)",

where (O[X()* is the group of characters of Oj; therefore € (K*) is a one dimensional
complex manifold. Note that o (w) := Re(s) depends only on w, and |w(z)| =

Wo(w) (), thus it makes sense to define the following open subset of Q (K*),
Qapy () = {w e Q(K*);0(w) € (a,b) CR}.
Then the local zeta functions Z(s, f,x) of f and y is defined by the integral
25,50 = [ xlae f@) 17 ldal,
Oy

for s € C satisfying Re(s) > 0. In the case in which x is the trivial character we
simply write Z(s, f). The local zeta functions admit a meromorphic continuation to

the complex plane as rational functions of ¢~*, see [22, Theorem 8.2.1].

1.1.1 Poincaré Series

Let f(z) € Ogklxy, -+ ,x,) be a non-constant polynomial. A classical problem in
number theory consists in studying the number of solutions of polynomial congruences

f(z) =0 (mod Pj}), more precisely, to study the behavior of the numbers
N = #{x € (Ok/Pg)"; f(x) = 0 (mod P')},

with Ny = 1, as m tends to infinity. To study this problem one introduces the Poincaré

series

P(t) =Y Npng "™t", t€C,

m>=0

1.1. Local Zeta Functions
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with |t| < 1. The following formula established a relation between P(t) and Z(s, f)

_ 1—tZ(s, f)

P(t) T—¢

t=q7,

when Re(s) > 0, see [22, Theorem 8.2.2]. This formula shows that the local zeta
functions have arithmetical nature. In [8], Borevich and Shafaverich conjectured in the
60’s, that in the case of characteristic zero, P(t) is a rational function. This conjecture
was established by Igusa in the middle of the 70’s as a Corollary of the following

Theorem:

Theorem 1.1.1 ([22, Theorem 8.2.1]). Let K be a local field of characteristic zero.
Let f(x) be a non-constant polynomial in K[[x1,--- ,x,]]. There exist a finite number

of pairs (Ng,vg) € (N\ {0}) x (N\ {0}), E € T, such that

[T —a="5)Z(s, f.x)

EeT

s

15 a polynomial in q—° with rational coefficients.

1.2 Some Technical Results

In this section, we summarized some results of [22], that will be used later on.

Lemma 1.2.1 ([22, Lemma 8.2.1]). Take a € Ok, x a character of Oj, e € N. Then

| xactop¥iaf it do

a+p¢Ox
.
_4—1y,—en—eNs .
% if a € p°Or, XN = Xtriv
= q—eX(&c<a))N‘a’sN+n—1 Zfa §é peOK7 XN‘1+p5a—1OK = Xtriv
0 all other cases.
\
Proof. The proof of the lemma is an easy variation of the one given in [22]. O

1.2. Some Technical Results
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The next result is an easy consequence of Lemma 1.2.1 and will be used frequently

in the following sections.

Lemma 1.2.2. Toke h(z,y) € Ok|x,y], then

> x(ac (h(zo, yo0) +pz)) [P0, yo) + pz[* [d2|

(Z0,90)€(Fq™)%0p

equals

'—s a1 .
R P ) N v

Z X(ac(h(%’o,yo))) Zf X 7& Xtriv G,’de XlU = Xtriv
(Zo,70) € (Fy *)?
h(f()@o);éﬂ

\ 0 all other cases,

where N = Card{(To,7,) € (F,)? | h(Zo,7y) = 0}, and U = 1 + pOx.

Proof. We have that

3 / (ac (h(zo,40) + #2)) [0, yo) + 2 |dz]
(@o,T0)(Fg¥)2 0K

- ¥ / (ac (h(zo,40) + p2)) |h(zo, %) + p2|® |dz|
Ok

(To,Yo)E(Fg ™
h(zo yo) 0

+ Y x(ac (h(zo, yo) +p2)) |h(wo, yo) + p2|” |dz].
OK

(To,Yo)E(Fg™
h(xo 90)7’50

(1.2.1)

1.2. Some Technical Results
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By Lemma 1.2.1 the first sum in the right hand side of (1.2.1) is equal to

/X (ac (@H)) dz| = ) / y(ac (2) |dz],

OK (Eovgo)e(FqX)zh(zo,yo)
Er— +O0OKk

—5(1— -1 N .
% ZfX = Xtriv

0 all other cases.

Now, for the second sum in the right hand side of (1.2.1), we have

Z . /OK x(ac (h(zo,y0) + p2)) |h(z0,v0) + pz|° |dz|

(To,7o)€(Fq x
h(o,70)7#0

— Z / x(ac w)|dw|,
(To,T0)E€(Fq*)2 h(z0,y0)+pOK
h(T0,7)#0

(q - 1)2 - N if X = Xtriv

Z X(ac(h<50ay0))> Zf X 7& Xtriv and X|U = Xtriv
(To,90)€(Fg™)?
- h(Zo0,90)#0

0 all other cases.

where N = Card{(%o,7,) € (F,”)? | h(To,7,) = 0}, and U = 1 + pOk. O

1.2.1 Igusa’s stationary phase formula

There is an interactive procedure that allows in many cases to calculate the local zeta
functions in an explicit way. We recall here the stationary phase formula. Let ¢, be
the conductor of a character x of Ox" is defined as the smallest ¢ € N\ {0} such that
X is trivial on 1 4 p°Og-.

Denote by Z the reduction mod p of x € Ok, we denote by f(z) the reduction of

the coefficients of f(x) € Ok[z] (we assume that not all of the coefficients of f are in

1.2. Some Technical Results
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Pr). We fix a set of representatives R of F, in Oy, that is, R" is mapped bijectively
onto F? by the canonical homomorphism Of% — (O /Pg)" ~ F7. Now take T C F7
and denote by T its preimage under the aforementioned homomorphism, we denote by

Sr(f) the subset of R™ mapped bijectively to the set of singular points of f in T. We

define also
¢ "Card{t €T | f(t) # 0} if X = Xtriv
VT(f? X) =
q_nCX B Z X(G,C (f(t))) Zf X 7& Xtrivs
L {teT|f(t)#0} mod Px
and
_ ¢ "Card{t € T |  is a non singular root of f} if X = Xuriv
UT(fv X) =

0 if X # Xtrio-

Denote by Zr(s, f,x) the integral [ x(ac f(x)) |f(z)]* |dx].
T

Lemma 1.2.3 ([37, Igusa’s Stationary Phase Formulal). With all the notation above

we have

(1—q g

ZT(S7 fa X) = VT(T? X) + O-T(Tv X) (1 _ qilfs)

+ / ylae f(@) 1F@)]° |da,

St(f)

where Re(s) > 0.

Lemma 1.2.4 ([37, [Lemma 2.4]). Let T' C O} be the preimage under the canonical
homomorphism Ok — Ok [Pk of a subset T C F. Let f(x) € Ok|z] be a polynomial
such that Sing;(K)NT = (), then

1.2. Some Technical Results
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Li(q~°) i
ot X = Xerios

/ xlae F(@) 1f(@)]° |dz] =
T Ly(q™) if X # Xtrivs

where Ly(q~%), L2(¢™*) € Q[g™*].

Now we might mention the following result, which is essential to obtain asymptotic
expansions for exponential sums attached to certain polynomials, as we will see in
Chapter 2.

We recall here that the critical set of f is defined as

Cy 1= Cy(K) = {(x.y) € K* | Vf(z,y) = 0}.

Theorem 1.2.1 ([22, [Lemma 8.4.1]). Assume that char(K) =0 and Cy is contained
in f71(0). Then there exists e > 0 in N, such that Z(s, f,x) = 0 unless ¢, < e , for

X:W’o;{~

1.2.2 Exponential Sums mod p™

We recall that for a given z = Z;’O:m 2, p" € Q,, with z, € {0,...,p—1} and z,, # 0,

the fractional part of z is

{z}p =

Z;ino zpp" ifmg < 0.

Then for z € Q,, exp(2mv/—1{z},), is an additive character on Q,, which is trivial on
Z, but not on p~'Z,.

If T'rg /g, () denotes the trace function of the extension, then there exists an integer
d > 0 such that Tryq,(2) € Z, for |z| < ¢* but Trg/qg,(20) ¢ Z, for some z, with
|z0] = q?*1. d is known as the ezponent of the different of K/Q, and by, e.g. [33, Chap.

1.2. Some Technical Results
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VIII, Corollary of Proposition 1] d > e — 1, where e is the ramification index of K/Q,.

For z € K, the additive character
#(z) = exp(2nv—1 {TTK/QP (p_dz)}p),

is a standard character of K, i.e. s is trivial on Ok but not on p~!Ok. In our case, it

1S more convenient to use
U(z) = exp(2mvV—1 {TTK/QP(Z)}p>,

instead of (-), since we will use Denef’s approach for estimating exponential sums,
see Proposition (3.1.1) below.
Now, let K be a local field of characteristic p > 0, i.e. K =F,((7")). Take

2(T) = i zT' € K,

i=ng

we define Res(z(T')) := z_1. Then one may see that
W(=(T)) = exp(2ny/—T Trg, s, (Res(=(T))).

is a standard additive character on K.
Fixing an additive character ¥ : K — C, the exponential sums mod p™ attached
to f is defined as
B(eif) = [ W(af(@) |dal,
Ok
X

where z = p~"u, u € Of.

Notice that

/ U(ef(@) el = 3 g (e (5) |dal.

. e(Ox /PR)"

1.2. Some Technical Results
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A central mathematical problem consists in describing the asymptotic behavior of
E(z, f) as |z| — oo, this task can be a accomplished by using for instance the following
Proposition, see Corollary 1.4.5 of [12]. See also our results about this mater in the
case of arithmetically non-degenerate polynomials (Theorem 3.1.1).

We denote by Coeff;x Z(s, f, x) the coefficient ¢, in the power series expansion of
Z(s, f,x) in the variable t = ¢~*

Proposition 1.2.1 ([12, Proposition 1.4.4]). Let u € O and m € Z. Then E(up™™)

equals

(t - Q) S, X Tw
Z(0, Xtriv) + Coeffym— (- D1 _tt + Z gx‘1X w) Coeffym—cc0 Z(8, X),

X#Xf’mv

where c(x) denotes the conductor of x, i.e. the smallest ¢ > 1 such that x is trivial on

1+ Py and gy is the Gaussian sum

g=(qg=1)7'g" 3" x(v) Uu/pe).

2€(Og /P
1.3 Newton’s polyhedron and non-degeneracy con-
ditions

There exists a generic class of polynomials named non-degenerated with respect to its
Newton Polyhedron for which is possible to give a small set of candidates for the poles
of Z(s, f). For sake of completeness, we review some basic notions and well-known
results about Newton polyhedron and non-degenerated polynomials, see e.g [14], for

this reason we do not give proofs.

Definition 1.3.1. Given a non-constant polynomial f(x) = Y ajz' € K[z], for x =
I
(21, xy), satisfying f(0) = 0, we define the support of f as: Supp(f) = {l € N";q; #

1.3. Newton’s polyhedron and non-degeneracy conditions
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0}, and the geometric Newton polyhedron T9¢°™(f) of f as:

roecem(f) .= Convex Hull{ U (I +R%)}.
L€ Supp(f)

A face of I'9°*"(f) of codimension 1 is named a facet. Each facet is lying on an

affine hyperplane of the form Y a; ja* = m(a;), where a; is a vector whose coordinates
i

are positive integers. Note that each proper face T of T'9¢?™( f) is the finite intersection

of the facets of I'Y**"*( f) which contain 7.

Definition 1.3.2. Let f be as in definition 1.3.1. For every face T of T'9°"(f), we
define the function face

fr= Z azt.

We set (-) for the usual inner product in R” and identify the dual vector space with
R™.
Definition 1.3.3. For a € R", we define m(a) = inf {{a-z)} and the first meet

zer9eom (f)
locus of a as

Fa) = {z e 1""(f)[{a - ) = m(a)},

where a-x denotes the scalar product " a;x" of a = (ay, -+ ,an) and x = (x1,-+ , T).

Now we define an equivalence relation on R"™ by a ~ a’ if and only if F(a) = F(a').
In particular F'(0) = I'*“"(f) and F'(a) is a proper face of ['*™( f), if a # 0. Moreover
F(a) is a compact face if and only if a € R" . A vector a € R” is called primitive if
the components of a are integers whose greatest common divisor is one. Furthermore
for every facet of '™ (f) there exist a unique primitive vector in N\ {0}, which is
perpendicular to that facet.

We will give a selection of some definitions and properties of a polyhedral subdivi-
sion of R".

If 7 is a face of T'9°°™( f), we define the cone associated to T as

Ar={aeR}| F(a) =T}

1.3. Newton’s polyhedron and non-degeneracy conditions
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Let 1, -+, v, be the facets of ['Y*“"*( f) containing 7, and let a4, - - - , a, be the orthog-
onal vectors to 71, -+ , v, respectively. Then one proves that R> \ {(0,---,0)} is the
disjoint union of the A, = {Aa; + -+ Aa, | A\, -+, A\ € Ryp}, and its dimension is
equal to n — dim 7. This gives the geometry of the other equivalence classes A,. It is
well-known that the closure of A is A := {a € R : F(a) D7} = {Mar + -+ + Aeae :
Xi € R, N\ >0}

Definition 1.3.4. Ifay, -+ ,a. € R"\{0}, we call {\a1+---+Aeae: N\ R, N\, >0},
the cone strictly positively spanned by the vectors ai,--- ,a.. Suppose a cone A is
strictly positively spanned by vectors ay,--- ,a. € R"\ {0}. If ay,--- ,a. are linearly
independent over R, A 1is called a simplicial cone. If moreover ay,--- ,a. € Z", we say
A is a rational simplicial cone. If {ay,--+ ,a.} is a subset of a basis of the Z- module

7", we call A a simple cone.

Remark 1.3.1. 1. One can divide the cone A, associated to T into a finite number
of rational simplicial cones such that each A; in the subdivision is spanned by

vectors from the set {ay,--- ,a.}, without introducing new rays.

2. One can even find a partition of A, into simple cones, but in general it will then

be necessary to introduce new generators.

Summarizing given a polynomial f(z) € Klz], f(0) = 0, with Newton polyhedron

[9eom(f), there exists a finite partition of R’} of the form:
RY ={(0,---0)yul A,

where each A, is a simplicial cone contained in an equivalence class of ~. Moreover,
by Remark 1.3.1, it is possible to refine this partition in such a way that each A; is a
simple cone contained in an equivalence class of ~.

Once we have a simplicial conical subdivision subordinated to I'9°°™( f), it is possible
to reduce the computation of Z(s, f, x) to integrals over the cones in A.. In order to do

that let f(z) € K[z] be a non-constant polynomial satisfying f(0) = 0, and let ['%*™( f)

1.3. Newton’s polyhedron and non-degeneracy conditions
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be its Newton polyhedron . We fix a simplicial conical subdivision {A;};cpseom(s) of

R? subordinated to I'**™(f), we set

=@ wn) € O [ (v(z1), -+ 0(20)) € Ar,

Z(s, fix, A / x(ac f(2))|f(2)|® |dz|, and

!
>
3

(s, f.x, OF) : /xacf (@) |dz].

Therefore we have that,

Tcl"geom(f)
The following definition plays a relevant role in the study of local zeta functions by

Newton polyhedron techniques.

Definition 1.3.5. A non-constant polynomial f, satisfying f(0) = 0, is called non-
degenerated with respect to its Newton polyhedron I'9““"(f) in the sense of Kouch-

nirenko, if for each compact face T of T'9™( f)

ofy  Ofr _Ofr
ory  Ory - Ox,

f‘l’(x17"' 7xn>: :07

has no solution in (K \ {0})™.

There are other variations of the same condition, see e.g [14].
We now show that the stationary phase formula gives a small set of candidates for

the poles of Z(s, f,x) in terms of the Newton polyhedron I'9¢™( f).

Theorem 1.3.1 ([37, [Theorem A]). Let K be a non-Archimedean local field, and
let f(x) € Oglx] be a polynomial globally non-degenerate with respect to its Newton
polyhedron T'9¢°"(f). Then the Igusa local zeta functions Z (s, f, x) is a rational function

of ¢—° satisfying:

1.3. Newton’s polyhedron and non-degeneracy conditions
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1. if s is a pole of Z(s, f,x), then

_ay] N 27 k

kel
m(a,) logg m(a,)

S =

for some facet v of I'9°°™( f) with perpendicular a.,, and m(a,) # 0, or

2

s=-1+
log q

k, ke Z;

2. if X # Xtriv and the order of x does not divide any m(a.) # 0, where v is a facet
of T9e™(f), then Z(s, f,x) is a polynomial in q~°, and its degree is bounded by

a constant independent of x.

1.3.1 Example

Example 1.3.1. Let f(z,y) = (y° — 2%)? + 2*y* € K[z, y]. We assume that the cha-
racteristic of the residue field of K is different from 2 and 3. Note that, the support of
f(x,y) is Supp(f) = {(4,0),(2,3),(4,4),(0,6)}. Note also that the origin of K?* is the
only singular point of f and this polynomial is degenerate with respect to T9¢™(f).

Ay
(0,6)

(4,4)

(4,0)

Figure 1.1:  T9°™((y® — 2?)? 4+ 2*y*) and the conical partition of R? induced by it.

Now, the simple conical subdivision of R% subordinated to the geometric Newton

1.3. Newton’s polyhedron and non-degeneracy conditions
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polygon of f(x,y) is RZ = {(0,0)} U U?:1 A;, where the A; are in Table 1.1.

\ Cone \ Generators H

A ] (0,1)Ry 1\ {0}

Ay | (0,D)R\ {0} + (1, DR\ {0}
As | (LR \ {0}

Ay | (L DR {0} +(3,2)Ry 1\ {0}
As | (3,2)Ry \ {0}

Ag | (3,2)Ry \ {0} + (2, DR, \ {0}
A7 | (2, DR, \ {0}

Ag (2, DR, + (1,0)R

Ag | (L0)Ry\ {0}

Table 1.1: Conical subdivision of R2 \ {(0,0)}

1.3.2 An explicit formula for Z(s, f, x)

There is another proof of the fact that Z(s, f, x) is a rational function of ¢~%. In [14]
the authors provide a formula for Z(s, f, x) that holds if f is non-degenerated over F,
with respect to all the faces of its Newton polyhedron and if the conductor ¢, of x is

equal to 1.

Theorem 1.3.2. [14] Let p be a prime number. Let f be as in definition 1.5.1. Suppose
that f is non-degenerated over the finite field I, with respect to all the faces of its
Newton polyhedron T9°°™(f). Let x be a character of Z) with conductor ¢, = 1.
Denote for each face T of T'9°™(f) by N, the number of elements in the set

{a € ()" | fo(a) =0}

Let s be a complex variable with Re(s) > 0. Then Z(s, f,x) = >,  L:Sa,, with
reracom (f)

(g = 1)" = gN-5=5)  for X = Xtriv,
" > x(f-(a) for X # Xuriv,

ae(Fg)"

L, =

1.3. Newton’s polyhedron and non-degeneracy conditions
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and Sa, = Y. q W8 for each face T of T9°°™(f) (including T = 9™ (f)),
with o(k) = k:eNnrﬁc;, and m(k) as in defintion 1.3.3.

We have SAFgeom(f) = 1 and the other Sa_, can be calculated as follows. Take a
partition of the cone A, associated to the proper face T into rational simplicial cones

A;. Then clearly Sa, = ), Sa, where the summation is over the rational simplicial

cones A\; and

SAZ- _ Z qo(k)—m(k:)s.

keEN"NA;
Let A; be the cone strictly positively spanned by the linearly independent vectors ay, - -« ,a, €
N\{0}. Then
Z qa(h)—i-m(h)s
h

SAZ’ = (qa(al)er(al)s _ 1) . (qa(ar)+m(ar)s _ 1)’

where h runs through the elements of the set

Znﬂ{Z)\JCLJ‘Og)\J<17fOT‘j:17 ,T}.
=1

Remark 1.3.2. 1. Clearly Sa. is a rational function in q=° for s € C.

2. Note that L. depend on the coefficients of the polynomial f and is a rational

function in q=* for s € C.

1.3. Newton’s polyhedron and non-degeneracy conditions



Chapter 2

Igusa’s Local Zeta Functions for
Arithmetically Non Degenerate
Polynomials

In this chapter we study the twisted local zeta function associated to a polynomial in
two variables with coefficients in a non—Archimedean local field of arbitrary character-
istic. Under the hypothesis that the polynomial is arithmetically non degenerate, we
obtain an explicit list of candidates for the poles in terms of geometric data obtained
from a family of arithmetic Newton polygons attached to the polynomial, see Theorem
2.4.1. The notion of arithmetical non degeneracy due to Saia and Zuniga-Galindo is
weaker than the usual notion of non degeneracy due to Kouchnirenko, see Section 2.2.

This chapter is an extended version of the results in [1].

17
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2.1 Arithmetic Newton Polygons and Non-Degene-

racy Conditions.

2.1.1 Semi—quasihomogeneous polynomials

Let L be a field, and a,b two coprime positive integers. A polynomial f(z,y) € L[z, y]

is called quasihomogeneous with respect to the weight (a,b) if it has the form

l
flz,y) = cx™y” H(y“ — ), c € L*.
i=1

Note that such a polynomial satisfies f(t%z,t%y) = t?f(z,y), for every t € L*, and
thus this definition of quasihomogeneity coincides with the standard one after a finite
extension of L. The integer d is called the weighted degree of f(z,y) with respect to
(a,b).

A polynomial f(z,y) is called semi—quasihomogeneous with respect to the weight

(a,b) when
by

=0
and the f;(z,y) are quasihomogeneous polynomials of degree d; with respect to (a,b),
and dy < dy < -+ < d;,. The polynomial fy(z,y) is called the quasihomogeneous
tangent cone of f(z,y).

We set

lj

fila,y) = ey’ [[(v" — aija®)®, ¢; € L™
=1

We assume that d; is the weighted degree of f;(z,y) with respect to (a,b), thus
l.

J
dj = ab Z €ij + au; + b?}j.

i=1

2.1. Arithmetic Newton Polygons and Non-Degeneracy Conditions.
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Now, let f(z,y) € Llx,y] be a semi-quasihomogeneous polynomial of the form
(2.1.1), and take 6 € L™ a fixed root of fy(1,y*). We put e;y for the multiplicity of ¢

as a root of f;(1,y*). To each f;(x,y) we associate a straight line of the form
wjﬂ(Z) = (dj - dO) + €567, .] = 07 17 T 7lf7

where z is a real variable.

Definition 2.1.1. 1. The arithmetic Newton polygon I';g of f(z,y) at 0 is

Lo ={(z,w) € Ri | w < min {w;e(2)}}
0<j<liy

2. The arithmetic Newton polygon TA(f) of f(x,y) is defined as the family
PA(f) ={Tpo |0 € L, fo(1,6%) = 0}.

If @ = (0,0) or if Q is a point of the topological boundary of I'fy which is the
intersection point of at least two different straight lines w,¢(2), then we say that Q is a
vertez of [A(f). The boundary of I'j ¢ is formed by r straight segments, a half-line, and
the non—negative part of the horizontal axis of the (w, z)—plane. Let Qx, k =0,1,--- ,r
denote the vertices of the topological boundary of I'fy, with Qy := (0,0). Then the

equation of the straight segment between Q1 and Q is
wro(2) = (D —do) +exz, k=1,2,--- 1. (2.1.2)
The equation of the half-line starting at Q, is,
Wrt1,0(2) = (Dyy1 — do) + €r412. (2.1.3)

Therefore
Qr = (T, (Dx — do) +&7k), k=1,2,--1, (2.1.4)

2.1. Arithmetic Newton Polygons and Non-Degeneracy Conditions.
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where 7 = % >0, k=1,2,---7. Note that D}, = d;, and ¢, = e;j, 9, for
some index j, € {1,...,l;}. In particular, Dy = dy, €1 = egy, and the first equation
is wig(z) = e12. If Q is a vertex of the boundary of I';y, the face function is the

polynomial

fQ(xay) = Z fj(xvy)’ (215)

wj,0(Q)=0

where w; ¢(2) is the straight line corresponding to f;(z,y).

Definition 2.1.2. 1. A semi-quasihomogeneous polynomial f(x,y) € Llz,y] is
called arithmetically non-degenerate modulo p with respect to I'yg at 0, if the
following conditions holds.

(a) The origin of F2 is a singular point of f, i.e. £(0,0)=Vf(0,0)=0;
(b) f(z,y) does not have singular points on (F))?;

(c) for any vertex Q # Qg of the boundary of 'y g, the system of equations

of of
Foliny) = 52(w9) = 2. =0,

has no solutions on (IF)*.

2. If a semi-quasihomogeneous polynomial f(z,y) € Llz,y| is arithmetically non-
degenerate with respect to I'yg, for each § € L* satisfying fo(1,y*) = 0, then
f(z,y) is called arithmetically non-degenerate with respect to TA(f).

2.2 Arithmetically non-degenerate polynomials

Let a, = (a1(7), a2(7y)) be the normal vector of a fixed edge v of I'*™(f). It is well
known that f(x,y) is a semi—quasihomogeneous polynomial with respect to the weight

a~, in this case we write

Ly
flay) =Y f) (@),
=0

2.2. Arithmetically non-degenerate polynomials
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where f] (x,y) are quasihomogeneous polynomials of degree d; ., with respect to a., cf.

(2.1.1). We define
L3(f) = {Tso |6 € L™, f3(1,67) =0},

i.e. this is the arithmetic Newton polygon of f(z,y) regarded as a semi quasihomoge-

neous polynomial with respect to the weight a.,. Then we define

A A
= U mo.
~ edge of I'geom( f)
Definition 2.2.1. f(z,y) € L[z,y| is called arithmetically non-degenerate modulo p
with respect to its arithmetic Newton polygon, if for every edge v of T'9°°™( f), the semi—
quasthomogeneous polynomial f(x,y), with respect to the weight a, is arithmetically

non-degenerate modulo p with respect to T2(f).

2.3 Examples

In this section we show two examples to illustrate the geometric ideas presented in the

previous sections.

2.3.1 The local zeta function of (3° — 2%)? + 2y

This examples are adapted to our case from [27]. We obtain an explicit list of candidates
for the poles in terms of geometric data obtained from a family of arithmetic Newton

polygons attached to the polynomial in each example.

Computation of Z(s, f,x,A;),i=1,2,3,4,6,7,8,9.

These integrals correspond to the case in which f is non—degenerate on A;. We show
the Newton polygon and the correspond conical subdivision of R% in the figure 1.1 of

the example 1.3.1.

2.3. Examples
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The integral corresponding to Az, can be calculated as follows.

(5, .30 As) = }j[ vac f(@, y)If (@, y)|"|dedy]

nORxprOK

=g / X(ac (p"y? = 2)? + pTaty ") (07" — 2)? + pTaty || dadyl.
n=1 O;f

We set g3(z,y) = (p"y® — 22)% + p*a?y?, then gy(z,y) = 2* and the origin is the only
p p 3

singular point of g;. We decompose Of(2 as

0x = || (a.b)+(pOx)?.
VE(F

(@,b)e(Fy)?

thus

Z<S7f7X7A3) = Zq72n74ns Z /
n=1 (@b)e( (a,b)+

x(ac gs(z,y))|gs(z, y)|*|dzdyl
(pOK)?

=§)%WW2§ju/ x(ac gaa+ b+ py))lgs(a + pa,b -+ py)lldady.
n=1 ( ) ]F)2

Now, by using the Taylor series for g around (a, b):

Jg Jg
gla+pz,b+py) =g(a,b) +p <a$(a b)x + 8y(a ,b)y ) + p?(higher order terms),

and the fact that %—%(E, b) = 4a> # 0 mod p, we can change variables in the previous

integral as follows

g3(a+pz,b+py)—gs(a,b)
’ (2.3.1)

Z1 =
22 =Y.

This transformation gives a bianalytic mapping on O% that preserves the Haar measure.

2.3. Examples
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Hence by Lemma 1.2.2, we get

Z(Svf7X7A3) =

§o g2 0 / x(ac (gala,b) + pz1))lgala, b) + pz1)|* |dzl,
n=1 (@b)e(Fy)%0
(

—2-ds(1_,-1)2 .
1 (l—q(*Q*ZS)) Zf X = Xtriv

= (g ")

Ty if X4 = Xtrian‘U = Xtriv

0 all other cases,

where U = 1 + pOk.
We note here that for i = 1,2,4,6,7,8 and 9, the computation of the Z(s, f, x, A;)
are similar to the case Z(s, f, x, Asz).

Computation of Z(s,f, v, As) (An integral on a degenerate face in the sense

of Kouchnirenko)

265, f A =S / v(ae f(z,y) |f(a,y))"|dady], (232)

=1
n pSnO}; Xp2n O}X(

— Z g o izns / x(ac((y® — 22)* + p>aty"))|(y° — 2*)? + p™aty|® |dady].
n=1 OIX{Q

Let f™(z,y) = (y® — 2%)? + p¥"ay?, for n > 1. We define

d: 0P — O
K K (2.3.3)
(r,y) — (2%y,2%y).

® is an analytic bijection of O%* onto itself that preserves the Haar measure, so it can

be used as a change of variables in (2.3.2). We have (f™ o ®)(x,y) = x12y4ﬁn/)(x, y),

2.3. Examples



Igusa’s Local Zeta Functions for Arithmetically Non Degenerate Polynomials

24

with ]?(\"/)(a:, y) = (y — 1)% + p®28y?, and then

I(s, f™,x) =

/ x(ac((y® — 2°)* + p¥2'yh) |(v° — 2°)” + p¥ay*|® |dady],
0)?

— [ Macte 50w 9) 1) oy

X2
OK

Now, we decompose O5* as follows:

yoZ1 mod p

where yo runs through a set of representatives of F in Og. By using this decomposi-

tion,
I(s, f™,x) =
S0 [ elao+ 9w+ ) Ldod
yoZ1 mod p j=0 0x2
K
+> 0 / X(2[L+ p ) 0 (w14 p7*y)) |dady.
j:O O}X(Z
where

X (22[1+ p Y (2,1 4 pity)) =

X(@2 [+ Iy FO) (2,1 4+ pP ) x |2 21+ pP g O (2, 1+ )

2.3. Examples



Igusa’s Local Zeta Functions for Arithmetically Non Degenerate Polynomials 25

Finally,

s f900 = 3 a7 [ Maclfile) ldsdy

yoZ1 mod p j=0 0x2
K

4An—2

# 3w [l (o) o

Jj=0 2
Ox

Lginns / (s, 9)) [falar )| |dady]

X2
OK

# Y a [ Maelile) ldsdy),

-
= (05)?

where

fi(@,y) = 2% (yo + P y) ((yo — 1+ pTy)? + p 2B (yo + p Y)Y,
fo(z,y) = 22 (1 + p7y)(y? + p*r= 2028 (1 + p/Ty)h),

fs(z,y) = 21+ p ) (y° + 22 (1 + p7 )Y,
and
falz,y) = 22 (L4 pMy) (p* 275y + 28(1 + pTy)h).

We note that each f;, (i = 1,2,3,4), does not have singular points on (F;)Q, SO we
may use the change of variables (2.3.1) and proceed in a similar manner as in the
computation of Z(s, f, x, Asz).

We want to call the attention of the reader to the fact that the definition of the f;’s
above depends on the value of |(p/™y)? + p*"2®*(1 + p/Ty)*|, which in turn depends
on the explicit description of the set {(w,z) € R* | w < min{2z,8n}}. The later
set can be described explicitly by using the arithmetic Newton polygon of f(z,y) =
(y® — 2?)% + z'y*, see Example 1 in Section 2.4.3.

2.3. Examples
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Summarizing, when x = Yriv,

(1 — g T 165(1

Z(s, fy xuriw) =247 (1 — g~ )+ (1— (q 2— Zs) ) + (1— q—2 4s§<1 —)5 125)

. g8 1(1 — ¢ 1)? + g1 — ¢ ) (1—-q¢")2q 6 14s
(1— ¢ 36s)(1 — g5 12) (1— 365 (1= 1-25)(1 — g5 125)
(L—q )% (@=2)A—gHg ™  ([1-q (")

o (1 —q1=25)(1 — ¢—9-2%) + (1 — g=5129) + (1 — q—9-209)

—9-20s

= q_l_qs)(l — ) {7 = )N+ (1 ¢ )1 —¢ )

(1= ¢ )},

(2.3.4)

where N = (¢ —1)Card{z € F) | 2> = —1} and T = Card{(z,y) € (F))*|y*+ 2% = 0}.

When x # Xtriv and x|14p0x = Xtriv We have several cases: If X% = Xeriv, We have

(1 o q71)2q76714s (1 _ q71)2q797205
Z(S7 f, X) = (1 — q_l_ZS)(l _ q—5—125) B (1 _ q_1—25)(1 _ q—9—2os)'

When x?* = X¢riv,

q—3—4s(1 _ q—l) N q—2—4s(1 _ q—1)2
(1—qg2%) (1—qg2%)
q77716s<1 _ q71)2
(1 _ (]_2_48)(1 _ q—5—12s)'

Z(s, f,x)=q ' (1—q ")+

_|_

In the case where X% = y45», We obtain

) _ 78 185(1 ) q7376s<1 - q71)2
Z(s, f,x) (1— g 36s)(1 — q—5 125) + (1 — q36s)
g1 —q) 1 1

+ =D +q¢ (1—q ).

It X12 = Xtriv, then

(@=2)(1—g g™
(1 _ q—5—125) ’

Z(s, f,x) =X W)X o — 1)

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

2.3.
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where X is the multiplicative character induced by x in F. Finally for X2 = Yiriv

(1 _ qfl)(q7107203) ‘

Z(87 f7 X) = (1 _ q—9—208)

(2.3.9)

In all other cases Z(s, f,x) = 0.

2.3.2 The local zeta function of (y* — 22)%(y® — ca?) + 2%y*

Let g(x,y) = (v* — 2%)%(y® — c2?®) + 2'y*, with ¢ € OF and ¢ # 1 mod p. In this
example we assume that the characteristic of the residue field of K is different from 2
and 3. As in example 2.3.1, the origin of K is the only singular point of g(x,y) and it
is degenerate with respect to its geometric Newton polygon. The conical subdivision

of Ri subordinated to the geometric Newton polygon of g(z,y) is the same as in Table

1.1 and Figure 1.1.

Computation of Z(s, g, x,4;),i =1,2,3,4,6,7,8,9.

These integrals correspond to the case in which g is non—degenerate on A;. The integral

corresponding to Ag can be calculated as follows.

Zogxd) =Y [ Macglew) ole)lidd,

X X
p3n+2mOK Xp2n+'m OK

= Z Z q(—5—185)n+(—3—98)m / X(CLC 96(% y))|ge(x, y)|s |d$dy|,

X2
OK

3
I
A
3
I
=

where go(z,y) = (y° — p"2?)*(y* — cp™2?) + p>* "2y, note that gs(z,y) = y”. By
using the change of variables (2.3.1) with the function g¢ and by applying Lemma 1.2.2,

2.3. Examples



Igusa’s Local Zeta Functions for Arithmetically Non Degenerate Polynomials 28

we obtain

—8-27s(1_—1)2 ,
(1_(51—3—95)((1_375)7185) if X = Xtriv

Z<5797X7 AG) =9

q78727s(1_q71)2

(I—q3-95)(1—q 5~ 189) if X9 = Xtriv; X’U = Xtriv

0 all other cases,
\

where U = 1 + pOk.

We note here that for i = 1,2,3,4,7,8 and 9, the computation of the Z(s, f, x, A;)
are similar to the case Z(s, f, x, A¢).

Computation of Z(s, g, x,As) (An integral on a degenerate face in the sense

Kouchnirenko)

265,90 85) = 3 / y(ae g(z,9)lg(z, y)|*|dedy],

=1
n pSn O;; XanO}X(

:Zq—5nfl8ns / x(ac(g™ (z, y)) g™ (x, y)|*|dzdy].
n=1

X2
OK

where ¢ (2, ) = (1> —22)%(y> —ca®)+p>z'y?, for n > 1. We use the map ® defined in

(2.3.3), giving g™ o ®(x, y) = &'%y0¢ (x, y), with g™ (z,y) = (y—1)*(y— ) +p* 2y,

then we have to compute

15,9 x) = / yac(g™ (2, 9)) g™ (x, y)|*|dzdy],

X2
OK

— [ aela™s9 (e, ))]g . ) dod|.

X2
OK
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We decompose O as follows:

OIX(Q _ (01X< X {yo+ pOk | yo Z 1,¢ mod p}) U (OIX( x {1 ‘HJOK})
U (0% x {c+pOk}),

where yo runs through a set of representatives of F' in Ok. By using the same strategy
of example 2.3.1: we use an analytic bijection ® over the units as a change of variables
and then we split the integration domain according with the roots of the quasihomo-
geneous part of g. In each one of the sets of the splitting, calculations can be done by

using the arithmetical non—degeneracy condition and/or the stationary phase formula.

Thus we get
1. X = Xtriv,
72763(1 _ qfl) q77724s(1 _ q71)2
Z ) =20 (1 — g ) + 2
(s, f, Xtriv) q ( q )+ (1 — q=2-69) + (1 —q=2765)(1 — ¢=5-18%)
. q—8—27s(1 _ q—1)2 q—3—9s(1 _ q—l)
(1 _ (]73798)(1 _ q75718s) (1 _ q73795)
N q—6—205UO(q—s) q—7—205(U1(q—s> + (1 o q—1)2>
(1 —g7=o)(1 — ¢ 072%) (I =g 1)1 — g7 72%)
N (1 _ q—l)Qq—G—QOS B (1 _ q—l)Qq—G—QOS

(1—q125) (1 — g 518) (1 — g 1-25)(1 — ¢ 6-205)
(1 _ q—1)2<q—6—195) (q _ 3)(1 _ q—l)q_6_185

+(1 _ q—5—188>(1 _ q—l—s) (1 _ q—5—183>
LA=aDH@ ™) (A= )@
(1— g 6-205) (1— ¢ 7209
(2.3.10)
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where
Us(q™) = ¢ (1= ¢ )Ny + Ta(1 — ¢ ) {(g — 1)* = N},
Ny = Card{(a,b) € (F})? | @5 (1-7) +a°) = 0},
= x(ac(a®(b*(1 = ¢) +a*))),
(@b)ery?
(5° (1-0)+a%)£0
Uil ) =q > (1= ¢ YN+ T3(1 — ¢ ") {(¢ — 1)* = N},
= Card{(a,b) € (F;)Q | 3858 — 1) + a2 = 0},
and

Ty= > xlac(a®(®*(1 - c) +a?))).

(@,b)elF ;>
(6°(1—2)+a2)#£0

2. X2 = Xitriv, and X|U = Xitriv, U=1+ ]JOK, we have

_ o —1)2,—6-20s
Z(s, f,x) =x(1—7¢) (11q2 Il 5-18
(1 =g ) (1 —g>1%)
__(1 __) (1 —q 1)2q 6—20s
X ¢ (1— ¢ 1=2)(1 — g—6-20%)
(1_q Ye(go- 195) (2.3.11)
+x(c (e — 1)
R e e
e oo (1—q )¢ 205)
+X(C (C - 1) )(1 _7 205)(1 —1—s>'
where X is the multiplicative character induced by x in F.
3. X6 = Xtriv and X|U = Xtriv,
Z(s, f,x) =
—3—6s -1 —2—6s —1)2
N 1y, TP =g ) (A -
X(=¢) (q (1—q")+ == (2.3.12)

o ()
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4. X” = Xtriv and X[ = X¢riv, We obtain

—8—-27s 1— —1\2 —3—9s 1— —1\2
Z(s. fiy) = —1 -g)" o 0-q)
(1 _ q—3—95)<1 _ q—5—18s> (1 _ q—3—95) 5313
q—4—98(1 _ q—l) ) . ( T )
+ 1= ) +q (1—qg).
5. X" = Xtriw and Y| = Xtriv, then
T (g=3)(1L—g g "™
Z(s, f,x) =X (o — 1)) (EP== (2.3.14)
6. X20 = Xtriv and X‘U = Xtriv
A=) (=) ™)
Z(s, f,x) = == — X(@) =" (2.3.15)

7. In all other cases Z(s, f,x) = 0.

2.4 Integrals Over Degenerate Cones

From the examples in Section 2.3, we may deduce that when one deals with an integral
of type Z(s, f, x,A) over a degenerate cone, we have to use an analytic bijection ® over
the units as a change of variables and then, split the integration domain according with
the roots of the tangent cone of f. In each one of the sets of the splitting, calculations
can be done by using the arithmetical non—degeneracy condition and/or the stationary

phase formula. The purpose of this section is to show how this procedure works.

2.4. Integrals Over Degenerate Cones
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2.4.1 Some reductions on the integral Z(s, f,x, A)

Proposition 2.4.1 (|27, Proposition 5.1]). Let f(z,y) € Oklz,y] be a semiquasiho-

mogeneous polynomial, with respect to the weight (a,b), with a,b coprime, and

ly
FU (@, y) = f(pema, ) = pl T f (),
j=0

where m > 1, and

L

fi(x,y) = cjatiy® H(y“ — a;2%)% c; € K*. (2.4.1)

i=1

Then there exists a measure—preserving bijection

d: 0 — O

(xv y) — ((I)l(x7 y)? (I)Q(xv y))a

such that F) (x,y) == f™ o ®(z,y) = xNinij%(x,y), with
Fom(a,y) = pl=m iz, y),
=0

where one can assume that f;(z,y) s a polynomial of the form

L

fj(u, w) = cutin®i H(w — oy ). (2.4.2)

=1

After using ® as a change of variables in Z (s, f, x, A), one has to deal with integrals
of type:

I(s, F™, x) = / x(ae (F™(z,4))) [F (2, y)|* |dedy.

X2
OK

Integrals I(s, ™, x) will be computed in Propositions 2.4.2 and 2.4.3. The proof
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of these propositions are based on the corresponding Proposition in [18], but several
simplifications were obtained. For the sake of completeness we present here the details
of the proofs, also with the aim of introduced some notation that we will need in the

remain of the chapter.

Proposition 2.4.2 ([27, Proposition 5.2]).

m UO(q787 X)
](S,F( ),X):m‘i‘ Z J0(57m7X)7
{0€0k | fo(1,60%)=0}

where Uy(q%, x) is a polynomial with rational coefficients and

J9<57 m, X) =

>, ot / x(ac(F™ (0 + ")) [P (2,0 + p"y)[* |dudy].

k=1H(f0)
K

Proof. From Proposition 2.4.1

Iy Ly
FOi (g, ) = oMo [ S pdmFp ) | =S pdim gy (2.43)
j=0 Jj=0
where
L
£ () = eja Ny B Ty — ). (2.4.4)

=1
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Set

R(fo) := {0 € Ok| fo(1,0%) =0}

(o) = max {o(0—0)}, and
9,9’67£R(fo)

B(0) = B(I(fo),0) := O x (6 +p" " ")0O),

for 0 € Ok, with v() < I(f). By subdividing O3* into equivalence classes modulo

p! o) we obtain that,

I(s, F™ )= Y [ x(ac(F™ (z,y))) [F"(2,y)|* |dedyl
0¢R(fo)p(g)

b [ R ) 1O )l eyl

0€R(fo)g(g)

Now we use the fact that O = L2, (p*O%) in B(6). Thus B(#) = O} x (6 + p*O}),

where k > 1+ [(fy) and our integral becomes

(0= Y ™ [ el e ) (P ) e
0¢ R(fo) k=1+1(fo) B(6)
P YOS * [ xaeE ) [P )l [dndy). (2.45)

0R(fo) k=1+1(fo)  p(g)

From (2.4.4), we have that for any (z,y) € O3,

fi(@,0 4 p*y)

lj e s .
cjp i tNi(  phy)PitMi 1:[1 ((0 — i) + pFy)™ if f7(1,0) #0
= P g
ijAjJrNi(Q + pky)Bj+Mi 1_11 ((9 — ai,j) + pky) ©J pkeioajyeiod' if f;(l, 9) =0,
{0

2.4. Integrals Over Degenerate Cones



Igusa’s Local Zeta Functions for Arithmetically Non Degenerate Polynomials 35

where 0 = «;, ;. We put

(2, y)
2 AN 4 phy) Bt M T4 ((0 — i) + phy) ™ if f7(1,0) #0
TAEN() + phy) BT, (0 = aig) + phy) ™ preiosysior if f7(1,0) =0,

i#i0

and note that in both cases the v; are polynomials satisfying |vy;(x,y)| = 1, for any

(z,y) € OF*. By abuse of notation we will write

(2,0 +pty) = cjy;(a, y)pteriyes. (2.4.6)

Finally we return to the computation of the integral I(s, F™ ). Note that if 6 ¢

R(fo) then from (2.4.3) and (2.4.6) we get that F(™(x, 6 + p¥y) has no singular points
over (F;)Q, therefore we may apply Lemma 1.2.3 in 2.4.5 to obtain the desired conclu-

sion. L]

The next step is to compute the integral Jy(s, m, x), we introduce here some nota-
tion. For a polynomial h(z,y) € Ok[z,y] we define N;, = Card{(Zo, ;)
€ (F,)? | h(Zo, o) = 0}, and put

—5 1_ —1 N
M, = 1<_ TN (1PN, and Sh= Y lac (h(a.h)).
q (@b)e(Fy*)?
h(@,b)#0

Proposition 2.4.3. We fiz 0 € R(fy) and assume that f(x,y) is arithmetically non
degenerate with respect to I'yg (see Definition 2.1.2) . Let 7;,1 = 0,1,2,--- ,r be the
abscissas of the vertices of Iy, ,, cf. (2.4.2) and Definition 2.1.1.
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1. Jo(s,m, Xiriw) 1S equal to

r—

M

1 (Dors—doyms q—(1+sai+1)([mn}+1) _ q_(1+55i+1)([mﬂ'+1]—1)
i—0 q 1 J— q7(1+58i+1) g

—(14sep41)[mr]
—H]_(Drﬂ—do)ms <q o

—(Dij—do)ms—(se;|m;])
1— q_(1+sgr+1)> Mgr + Z q 0 MG7
=1

with

9(2,y) = Yip1 (x, )y 20 + pm PP (higher order terms),

9-(2,y) = Y1 (2, y)yr+0 + p™ P =L (higher order terms),

and

Glr,y)= > ylzyy™,

ws,0(Vi)=0
where w; ¢(Z) is the straight line corresponding to the term

pllidomikeson; (z, y)y©ic,

of. (2.1.5).

2. In the case X|1+p0x = Xtrivs Jo(s,m, X) is equal to

r—1 q—(1+86i+1)([mﬁ']+1) _ q—(1+56i+1)([mﬂ'+1]—1)
)=

Z q—(Di+1—d0)m8
1— q*(1+55i+1)

1=0
g~ (rssrlm)

—(Dy41—do)ms —(D;—do)ms—(se;[mm])
+q +1—do (1 — q—(1+55r+1)> Zgr + Z q 0 € .
=1

3. In all other cases Jo(s,m,x) = 0.
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Proof. From and (2.4.3) and (2.4.6) we have

Ly
FU (2,0 4+ pry) = cyplh otk (z,y)yie. (2.4.7)

=0
Then we associate to each term in (2.4.7) a straight line of the form w; (%) := (d; —
do)m + e;g2, for j =0,1,...,1;. We also associate to F(™(z, 0 + p*y) the convex set

~ A~ 2 ~ . ~
Lromorpy = {(Z0) €RL |0 < min {u;()}}-

As it was noticed in [27], the polygon I pm) (g1 pk,) IS @ rescaled version of I'yg. Thus
the vertices of I'pom)(, g4pky) can be described in terms of the vertices of I'yp. More

precisely, the vertices of I' pim) (g1 phy) are

- (0,0) ifi=0

(m7i, (D; — do)m +me;;) ifi=1,2,...,r,

where the 7; are the abscissas of the vertices of I’ Fim) g- The crucial fact in our proof is
that F™(z,0 + p*y), may take different forms depending of the place that k occupies
with respect to the abscissas of the vertices of I'pm)(; g4pky)- This leads to the cases:
(i) mm; < k < m74q, (ii) k > m7,, and (iii) k = mm;.

Case (i): mn; < k < m7i;q. There exists some j; € {0,...,Is} such that
(dj - do)m + k‘Ejl = (Di—i—l - do)m + k€i+17

and

(dj — do)m + kfffjl < (d] — do)m + k’Ej,

for j €{0,...,1¢}\ {7:}. In consequence

F(m) (ZL‘, 0+ pky) — p_(Di+1_dO)m_5i+lk‘(,yi+1 (:L“, y)yez’+1,9 + pm(Di-H—Di)(, .. ))
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for any (z,y) € O%*, where

Yipr(,y)y e+ pr P mPI( )

= Yip1(z,y)yere 4+ pmPir1=Di) (terms with weighted degree > Dy 4).
We put g(z,y) = yirr (2, y)ye+10 + pPi1=PI (). Then

/ x(ac(F™ (z,0 + p*y))) |F™ (x,0 + pFy)|* |dzdyl

X2
OK

= g~ (P dimeeiaks / v(ac(g(x,y)) lg(a,y)|" |dzdy].

X2
OK

By using the following partition of OIX{Q,

Ox = || (a.0)+(pOk), (2.4.8)
(@b)e(Fg)?
we have
| Naclatv) ) o
ox?
= Y [ Macs@u)lgte.y)lldedy (2.4.9)
(E,E)E(]F; )2(a,b)+(p0K)2
= > [ xecglatpob+py) lota+ b+ py)l dody|.
G
By definition of 7;(z,y) ( in proof of Proposition 1.5.2), we see that g—g(x,y) =

eir1oy“+10~1 then %(@,b) £ 0(mod p) for (@,b) € (F¥)2. Therefore the following
) oy q
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is a measure preserving map from O% to itself:

21 =X
(2.4.10)
g(a+pz,b+py)—g(a,b)
" .

9 —

By using (2.4.10) as a change of variables, (2.4.9) becomes:
> [ xac (g(a0) + b)) lg(a,h) + piaf [dzal.
@b)E(F )0
and then Lemma 1.2.2 implies that the later sum equals

p

—s(1—g— N .
%+(q_1)2_Ng ZfX:Xtm"u

B Z X(CLC(Q(G, b))) Zf X’U = Xtriv
(@b)e(Fq™)?

g(@,b)#0
0 all other cases,

\

where U = 1+ pOy, and N, = Card{(a, b) € (F,*)* | g(a, b) = 0}.

Case (ii): k > m7,. There exists some j, € {0,...,[s} such that (d;, — do)m +
kgjp = (DT+1 — do)m + kngrla and (djp — do)m + kEjp < (dj — do)m + kEj, for j €
{0,..., s} \ {4p}. Therefore

F(m)@’ 0+ pky) — p*(Dv-H*dO)m*&er(%H(x’ y)yerﬂ,e + pm(DrJerz‘)(. .. ))
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for any (z,y) € O%*. A similar reasoning as in the previous case, shows that

/ N(ac(F™ (2,8 4 p*y))) [F (0,0 + p*y)[* |ddy]

X2
OK

p
qf(DT+17d0)msfsT+1ksqfs(l_qfl)Nr

1—q 1) + (q - 1)2 - Nr ZfX = Xtriv

= g Premddmemeraks 5T Xac(gi(a.b) i Xl = Xero
@HeE,)?
Go(a.0)£0

0 all other cases.

Here

9r(2,Y) = Yopr (w, y)ycrrre 4 pmPra=Li

and

N, = Card{(a,b) € (F,*)* | g-(@,b) = 0}.

Case (iii): k = mn. There are some j's € {0,...,l;} such that
(dj, —do)m+kej, = -+ = (dj, — do)m + ke, = (D; — do)m + ke,
and for the remaining j’s,
(D; — do)m + ke; < (dj — do)m + ke;.
In this case

FO (2,0 + pry) = p=(Pimdom=sik (500 (3 gy 4 pmiDisi=Di(.. )
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for any (z,y) € O%*, where

Fé:”)(w, y) = Vi@, y)y?,
w;,0(Vi)=0

s

and w; ¢(Z) is the straight line corresponding to the term p(di—doImtkeson (7 4)ycse.

Therefore

[ el F™ a0+ 5) [F™,6+ ') fdedy
ox?
=g Ot [ (aelGla,y)| Gyl dady)|,

X2
OK

where G(z,y) = Fl(,m) (z,y) + pmPi+1=Pi (... then the arithmetical non degeneracy
condition over f implies that some partial derivative of G is different from zero mod
p, lets say %(E, b) Z0 mod p for (a,b) € (F)?. So we may use the same strategy as

in case (i), to obtain

/ X(ac(F™ (x,0 +p*y))) [F™ (2,0 + p*y)|* |ddyl

X2
OK

( —(D;—dg)ms—e;ks ;—s(1_4—1 .
! > (1_q—1q—s)(l ¢ )Ne + (q - 1)2 - NG ZfX = Xtriv

= qf(Dide)msfgiks B Z X(GC(G(G, b))) Zf X|U = Xtriv
(@B)eF,*)?

G(a,b)#0

0 all other cases,

where Ng = Card{(a,b) € (F,*)? | G(a,b) = 0}.
At this point we note that any £ € N,k > 1, satisfies only one of the following
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conditions: )

mr;] <k < [mrmyq]—1, fori=0,1,...,r—1,

k = [mm], fori=0,1,...,r,

k> [m7]+1,

\

where [x] denotes the greatest integer less than or equal to = € R.

Finally, from cases (i), (i7), (7i¢) and the previous observation, we have that

JO(Sv m, Xtriv) =

S0 [ MaclB ™ w0+ pt)) [P+ ) dod
k=1+1(fo) OIX(2
r—1 [mn+1] 1
— q (D1+1 d() Z q 1+S€l+1)M
=0 k=[m7;]+1
_’_q—(DT+1—d0)ms Z q —k(14+sert1) M +Zq (D;—do)ms— (sal[mTl])M
k=[mm.]+1 1=1

Some of the sums appearing in the previous expression can be estimated by means of

the following algebraic identity ZkB: L2 = % We get

J@(Sv m, Xtriv)

M,

g

r—1 Do) q—(1+35i+1)([mn}+1) _ q_(1+55i+1)([mn+1]—1)
q i+1—do) < )

_ g—(14se;
— 1 q ( +1)

(Drsr—doyms (4T ~ (Di—doyma—(seslm)

— r+1— ms - i — ms—(se;|mT;

+q (1 . q_(1+58r+1)> Mgr + Zq MG
=1
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Finally, when x|y = X¢iv, We have

J9(57 m, X)

r—1 _ SEs T _ e, S
= Z —(Diy1—do)yms 4 (Iseip)(fmml+1) _ q (I+seiy1)(Im7ipa]—1) .
a —0 1 1— q—(1+8€i+1) g
_(1+58r+1)([m7',-]+1))

1— q7(1+557‘+1) 2z

gr

_|_q—(DT+1—d0)ms (q

+ Z q—(Di—do)ms—(—l—ssi[mn])EG'
i=1

2.4.2 Poles of Z(s, f,x,A)

Definition 2.4.1. For a semi quasihomogeneous polynomial f(x,y) € Klz,y] which

15 arithmetically non degenerate with respect to

r4(f) = U Lto,

{6€0k | fo(1,0%)=0}

we define

Ty 1 (a+b)+7-l (a—i—b)—i‘Ti 1
[rp) = - N -
P( fﬁ) U { 51" Dz‘+1 + ?32‘-1-17'2'7 D; + &7 } . U { } ’

) 5
= {0}~ T

and

PIA(f)) = U P(T10)-

{0€0kK| fo(1,0%)=0}

Where D;, e;, 7; are obtained form the equations of the straight segments that form the

boundary of I'yg, cf. (2.1.2),(2.1.3), and (2.1.4).

Ly
Theorem 2.4.1. Let f(z,y) = > fi(z,y) € Oxklz,y| be a semi- quasthomogeneous
7=0
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polynomial, with respect to the weight (a, b), with a, b coprime, and f;(x,y) as in (2.4.1).
If f(x,y) is arithmetically non—degenerate with respect to TA(f), then the real parts of
the poles of Z(s, f,x,A) belong to the set

a+b

ol e

} P},

In addition, Z(s, f,x,A) =0 for almost all x. More precisely, if x|14p0, F Xtrivs
Z(s, fix,A)=0.

Proof. Let A := (a,b)R,, then the integral Z(s, f,x,A) admits the following expan-

sion:

Z(s, f.x, A) = / ©ae(f(@,9) | (@, y)]° |dzdy

=1
m pam OIX( X pmeIX{

D g eromdms / x(ac (F™ (z,y))) [FO) (z,y)|* |dady],

m=1

(2.4.11)

X2
OK

cf. 2.4.3 and cf. 2.4.7. From Proposition 2.4.2,

[ xae F ) 1) ey = T

)
—1—s

X2
OK

+ Z Jo(s,m, x),

{0€0K | fo(1,6%)=0}

thus (2.4.11) implies

U _s’ - —(a m— ms
Z(s, f,x, D) = y + > (Zq (bym=do Je(s,m,x)> :

q—l—s
{0€0 | fo(1,0%)=0}

m=1
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Next we use the explicit formula for Jy(s, m, x) given in Proposition 2.4.3 to obtain

Z g (@TOIm=doms I (¢ Vi) (2.4.12)

1
& g~ (@tt)m=([nril+1)=(Dipimtei ((mm]+1))s
- . Z 1 — q—(1+861+1) Mg

r—1 oo

q—(a+b)m—([mﬂ'+1]—1)—(Di+1m+€i+1 ([mTig1]—1))s

M,

1 — q7(1+s€i+1) g
(@t Om (i +1)~ (Db (mm ] +1)s

+ Z 1 — g (I+sers) My,

m=1
r 0o

+ Z Z q(aer)mf[m‘ri]7(Dimf€i[mn])sMG.

i=1 m=1

Remark 2.4.1. In order to compute the expression for the integral Jo(s,m, Xiriv) we

have to estimate sums of type
m=1

Recall that 7; = Di1=Di - fssume that m = n(e; — eip1) + 1, wherel € {0,--- & —

Ei—E&i+1

giv1 — 1}, and n € N\ {0}. Then

[mTi] = TL(DH_l — Dz) + [ZTZ]

o0 6i—8i+1—1
Therefore > ¢ mml = Y S g Pen=Dotlin],
m=1 1=0 n> 1—1
Z(ei—ei11)

Now we go back to the computation of Jy(s, m, X4 ), from (2.4.12)
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(2.4.13)
Z q—(a-i—b)m—domsJa(S7 m, Xtriv)
m=1
r—1 gi—€i+1—1
—(a+b)l—[I7;]=1—{D;y1l+eit1[lmi]+eit1}
Z{ — q_l — Z Z { a +1lteita €i+158

5 7514»1

q—"{(@+b)(8i—€i+1)+(Di+1—Di)—{DiH(Ei—8i+1)—fz‘+1(Di+1—Di)}8} Mg} }

r—1 €i+1—Eit2—1

E q—l—(a+b)l+[lTi+1]—{Di+1l—6i+1 [lTi+1]—€i+1}S
: : —1 SE€i4+1 Z
1= =0

nz

€i+1—%i42

q_n{(a+b)(5i+l_5i+2)+(Di+2_Di+l)+{5i+1(Di+2_Di+l)+Di+l(5i+1_5i+2)}5}M } }
g

gi—€i41—1

4 - § § —(a+0)l+[iTr 1] —{Drt1l—ers1[lmrr1]—ert1}s
1— —1 SEr41
n>————

82751+1

q_n{(a+b)(5r_5r+l)+(Dr+l —Dy)+{er4+1(Dr41—Dr)+Dry1 (Er_5r+1)}5}Mg }

r gi—€i41—1
+Z{ Z Z { —(a+b)l—[lT;]—{Dil—ei[lT:]}s

=1
51_51+1

q—n{(a+b)(6i—€i+1)+(Di+1—Di)+{€i(Di+1—Di)+Di (ei—€it1)}s} MG} } )

Next we compute the geometric series appearing in the latter expression, this gives
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Yo T gy (s, Xrin)

m=1
r—1 1 q*175i+15*(a+b)(5i75i+1)*(Di+1*Di)*{fiqtl(Di+1*Di)*Di+1(Eifszgrl)}s
- Z(;{ 1-— (]_1_‘95“'1 { 1-— q_{(a+b)(€i_6i+1)+(Di+1_Di)+{5i+1(Di+1—Di)+Di+1(Ei—6i+1)}s}
. 52—52261 1 g~ @HOI—lm] 1= {Dialteis[inilteipi}s M,
1 — g {(atb)(ei—eir1)+(Dit1—Di)Heit1(Dig1—Di)+Dira(ei—eciv1)}s}

—l—¢eit15—(a+b)(civ1—cit2)—(Dit2—Diy1)—{eiy1(Div2—Dit1)—Dit1(cit1—€iy2) }s

q
B Z{ 1— q—l S€it1 { 1— q—{(a+b)(fi+l_5i+2)+(Di+2_Di+1)+{5i+l(Di+2_Di+1)+Di+1(5i+l—5i+2)}5}

Si+1€ita—l g (@tOI=lmipa] 1= Dialteiplinipa]+eipa}s
+ l_zl 1— q—{(a+b)(€i+1—Ei+2)+(Di+2_Di+1)+{5i+1(Di+2_Di+1)+Di+1(5i+1_5i+2)}5} }Mg}
1 g tertrs—(atb)(er—ers1)=(Dri1=Dr)—{ert1(Drp1=Dr)=Drya(er—er1)}s
+1 — q_1_35r+1 ]_ — q—{(a+b)(€T—5r+1)+(Dr+1_Dr)+{5r+1(Dr+1_DT)+Dr+1(5r_5r+1)}5}

er—éry1—1 g 1mert1s— (@I 1] —{Drsal—erialimeialbs
+ Z 1— q_{(a+b)(57-_5r+1)+(Dr+l_DW')+{ET+1(Dr+1_Di)+Dr+1(57'_5T+1)}S} }M "
=

T q (a+b)(ei—€it1)—(Dir1—Di)—{ei(Dig1—Ds)—Di(ei—€iy1)}s
t2
{1—q {(a+b)(ei—eiv1)+(Dit1—Di)+{ei(Diy1—Di)+Di(ei—ciy1) }s}

Ei& 1 a T, eillTi]}s
N Z“ g~ (a+d)i=lmil—{Dil—eillri]} e
— 1— q —{(a+b)(ei—€it1)+(Ditr1—D;)+{ei(Diy1—D;)+D;(ei—eit1)}s}

Here we introduce the following notation to obtain a compact form for the sum

By = (a+0)l + [ITi] + 1 + s(Dial + € [ITs] + €511)
pi = (a+0b)(ei — €ix1) + (Diy1r — D)
0; := Di1(e; — €i41) + (Dip1 — Di)eip,
Giy = (a+b)l + [ITip1] + 1+ 8(Dipal + g1 [ITi41] + €i41)

0; = Dit1(gix1 — €iv2) + (Dig2 — Diy1)eisa.

Therefore
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> gl doms gy (s m, X i)
m=1
r—1 M —1—p;i—{eiy1—6i}s N 61_‘512‘*‘1 1 q*Bi,l
- 9 1 —q P~ 15)(1 _ q—l 5€i41) — (1 — q—ﬂi—5i8)(1 — q_1_55i+1)
r—1 o —1—pit1—{eit+1—0}}s +6i+1§2_1 q*Gi,z
pa g 1 — g P —&! s)(l _ q_l saz+1) — (1 _ q—piﬂ—égs)(l _ q—l—sal-ﬂ)
_1 —Pr— {57‘—0—1 —0r }5 51"_67‘4»1_1 _Grl
q s
M
+ QT{ 1— q- pr—érs (1 _ q—l—ssr+1) + ; (1 _ q_pT—JTs)(l _ q—1—367~+1)}
i—0;_18 gigit1=l Gy (1teits)
k3 q )
R e e D
=0

Similar equations holds in the case x # Xiv». It follows that real parts of the poles
of

Z <i q—(a+b)m—d0m5J9(S’ m, X)) :
m=1

{0€0% | fo(1,0%)=0}

belong to the set

(-1} U {—“;;b} vy P,

{00k | fo(1,04)=0}

2.4.3 Examples

1. f(z,y) = (v* — 2?)? + 2*y*. The polynomial f(z,y) € Klz,y] is a semiquasi-
homogeneous polynomial with respect to the weight (3,2), which is the gener-
ator of the cone Aj, see example 2.3.1 and Table 1.1. We note that f(x,y) =
fole,y) + falw, ), where fo(w,) = (5° — 22)? and fu(z,y) = 2y, cf (2.11).
In this case § = 1 is the only root of fy(1,y%), thus T'A(f) =T,

Since fo(tPz, t*y) = t'2 fo(z,y) and fi(t3z,t%y) = t*° fi(z,y), the numerical data
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for I'yy are: a = 3,0 = 2,D; = dy = 12,71 = 4,61 = 2, and Dy = 20, then
the boundary of the arithmetic Newton polygon I';; is formed by the straight

segments
woa(z) =22 (0< 2<4), and, wii(z) =8 (z>=4),
together with the half-line {(z,w) € R% |w = 0}. The face functions are
foo(@,y) = (W =), fum(@y) = (" = 2% + 2"y,

see figure 2.1: T'4(f). Since that f4s)(z,y) does not have singular points on

K*2 f(x,y) is arithmetically non-degenerate.

wy/

Figure 2.1: T4(f)

According to Theorem 2.4.1, the real parts of the poles of Z(s, f, x, As) belong

to the set {—1,—35, 3, —35} cf. (2.3.4)~(2.3.9).

2. g(z,y) = (v¥*—2?)*(y* —cx?)+2*y*. Let c € OF and ¢ Z1 mod p as in Example
2.3.2. The polynomial g(x,y) € K[x,y] is a semiquasihomogeneous polynomial
with respect to the weight (3,2), which is the generator of the cone As, see Table
1.1. We note that g(z,y) = go(z,y)+g1(x,y), where go(z,y) = (y*—2?)?(y*—cx?)
and g;(z,y) = 2'y*, c.f. (2.1.1). In this case § = 1 and 6 = ¢, are the roots of
90(1,y%), thus I (g) = {T'y1, Ty}
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Since go(t*z, t*y) = t®go(z,y) and g;(t3z, t?y) = t*°¢,(x,y), the numerical data

for I'y; are: a = 3,0 = 2,D; = dy = 18,71 = 1,61 = 2, and D, = 20, then
the boundary of the arithmetic Newton polygon I'y; is formed by the straight

segments
woa(z) =22 (0<2<1), and, wii(z)=2(z=>1),
together with the half-line {(z,w) € RZ|w = 0}. The face functions are
goo(@,y) = (¥° = 2*)(y° — c®) gup(,y) = (" — 2*)*(y° — ca®) + 2y,

see figure 2.2: T'y 1. Since g(1,2)(2, y) does not have singular points on K*?, g(z, )

is arithmetically non-degenerate with respect to I' ;.

0/

Figure 2.2: I'y 4

On the other hand, the numerical data for I'y. are: a = 3,b = 2,D; = dy =
18,71 = 2,61 = 1, and Dy = 20, then the boundary of the arithmetic Newton

polygon I'y . is formed by the straight segments
woe(2) =2 (0<2<2), and, wi(z)=2(z>2),

together with the half-line {(z,w) € R? |w = 0}

The face functions are g (z,y) = (v* — 22)*(y® — c2?), geo(r,y) = (¥* —

2?)%(y? — ca?) + aty?, see figure 2.3: Ty .. Since g(2,2)(2,y) does not have singular
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points on K*?| g(z,y) is arithmetically non-degenerate with respect to I, .

(2,2)

Figure 2.3: I'y .

According to Theorem 2.4.1, the real parts of the poles of Z(s, g, x,As) belong

to the set {—1, =%, =3, — 55, =55+ cf. (2.3.10)-(2.3.14).

2.5 Local zeta functions for arithmetically non-
degenerate polynomials

Take f(x,y) € Klz,y] be a non-constant polynomial satisfying f(0,0) = 0. Assume
that

RY ={(0,0tu |J A, (2.5.1)

FCrseon(f)
is a simplicial conical subdivision subordinated to I'9*( f).
Let a, = (a1(7),az2(7y)) be the perpendicular primitive vector to the edge v of
[9eom( ), we also denote by (a., ) = d,(y) the equation of the corresponding support-
ing line (cf. Section 1.3). We set

P(Fgeom(f)) — {_W‘ v s an edge Ofl—‘geom(f),da(w # O} .

Theorem 2.5.1. Let f(z,y) € K[x,y] be a non-constant polynomial. If f(x,y) is

arithmetically modulo p non-degenerate with respect to its arithmetic Newton polygon
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TA(f), then the real parts of the poles of Z(s, f,x) belong to the set
{=13 UP@*(f)) UPIT(f)).

In addition Z(s, f,x) vanishes for almost all x.

Proof. Consider the conical decomposition (2.5.1), then by (1.3.1) the problem of
describe the poles of Z(s, f,x) is reduced to the problem of describe the poles of
Z(s, f,x, O5%) and Z(s, f,x,A,), where v is a proper face of ['***™/). By Lemma
1.2.3, the real part of the poles of Z(s, f,x, O%*) is —1.

For the integrals Z(s, f,x,A,), we have two cases depending of the non degen-
eracy of f with respect to A,. If A, is a one-dimensional cone generated by a, =
(a1(7), a2(v)), and f,(z,y) does not have singularities on (K*)?, then the real parts of
the poles of Z(s, f, x, A,) belong to the set

(o {~ar el ¢ upeen),

If A, is a two—dimensional cone, f,(z,y) is a monomial, and then it does not have
singularities on the torus (K*)?, in consequence Z(s, f, x,A,) is an entire function as
can be deduced from [37, Proposition 4.1]. If A, is a one-dimensional cone, and f,(x,y)
has not singularities on (O})?, then f(z,y) is a semiquasihomogeneous arithmetically
non-degenerate polynomial, and thus by Theorem 2.4.1, the real parts of the poles of
Z(s, f,x,A,) belong to the set

({20220 pra) €y upEEn) LRI,

From these observations the real parts of the poles of Z(s, f, x) belong to the set

{=1}UP@T™(f)) UPITA(S)).

Now we prove that Z(s, f, x) vanishes for almost all x. From (2.5.1) and (1.3.1) it
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is enough to show that the integrals Z(s, f, x,A,) = 0 for almost all y, to do so, we
consider two cases. If f is non-degenerate with respect to A, Z(s, f,x,A,) = 0 for
almost all x, as follows from the proof of Theorem 1.3.1. On the other hand, when f is
degenerate with respect to A, and A, is a one dimensional cone generated by a.,, then
f(z,y) is a semiquasihomogeneous polynomial with respect to the weight a., , thus by
Theorem 2.4.1, Z(s, f,x,Ay) = 0 when X|14p0x # Xuriv- If A, is a two dimensional
cone, then v is a point. Indeed, it is the intersection point of two edges 7 and u of

[9eom(f), and satisfies the equations:

(ar,7) = du(7) and (au, ) = da(p).

It follows that f(z,y) is a semiquasihomogeneous polynomial with respect to the weight
given by the barycenter of the cone: 2% . The weighted degree is M. Finally,

we may use again Theorem 2.4.1 to obtain the required conclusion. O]

2.5. Local zeta functions for arithmetically non-degenerate polynomials



Chapter 3

Exponential Sums mod p"”

In this chapter we give some estimations for the asymptotic behavior of exponential
sums mod p" attached to arithmetically non-degenerate polynomial, see Theorem

3.1.1.

3.1 Exponential Sums

Let K be a non—Archimedean local field of arbitrary characteristic with valuation v,

and take f(x,y) € Klz,y]. The ezponential sum attached to f is

Bz, f) = / U(=f(x,y) |dedyl,

O%
for z = up™™ where u € Oj; and m € Z.

Lemma 3.1.1. E(z, f) can be thought of as an exponential sum.

E(z,f)=q¢7"" > W(zf(a,b)),

(a,b)€(Ok /P)?

for z=up™™ where u € O and m € Z and f(x,y) € K[z,y].

o4
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Proof. In fact if we decompose O% as

02 = | ] (a,b) + (p"OK)?,
(@,b)€(Ox /™ OK)?

we obtain,

Eef= Y / Y(up " fla,y)ldedyl,  (3.11)

(a‘7b)€(oK/meK)2((a7b)+pmoK)2

DS / W(up™™ f(a +p"x1, b+ p"y1)|drrdyl,
(a,b)e(OK/meKVO?{

where (z1,y1) € O%. Now, by using the Taylor series for f around (a, b):

fla+y"z,b+9p"y) =

fla,b) +p™ (g—i(a, b)xy + g—;l(a, b)yl) + p™ ! (higher order terms),
we get,
E(z,f)=q"" > U(zf(ab)). (3.1.2)

(a,b)€(Ok /P)?

Denef found the following nice relation between F(z, f) and Z(s, f, x).
We denote by Coeflyr Z(s, f, x) the coefficient ¢, in the power series expansion of

Z(s, f,x) in the variable t = ¢~*.
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Proposition 3.1.1 ([12, Proposition 1.4.4]). With the above notation

- Q)Z(Sa f> Xtm'v)
(=1 —1)

+ Z gX_1X('U,) COeﬂ;m—c(x) Z(57 f7 X)’

X#Xtriv

Blup™, f) = Z(0, f, o) + Cocffns

where c(x) denotes the conductor of x and g, is the Gaussian sum

g=(q—1)7'g" " x(2) U(z/pN).

2€(Ox /PL))%

We recall here that the critical set of f is defined as
Cp = Cp(K) = {(z,y) € K* | Vf(z,y) = 0}.
We also define

Broeom = max
~ edges of I'9eom ( f)

4(7) # o} |

and

Pra == max {P [P € P(yp)}.

0eR(fo)

Theorem 3.1.1. Let f(x,y) € K[x,y] be a non constant polynomial which is arithmeti-
cally modulo p non—degenerate with respect to its arithmetic Newton polygon. Assume
that Cy C f~(0) and assume all the notation introduced previously. Then the following

assertions hold.
1. For|z| big enough, E(z, f) is a finite linear combination of functions of the form
x(ac 2)|2|*(log, |2])™,

with coefficients independent of z, and X € C a pole of Z(s, f,x) (with x|14p0, =
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Xtriv) or (1 - qis*l)Z<S7 fv Xtriv); where

‘ 0 if X is a stmple pole
I =
0,1 if X is a double pole.

Moreover all the poles \ appear effectively in this linear combination.

2. Assume that 5 := max{Prgeom, ﬁrgx} > —1. Then for|z| > 1, there exist a positive
constant C(K), such that

Bz, f)] < C(K)]2|" log, |z].

Proof. 1. The proof follows by writing Z(s, f,x) in partial fractions and using

Proposition 3.1.1 and Theorem 2.5.1. For t = ¢~*,

Z(s,f.x) =) x(ac f(z)) [f(2)]" dz,

200 f(2))=m

- Z Coeffym (Z(s, f, Xtriv)) - 1™

m=0

Note that (1 — ¢*"1)Z(s, f, Xtriw) or Z(s, f,x) may have simple poles or double
poles. By Theorem 2.4.1, we know that the real part of the candidate poles \ of

Z(s, f,x) can be g, ’)gl or Eii, where & pgl. Then by expanding Z(s, f, Xtriv)

in partial fractions over the complex numbers, we consider the following cases.
Case (i): Simple poles. In this case by using the identity

1—qPith = (1— q_Tiit) IT (1— Sq%t), where £ € C. Then we have
ghi=1
§#1

1 = o
_ —5tlelyl
1—q*mt5i_z:c£ q et
&i=1 =0

for some constant c; € C.

Case (ii):Double poles. Here we have essentially two subcases. In the first

3.1. Exponential Sums



Exponential Sums mod p™ 58

pi

5. we obtain

case, when ei
1

1
(1 =g Pitd)(1 — g~ 1t=0)

= ZQ <Zq 5 §t>+ Zeg( qelilfltl>,
1=0

géi 1 552 1

where c¢, e¢ are constants.

The second case, is When = = g— Here we have
1 Je hf
= +
_ q—pitoi _ —14g; Z —pi 2
(=g Pit®)(1 — g 't%) =1 <1 —q 5 8) 1—gq? ft
gei=
P (e ) o X u (o),
551 1 ‘551_1
£Eil £hi1

for some constants fg, he, je, ke € C. Note that

- s
—<1—q §t> ;H ) et

Therefore

CO@ﬁtth(S’ fa Xtriv) = Z (fg(m + 1) + hf) gmqufjm

gi=1

We also note that for m big enough Z(s, f, x) is rational function identically zero

for almost all x (Theorem 2.4.1), the series

> gy rx(u)Coeffyns Z(s, f,X)

X#Xt'r'iv
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is a finite sum. Then, F(z, f) is asymptotically equal to

S emxlac 2)]z > (log, 2],

A

where A runs through all of the poles of Z(s, f, Xtiv), and ¢, are complex con-

stant.

2. For |z| big enough and 5 > —1, we have the estimation
|2[*(log, |2])™ < C(K)|2|"(log, |2]),

which implies the desired estimation.
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Appendix A

The local zeta function of

(18 — 22)2 + 'y

In this section we shall compute explicitly the local zeta functions for f(z,y) = (y* —

2?)? + zly* € K|z,y]. We assume that the characteristic of the residue field of K is
different from 2 and 3. This polynomial is degenerate with respect to its geometric
Newton polygon in the sense of Kouchnirenko. We present the example 2.3.1 computed
in full detail and we obtain an explicit list of candidates for the poles in terms of

geometric data obtained from a family of arithmetic Newton polygons attached to the
polynomial f(x,y).

Ay

Figure A.1: T ((y* — 2%)® + zy*) and the conical partition of R? induced by it.

60
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The conical subdivision of R subordinated to the geometric Newton polygon of

flz,y)is R = {(0,0) U U?’:l Aj}.

Table A.1: Rational Simple Cones

Cone Generators

Ay (0, DR,

Ay 0, DRy + (1, )R,
As (1, DR,

Ay (L, DR, + (3,2)R,
As (3,2)R

Ng (3,2) Ry + (2, 1)R,
Ay (2, )R

Ag (2, DR, + (1,0)R,
Ag (1,0)R,

A.1 Computation of Z(s, f, x, ;)

These integrals correspond to the case in which f is non-degenerate in the sense of
Kouchnirenko on A;, for i = 1,2,3,4,6,7,8,9, as in section 1.3. The integrals can be

calculated as follows.

1. Case Z(s, f,x, A1).

(e o]

Zs.foc8) =Y [ xlae fa )l idsdy),

=1
" ORxp"Ox

A.1. Computation of Z(s, f, x, A;)
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Z(Svf7X7A1) ==
=Y [ e P = e N — o oy,
- ORxpnOx
— Zq—n / X(CLC (p3ny3 . ZL’2)2 4 p4"x4y4)|(p3"y3 . ZE2)2 + p4"m4y4|5|da:dy|,
n=1 OIX<2

=S 0 [ xae (o)) oy

n=1
ox?

where g1(z,y) = (p*"y® — 2°)* + p™z'y?, with g, (z,y) = 2.

Note that we can write O%? as follows
0= |J (ab)+(pOx). (A.1.1)
(@b)e(Fyg)?

Thus we can write

Z(s, fod) =Y ¢ 3 / x(ac(gy(@, 9))) g1z y) | |ddy],

(E,B)G(F; )2(a,b)+(pOK)2

=> " ) / x(ac(gi(a+ pz, b+ py)))|gi(a + pz, b + py)|*|dady].
= @herio,

Set x = (21, x9)and ¢ = (c1, ¢2). The Taylor series expansion of g(c + px) around

the origin is,

0 0
glc+px) =g(c)+p (8_5591le + a—icxg) + p?(higher order terms) (A.1.2)

A.1. Computation of Z(s, f, x, A;)
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By using equation (A.1.2) an the fact that %—gzl(d, b) = 4@ # 0, we can change

variables in the previous integral as follows

g1 (a+pz,b+py)—g1(a,b)

p ’ (A.1.3)

21 =

2= Y,

z = (21, z9) is an special restricted power series (SRP) in (z,y). ( c.f [22], Lemma

7.4.3).

We use the change of variables above and we obtain that, the mapping (z,y) —

(21, 22) on O% into O% preserves the Haar measure.

Z(87f7X7A1) =

g Y / x(ac(gi(a + pz,b+py))|gi(a + pa, b+ py)[*|ddyl,
n=1 CORE

=0t 3 [ e+l t) + palidal

@b)E(Fq)? O

q—n_2IA1 (87 (CL? b))v

I
NE

n=1

where, 1, (5, (4. 8)) = Sappess Jo X(ae (01(a.8) + p22))lgr(a.B) + parlild].
For to compute I, (s, (a,b)) we find that N = Card{(a,b) € (F})? :a* =0} =0,

then we use the Lemma 1.2.2 and we have that
(

(q - 1)2 Zf X = Xtriv
[Al (57 (CL, b)) = Z(H,E)E(F;P Y(EZL) Zf Y = Xtriv

0 all other cases,

\
where X is the multiplicative character induced by x in F,.

A.1. Computation of Z(s, f, x, A;)
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Now since that,

(q - 1>2 Zf Y4 = Xtriv
> ox@) = . (A.1.4)
(@b)e(Fy)? (q—1)-0=0 if X" # Xerivs

we obtain,

(q - 1)2 Zf X = Xtriv
]A1 (S’ (a’a b)) = (q - 1)2 if ¥4 = Xtriv

0 all other cases.

\
Since that Y* = X0 and x|y = Xuio 1S equivalent to x* = X4y, We have that

Z(s, f,x, A1) =307 ¢ "2, (s, (a, b)) so we get,

(

¢ =g ") if X = Xerio

Z<57 f7X7 Al) - qil(l - qil) Zf Y4 = Xtriv

0 all other cases,
\

where U = 1+ pOg.

2. Case Z(s, [, x,As).

A.1. Computation of Z(s, f, x, A;)
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Z(Svf7X7A2) ==

S [ el

m=1n=1 me}x(XanrmOIX(

=S [ e (P )" ) Flded,
m=1 n=1 K
=S e [ e (ule )l Pldedyl
m=1n=1

0x?

Since that polynomial go(z,y) = (p>"y® — 2%)? + pinTimgiy? we have that
52(1.7 y) = .1'4.

By using equation (A.1.1), so we obtain that,

Z(S7f7X7A2) =

DN g M / x(ac (g2(x,9))\ga(w, y)|*|dwdyl,

m=1 n=1 @D)EFF)? (ab)+(pOx)?

o0

= g ZmonAms=2 Z / x(ac (g2(a + px, b+ py))|g2(a + px, b + py)|*|dzdy|.
m=n=1 @D G2

Then we apply the change variables (A.1.3) to function g, and since that aaif (@,b) =
4a® # 0, we obtain,

A.1. Computation of Z(s, f, x, A;)
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Z(Sa.f?X:AQ) =
o —2m—n—4ms—2 S
5SS ¢ S [ e gaant) + pa)lgalant) + pa)Fldal.
m=1n=1 @HEE)0y

Z Z q—2m—n—4ms—2IA2 (S, (a’ b))7
m=1 n=1

where Ia, (s, (a,0)) = Y @peErz Jo, X(ac (g2(a,b) + p21))lg2(a, b) + pz1[*|dz],
and since that, N = Card{(a, b) (]F;) : a* = 0} = 0, then by applying the
same procedure above we obtain

Z(57 f? X AQ) = Z:j:l ZZO:I q_gm_n_4mS_ZIA2(Sa (CL, b)) so we get,

(
—3—4s(1_,—1 .
1 (17(1_%_;13) ) ZfX = Xtriv,

—3—4s(1_,—1 .
Z(Sa f7X7 AQ) = ﬁ Zf)(4 = XtrivaX|U = Xtriv

0 all other cases,

\

3. Case Z(s, f,x,As).

Z<87 fu X AB)
=Y [ e Gl ldsdy),
=l prO% xpnO%
- qun /OX2 x(ac <p3ny3 p2n 2) +p8n$4y4)‘<p3ny3 p2n 2) —1—]38":5 yﬂﬂdmdy\,

= g / X(ac (p"y® — 2?)* + paty")(p"y — @) + p™aty[*|dxdyl,

n=1

=S [ aclgate ) los(r. o) Fldsdy),

X2
OK

A.1. Computation of Z(s, f, x, A;)



The local zeta function of (y* — z?)* + zty* 67

where g3(z,y) = (p"y® — 22)2 + p*"aty?, we have gy(x,y) = z*, then the origin of
K is the only singular point of gs(z,y) over (F))>.

By using equation (A.1.1), so we obtain that,

Z(87f7X7A3) =
Sarr S [ e gaw)lgae. o) ldody|.
n=1 (E’E)E(F; )2 (a,b)+(pOK)2
= Z g 2nins2 / x(ac gs(a+pz,b+py))|gs(a + px,b + py)|*|dzdy|.
n=1 @D o2

Then we apply the change variables (A.1.3) to function g3 and since that %if (@,b) =
4a® # 0, we obtain,

Z(Saf7X7A3) =
doarme Y [ x(ac (gs(a+ pr, b+ py))lgs(a+ pr, b+ py) | dedy],
n=1 CORE
_ N —2n—4ns—2 s
=> q > /X(ac (g3(a,b) + pz1))lgs(a, b) + pz1)|*|dz],
n=1 (@b)€(Fg )20

_ Z q—2n—4ns—2]A3 (S, (CL, b)),
n=1

where Ly, (5. (0.5)) = Sianesy » J 1(ae (95(a.) +p20)lgs(a,0) + o) ld]

Then since that N = Card{(a,b) € (F)* : @* = 0} = 0, and by (A.1.3) we

obtain,

A.1. Computation of Z(s, f, x, A;)
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(
q_2_48(17q_1)2

Ty if X = Xtrivs

—2—ds(q_ . —1\2 )
Z(Sa f7X7 A?)) = ¢ 0-q )7 ZfX4 = Xtri’qu|U = Xtriv

(1—g=271%s)
0 all other cases,
where U = 1 + péK.
4. Case Z(s, f,x,Ay).
Z(s, f.x, D) =
> [ e sl o
m=1n=1

pn+3m01><< Xpn+2m01><<

_ Z Z q—2n—5m X((p3n+6my3 o p2n+6mx2)2 + p8n—i—20mx4y4)|dxdy|7

X2
OK

[y
—_

m=

_ Zq(—2—48)n+(—5—128)m / x(ac(ga(z, y)))|ga(z, y)|*|dzdyl.

m=1n=1

n=

X2
OK

where

X((p3n+6my3 o p2n+6m$2)2 + p8n+20mx4y4) o

X((IC ((p3n+6my3 _ p2n+6mx2)2 + p8n+20m$4y4)) %

|(p3n+6my3 . p2n+6mx2)2 + p8n+20mx4y4>|’s

and the polynomial g4(z,y) = (p™y> — 2?)? + pintsmyd

x*, therefore the origin of K is the only singular point of g4(z,y) over (IE‘;)Q.

We obtain that,

y*, then we have g,(z,y) =

A.1. Computation of Z(s, f, x, A;)
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Z(37f7X7A4) =
Z Z q(—2—4s)n+(—5—125)m Z / X(ac g4($, y))\g4(:13, Z/)|3\da§dy‘.
m=1 n—1 @b)EFG)? (a,b)+ (O )2

Then since that %—%(6, b) = 4a® # 0, we obtain,

Z(87f7X7A4) =
=SS gy SN e (gu(ab) + pn)lga(a,b) + pallda),
m=1 n=1 (E,E)E]F;Q OK
_ Z Z q(_2_4s)n+(_5_128)m_2IA4(S, (CL, b)),

where Ia, = > g 5er? [ x(ac (ga(a,b) + pz1))|ga(a,b) + pz1)|¥|dz]|, then since
Ok

that N = Card{(a,b) € (F¥)? : @ = 0} = 0, and by applying (A.1.4) to

In, (s, (a,b)), finally we obtain

(
q77716s(1_q71)2

(1—q 2 35)(1—q 5-125) if X = Xtrivs

C7—16s(1_,—1\2 )
Z(S’ f’ X A4) = (1,?1—2—4.9)((11,2—5)—1%) Zf X4 = Xitriv, X‘U = Xtriv

0 all other cases,
\

5. Case Z(s, f,x, D¢).

A.1. Computation of Z(s, f, x, A;)
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shuA) =33 [ e faaise )i,

m=1n=1
p3n+2m0 X ><p2"+m01><(

:qu —5—12s)n+(—3—6s)m / X(ac<g6<x’y)))|96<x7y)|s ]dxdy\,

m=1 n=1
X2
Ok

where gg(z,y) = (2 — px?)? + p® T 2dy? we have gg4(x,y) = 3° and we obtain
that the origin of K is the only singular point of gg(x,y) over (F))?.

Now we obtain that,

Z(Safv)(aAG) =

$OY gz aegm 0 / x(ac g6(w,y))|gs(z, y)|*|dzdyl,

(@D)E(FF)*(a,b)+(pO)?

— qu(—5—12s)n+(—3—68)m—2 Z /X ac(gs(a + pz, b+ py)))|dzdy|.

@b)e(Fg)’02.

where X (ac(gs(a + pz,b+py))) = x(ac(gs(a + px, b+ py)))|gs(a + px, b+ py)|°.

Then we apply the change variables (A.1.3) to function gg and since that 896 > (@ b) =
65 = 0, we obtain,

Z(s, fox, Dg) = Dy om0 (5 (a, D)),

m=1n=1

where ]AG(S’ (CL, b)) - Z(E,B)G(JF;)?OI X(CLC (QG(CL, b) + le))|gﬁ(CL, b) + le)|S|dzl|7
K

then since that N = Card{(a,b) € (F))*: b = 0} =0, we get,

A.1. Computation of Z(s, f, x, A;)
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.

(q - 1)2 = Xtriv
—6

if X
In (s, (a,b)) = Z(E,B)e(lb‘qx)? X(b) if X = Xerio

0 all other cases,
\

where X is the multiplicative character induced by x in F,, thus we resolving the

sum

Z y(gﬁ): (q—1)-0=0 if YG#XM@ (A.1.5)

(@b)e(F))?2 (g —1) if X° = Xtrivs

and we have that,
(

(q - 1)2 Zf X = Xtriv

IA6(57 (av b)) = (q - 1)2 Zf YG = Xtriv

0 all other cases,
\

Finally, since that X% = x4 and x|u = Xsrio 1S equivalent to X% = x4, where

U =1+ pOg, we obtain

(
q787185(1_q71)2

(1—q—3-65)(1_q—5—125) if X = Xtrivs

—8—18s(1_—1)2 .
Z(Sa f7 X AG = (1_(;_3_65)((11_(2—5)—123) Zf X6 = Xtriv, X‘U = Xtriv

0 all other cases,

\

6. Case Z(s, f,x,A7).

A.1. Computation of Z(s, f, x, A;)
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o0

shd) =Y [ xae fle )l () ldods)

n=1

pZnOX Xp"OX

Z / (p3ny3 p4n 2) +p12n 4 4)|<p3ny3 p4n 2) +p12n 4 4|S|dl’dy|,
n=1 O><2

||M8

o / x(ac (y* —p"a?) + p*aty)(y" — p"a®) + pTaty" | dadyl.

O><2
= g / X(ac(gr(a,y)lgr(z,y)° |dwdyl.
n=1 OI><<2

Since that polynomial g7(x,y) = (y* — p"z?)? + p®ziy?, we have g,(z,y) = o5,

then the origin of K is the only singular point of g;(z,y) over (]F;)Q.

We obtain that,

s, f.x, A7) = Zq‘3” Y / x(ac gz(x,y))|g7(x, y)|*|dady|

@D)EFF)? (ab)+(pOx)?

- Z g 3nbns—2 Z x(ac gr(a+ px, b+ py))lgr(a+ px, b+ py)|*|dzdy|.
n=1 @b)e(Fq)’02,

Since that %(6, b) = 6b # 0, we obtain,

5., A7) = Zq*’” oot ST [ e (grla.b) + paa)lgr(a,b) + pan)Flda,

@heE;)? G2,

_ Z q—3n—6ns—2]A7 (8, (CL, b)),
n=1

where Ia; (s, (a,0)) = X @pewy) Of x(ac (g7(a,0) +pz1))lg7(a, b) + pz1)[*|d=],

K

A.1. Computation of Z(s, f, x, A;)
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then we applying the Lemma 1.2.2, and since that N = Card{(a,b) € (F))? :
b =0} =0,
then by applying (A.1.5) to Ia, (s, (a,b)) and we obtain

p
q73765(1_q71)2

=g 36y if X = Xtriv,

—3-6s(1_,—1\2 .
208, f,x0 Br) = %7 if X® = Xetrivs X|U = Xtriv,

0, all other cases.
\

7. Case Z(s, f, x, Ag).

2. fv b =3 % / v(ae f(z,y)|f (@, y)[|dedy],

m=1n=1
p2n+m O1><< Xp"LOIX{

=S a [ aclas(o)loste ) dody|

m=1 n=1
0x2

Where gg(x,y) = (y3 — p"2ma?)? 4 pbrtimadyd we have gg(x,y) = 3°, then the

origin of K is the only singular point of gs(x,y), over (F))>.

By using equation (A.1.1), so we obtain that,

Z(Saf7X7A8) =
PP nainlDS / x(ac gs(x,y))lgs (e, y)|*|dady| =
m=1 n=1 @b)EFT)? (a,b)+(pO )2
3OS g ememez N / x(ac gs(a+pz, b+ py))|gs(a + pz, b+ py)|*|dzdy].
m=1n=1 @HE(F;)? o2

Then we apply the change variables (A.1.3) to function gs and since that %if (@,b) =

A.1. Computation of Z(s, f, x, A;)
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6h # 0, consequently

Z(Saf7X7A8) =
DY g N / _ x(ac gs(a+pz, b+ py))lgs(a + pz, b+ py)|*|drdyl,
m=1 n=1 (75) e(F; )2 Ok
Zq —3—6s)n—m—2 Z / CLC (QS(G b) + le))|98(a b) +pzl)| |le|
m=1n=1 @heEy) ~ K

where In, (s, (a,0)) = Y@ geEr2 Jo, x(ac (gs(a,b) +pz1))lgs(a, b) + pz1)[*|dz],
then N = Card{(a,b) € (Fx): ? = 0} = 0, thus we applying the Lemma 1.2.2
and (A.1.5), it follows that

( I )

=g 365y if X = Xtrivs

—4—6s(1_,—1 .
Z(S’f’X’AS = %7 ZfXG :Xtri’uvx‘U = Xtriv

0 all other cases,
\

note that X° = y;7iv and X|y = Xtriv, U = 1 + pOg is equivalent to X = Ysrio-

8. Case Z(s, f,x,Ao).

b =3 [ v Sl
n=1 n ><>< X
Z /0x2 (y3 p2a 2) +p4nx4y4)|(y — p¥y 2) 1 ping y4|5|dxdy|,

Y | xlaclota ) lonte )1 oyl

A.1. Computation of Z(s, f, x, A;)
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( 2n .2

Since that the polynomial gg(z,y) = (y3—p?"2?)?+pnziy*, we have go(z,y) = o5,

thus the origin of K is the only singular point of go(z,y) over (qu)z.

By using equation (A.1.1), Z(s, f, x, Ag) becomes

5.1 v D) = Zyw > [ e giw)lgoo )P ldndsl,

@b)EFS)? (ab)+(pOx )2

=> "7 ) /x(ac99(a+px,b+py)>lgg(a+p:c,b+py)\s\dxdy\-

@hewy) %k

Then we apply the change variables (A.1.3) to function g9 and since that %if (a,b) =
65’ £ 0, we obtain,

Z(Svf7X7A9) =

oY /X(ac99(a+Pi'?,b+Py))’99(@+px7b+py)|s‘dxdy|

B 2
n=1 @bheEy)z” 9x

=3 Zﬁ/“nm@mm+mmmm@+mmwm

@heEy)?” K

Z 7210, (5, (a, b)),

where L, (s, (0,0)) = Saee J 1ae (gfa.0) +p21)lgole,b) + p21)dz]

Ok

then given that N = Card{(a,b) € (F})?:b°=0} =0 we obtain,

__,76 o
Z(H,E)E(F;)Q X(b )7 Zf X = Xtriv
IAQ (Sa (a> b)) =

0 all other cases,

where X is the multiplicative character induced by x in F,, we thus get

A.1. Computation of Z(s, f, x, A;)
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.

Ing (s, (a,b)) = (q — 1)2

0

\

(q—1)

ZfX = Xtriv

Zf YG = Xtriv

all other cases.

Finally, since that X® = x4 and Xl = Xwrie, U = 1 + pOg is equivalent to

6

X° = Xtriv, We obtain

(

g1 —=q ) i X = Xerios

Z(s: fyxoB0) = ¢ (1 =g if XO = Xtrios XU = Xerio

all other cases,

A.2 Computation of Z(s, f, x, As)

(An integral on a degenerate face in the sense Kouchnirenko).

265089 =Y |

00
§ —5n—12ns
n=1 o

X2
K

n=1

x(ac f(z, y)|f(z,y)|°|dzdy],

pB”nOIX( Xp2n OIX(

x(ac((y® — 2°)” + p¥ 2y |(v° — o) + p*z'y*|*|dady).

Let f™(z,y) = (y® — 2%)? + p®"a'y?, for n > 1. For compute the integral,

I(s, f™. %) = Joue x(ac((y® —2?)* +p*aty"))[(y* — %) +p* 'y |*|dudy|, n > 1,

we use the following change of variables:

X2 X2
Ok — O

(O3

(z,y) > (2y,2%y)

A.2. Computation of Z(s, f,x, As)



The local zeta function of (y* — z?)* + zty* 7

The map ® gives an analytic bijection of O;? onto itself and preserves the Haar
measure since that its Jacobian Jg(z,y) = xly satisfies |Js(z, y)|x = 1, for every

z,y € OF. Thus

F 0 ®(z,y) = 22y f) (x, ), with

—_—

fO(z,y) = (y — 1)* + p*a’y’, (A.2.1)

then we have that,

I(s, S, ) = / (ac(ey 7 (2, )| F (. )| ddy).

X2
OK

In order to compute the integral I(s, £, x),n > 1, we decompose O* as follows:

0= || O x{v+pOx}|J (05 x {1+p0x}), (A.2.2)

yoZ1(modp)

where yo runs through a set of representatives of F in Ok. From partition

(A.2.1) and formula (A.2.2), it follows that,

‘[(87 f(n)7 X) —
2 / xlac(zy ((y = 1)* + p™2%y")I(y — 1)* + p™ay" || dwdy|
o1 (modp) ¥ Ok *{yo+pOx’}
b [ eyt - 0Py Il D4ty ddy)
0% x{1+pOxk}

This integral admits the following expansion:
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I(s, f™,x) =

D g / Xi(w,y) |dedy| +> g7 / Xy (a,y) |dadyl.
7=0

0
where

Xi(z,y) = xlac(@z(yo + P y) ((yo — L+ p7H1y)* + p¥28(yo + p7H1y)")))]

XQ(xay) =

xac(@ (1 + p 'y (P y)? + p¥ 2 (1 + p/y))] x |(p7Hy)? 4+ p*a® (1 + p?Hly)t )

In order to compute integral I, we write I(s, f™, x) = Ji(s, f™, x)+Ja(s, £, x),

where

Mot = Y Y0t [ ey fdedy)

0
yoZL(modp) J OIX(XOIX(

and

J2<57 f(n)7X) = Zqilij / XQ(l’,y) |dl’dy’
j=0

ORxOx

Now, integral Jo(s, f™, x) can write as
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JQ(Sa f(n)a X) =

4An—2
a0 g ) R g (1)) dady)

o
! (03)?

+q—4n—8ns / X[ac(x12(1 + pj+ly)4<y2 + $8(1 + pj+1y)4))]|y2 + $8<1 + pj+1y)4|8‘dxdy‘

(Og)?

+y g / Xlac(z (1 + p" ) (p* 75y + 25 (1 + p'y)")) ] |dwdy).

-
= (03)?

Now we obtain,

I, /0= S Y gt / xlac(fs (. )| ddy]

—0
yoZ1(modp) J OIX(XO;;

4An—2

£ g / xlac(fa(,y))]|dxdy|
J=0 (0%)?

g / slac(fa(, y)| fa(z, w)lic|dady]

(0k)?

£ at [ aelfio, ) dsdy),
J=4n X
(O)?

where
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filz,y) = xm(yo + pj+1y)4((y0 —1+p'ty ) + Psnfﬂg(yo + P‘j+ly)4)7
folz,y) = 22 (1 + p"Ty) (y? + p*= P28 (1 + p/Thy)h),
fs(z,y) = (1 +p ) (v* + 2P (1 + p7 )Y,

falz,y) = (1 +pTy) (p*T7 % + 281+ p7 )Y,

Now we write, I(s, f("),X) = I(s, fm,

with,

X)+]2(Sa f(n)7 X)+I3(87 f(n)v X)+I4(S7 f(n)’

L™= Y S " [ et ) dod|.

yoZ1(modp) j=0

In—2

OpxOF

Ls, [, x) = Y _ g7 / xlac( fo(,y))]|dzdy|.
j=0

(0x)?

Iy = (s, f™), x)q 5 /(OX)Z xlac(fs(z, )] f3(x,y)|°|dzdy).

L= (5800 3 a0 [ ael o) dody|.

j=4n

And we find every integral I;(s, f™,

(OK)?

X),i=1,2,3,4 after we compute

s, X As) = Zq*‘r’” I (s, f™) ).

(a) Lu(s, FU,X) = X o tatmody) 2oge0 @0 [ x(ac(filz,y))) |dady].

Since polynomial

O xO%

fi(z,y) = 22 (yo + P y) ((yo — 1+ p7y)% + p5 a8 (yo + p7 T y)h),

X)
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The local zeta function of (y* — z?)* + zty* 81

we have Fi (2, y) = #'y(yo — 1)*

By using equation (A.1.1), so we obtain that,

L™= Y St Y [ e A)idsdy),

yoZ1(modp) j=0 @B)EFT)? (a,b)+(pOx )2
= Y S Y [ e sfat e
yo£1( mod p) j=0 @be(Fy)? o3,

Then we apply the change variables (A.1.3) to function f;, and we note that

91 @.1) = 12783, — 1" £ 0.

then

W™= 3 3a*7 Y [ e (hlah) +pa))ldal,

yoZ1(mod p) j=0 (@b)e(F7)? O

= Z Zq_?’ ][1 (a,b)),

yoZ1(mod p) j=0

where I, (s, (a,b)) = > (@h)eE)? | x(ac (fi(a,b)+pz1))|dz], for to compute
Ok

it we use the Lemma 1.2.2, and given that Card{(a,b) € (F})*: @"*y;(y, —

1)2 =0} =0, we get

(q - 1)2 Zf X = Xtriv

Ii(s, (a,b)) = Z( B)E(F)2 X(Em@é(go - 1)2) if X = Xtriv

0 all other cases,
\

where X is the multiplicative character induced by x in [F,, then we have

that
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X' To)X* o — L)(g— 1), if x?=1
(@b)e(Fy )2 (¢q—1)-0=0 if X' #1,
(q - 1)2 Zf X = Xtriv

Ni(s,(a,0)) = § X @)XW — Vg — 1> if X2 = X

0 all other cases.

\
Finally, since that X2 = X4rip and x|y = Xtriv, U = 1+ pOg is equivalent to

X'? = X4riv, and furthermore

[1 (57 f(n)’ X) = Zyo;,—é]_( mod p) Z;io qigijj_l(S, (CL, b)), we obtain

p

qil(l - qil)(q - 2) Zf X = Xtriv
L(s f™) = S X @)W — D 1 = ¢ (g —2)  if X2 = Xorios XU = Xoriv

0 all other cases,

\
(b) To(s, [, x) = 07257 g 920" [, xac( folw, y))]|dedyl.
Since polynomial fo(z,y) = 2'2(1 + pi+ly)4(y? + pBr—CF2028(1 + piTly)h),

we have fy(x,y) = x'%y%,

By using equation (A.1.1) so we obtain that,
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I(s, fx) = Y q Ry / xl(ac fo(z,y))|dzdyl,
j=0 @b)EF)?(a,b)+(pOx)?
4n—2
_ g3 20)s Z / x(ac fo(a+ px, b+ py))|dxdy|.
j=0 @be(Fy)’02.

Then we apply the change variables (A.1.3) to function f, where

aa—f(a, b) = 12(@'0’) £ 0,

we use the change of variables above and we obtain that,

4n—2
L(s, f™, x) = g3 (2+2)s Z /X(ac (f2(a,b) + pz1))|dz]
j=0 @b)e(Fy)? O
4n—2
=D a TR (s, (a,0)),
=0

where I5(s, (a,b)) = > (@h)ers? | x(ac (fa(a,b) + pz1))|dz1], given that
Ok

N = Card{(@,b) € (F*)?: @2 = 0} = 0,

q

we can assert that
4

(g—1)° if X = Xtriv

]2(87 (av b)) = Z(ayg)e(F;)Q Yu (a)YQ (Z_)) Zf X = Xtriv

0 all other cases,

where X is the multiplicative character induced by x in F,. Then we conclude
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(q - 1)2 Zf YQ = Xtriv

(a,b)e(Fy)? 0 Zf X2 7& Xtriv
r

(q — 1)2 Zf X = Xtriv
Thus, (s, (a,0)) = S (g — 12 if X2 = Xeriv

0 all other cases.

\
Finally, since that X? = X and x|u = Xwriw, U = 1+ pOg is equivalent

2A_,B+1

to x? = Xuriw and the identity ZE:A 2k = T——, Wwe obtain that

p

q_l_zs(lfq(‘m_l)(_l_%))(17(1_1)2

1_g—1-25 ZfX = Xtrivs
n - —1-2s(1_(4n—1)(—1—2s) _—1\2 .
12(S7f( )7X) - ! (1=g 1—q 125 JA=a") foz = Xtriv7X|U = Xtriv
0 all other cases,
\
(c) Is(s, f™ ) = [ xlac(fs(x,9))) Ifs(z,y)I°| ddy.
(Ox)?

Since fyla,y) = o2(1+ pH1y)(y? + (1 + p1y)?), we have fi(a,y) =
$12y2 + CE’20.

By using equation (A.1.1), so we obtain that,

13(8? f(n)a X) = q—4n—8ns Z X(CLC f3($,y))|f3(l',y)|8|dﬂfdy|,

@D)EFS)? (ab)+(pOx )2

= gtz N /X(ac fala +px, b+ py))| fa(a + pz, b+ py)|*|dzdyl.

@D)E(E; 02,

Then we apply the change variables (A.1.3) to function f3 where %—?(6, b) =
2(a@'?b) # 0, and we obtain
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I(s, [, x) =¢~ "5y /X(ac(f3(a,b)+1321))|f3(a»b)+P21)|5|d21|

@b)e(Fg)* O

:q—4n—8n8—2[_3<8, (a7 b)) ’

where I5(s, (a,b)) = Z( B)e(F)) f x(ac (f3(a,b)+p21))|fa(a, b)+pz1)|*|dz],

thus we can resolve it applying the Lemma 1.2.2, and we obtain,

73(87 (CL, b)) = [371(87 ((l, b)) + [3,2<57 (av b))v

where

—s(1_g—1 .
%—i_(q_l)Q_N ZfX:Xtriv

[371(8, (CZ, b)) =
0 i other case,

where

N =(q — 1)Card{(a,b) € (F;)*: fs(@,

=

) =0},
=Card{(a,b) € (FX) : _12(1_)2 +@%) =0} = (¢ — 1)Card{z € Fo: r? = —1}.

On the other hand

> @p B)E(F))? x(ac(f3(@,b))) i xlv = Xerio
Ia(s, (@) =4

0 in other case,
where U = 1 4 pOk.

Now, since that x is the multiplicative character induced by x in F,, we

have that
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)
19,72 . e
Z(E,E)E(]F;)Z X(a12<b +a8)) Zf X = Xtriv
5> 4+a%)£0
I35(s, (a,0)) = v

\O all other cases.

Now since that ¥ = Xyrip and x|u = X implies x = Yyrip We get
(
_ -2 _ .
Z(E,E)E(]F; )2 Xlz(a)X(b + a8) Zf X = Xtriv
b’ +a®)#£0
Ia(s, (ab) =4 "7

\ 0 all other cases.

Thus we can write

T Zf X = Xtriv
[372(8, (a, b)) =

\ 0  all other cases,

N T2
Where T = Z(E,E)G(F;F X12<a)x<b + CLS).
(> +a®)#0
Finally, since that I3(s, (a,b)) = ¢~*"%=215(s, (a, b)), we obtain that
Iy = q 8= 2([3 (s, (a, b)) + I32(s, (a,b))), and therefore

—s1 -1 .
q—4n—8ns—2 (% + (q — 1)2 — N =+ T) Zf X = Xtriv

I3 =
0 i other case,

(@) L= S50 a5 [ xac(fule,))) |dedy]
(0x)?
Since polynomial fy(z,y) = 2"2(14p/+ty)* (p> 28y + 28(1 4+ p/T1y)?), we

have fy(z,y) = 2%.

By using equation (A.1.1), so we obtain that,

L= S [ ae fey)ldsayl,

g=dn @b)EFF)? (a,6)+(pOK)?
= Z g Imiens Z / x(ac fi(a+ px, b+ py))|dxdyl.
j=dn @HEF;)? 63
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By applying the change variables (A.1.3) to function f; and since that

951 (g, b) = 20a" # 0, then

I4 — f: q—j—8n5—3 Z

x(ac (fi(a,b) + p21))dzl,

j=dn @b)E(Fg )20

= 3" T (s, (a,b)),

j=4n

where 14(s, (a,b)) = > @heEx)? | x(ac (fa(a,b)+pz1))|dz1] for to compute
Ok

it we use the Lemma 1.2.2, and given that N = Card{(a,b) € (F))*: a* =

0} =0, we get

(

(¢ —1)°

[_4(57 (avb>) = Z(

0

Zf X = Xtriv

a,b)e(Fy )2 X(aﬂ]) ny = Xtriv

all other cases,

\
where ¥ is the multiplicative character induced by x in F,, we deduce,

(q - 1)27 Zf XQO = Xtriv

0 Zf YQO 7& Xtriv-

DapyeEr2 X(@) =

(

Then we have that, I4(s, (a,b)) =

\

(q - 1)2 Zf X = Xtriv

(q - 1)2 Zf Y20 = Xtriv

0

all other cases.

Finally, since that X** = X4y and x|y = Xuie 18 equivalent to x?° = i

and Iy = 322, ¢ 778731 (s, (a, b)), we can assert that

Jj=4n
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(

q—4n—8ns—1(1 — q_l) if X = Xtrivs

I4 - q74n78n371(1 - qil) Zf X20 = Xtriv, X|U = Xtriv

0 all other cases.

Now, since that Z(s, f,x,As) = > oo q o712 = 3% g on—12ns 3~ [,
fori=1,--- .4, then

When X = Xtriv,

Z(S7g7X7A5) =
(1 _ q—1)2q—6—14s B (1 _ q—1)2q—9—205 (A 5 3)
(1 _ q7172s)(1 _ q75712s) (1 _ q7172s)(1 _ q797205> e

(=20 - g™ (=g ")
(1 — q=5-125) (1 — q=9-205)

—9—-20s
q

(1 — g 1=9)(1 — g—9-20%) {a(q

—q (1= q 7)1,

+ TN+ (- A

where N = (¢ — 1)Card{z € F} : 2> = =1} and T = Card{(z,y) €
(B2l + 2 = 0},

When x # Xtriv a0d X|14p0x = Xtriv We several cases: if X2 = Xuriv, We have

o 1 — q71)2q71723(1 _ q(4n71)(7172s))
7 A:) = —5n—12ns(
(S’f7X7 5) Zq (1 _ q—1—28>
n=1
(1 _ q71)2q76714s (1 _ q71)2q797205

T (I )1 =g %) (- g ) (1 g9 0s) (A.2.4)
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It X12 = Xtriv, then
Z(s, f.x. Ds) = @ — 1) Zq (1 — g (g - 2)g !
(g — 2)(1 —q g
=X @)XW — 1) (1= 512 : (A.2.5)
For X20 = Xtriv,
f X?A5 Zq75n 12ns _ q71)<q74n78n371>
(1 —q (@)
= 1o (A.2.6)
In all other cases, Z(s, f, x, As) = 0.
Summarizing the result obtain for all cones,
For x = Xtriv,
—2—4s 1— q—1> q—7—165(1 _ q—l)Q
Z Nmog (1 g T
(5, £ Xtriv) g q )+ (1 —q2%) + (1 — g 2%)(1 — ¢5-12)
N —8 188(1 ) N q—3—6s(1 _ q—l) (1 —q 1)2(] 6—14s
(1— q—s 65)(1 g5 129) (1 — g 369 (1— g 1-25)(1 — g —512s)
(1—q)%q " s 1€ Sl N S | U
(1 —q2s) (1 — q9-20s) (1— ¢ 5125) (1 — q=9-205)
g 208 “1(1=5 _ 0" I\N 4 (1 — g~ 12(] — g~
+(1 ) q_g_QOS){q (q ¢ IN+(1—q)1=q 7
—q (1 —q 9T}, (A.2.7)
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where N = (¢ — 1)Card{z € F} : 2> = —1} and T = Card{(z,y) €
(Fy)?ly* +2® = 0}.

When x # Xuriv and X|14p0x = Xtriv We several cases: if X? = Xtriv, We have

0 L 1 — q71)2q71723(1 _ q(4n71)(7172s))
Z(S, f; X) — q 5n 12ns(
> et
(1 _ qfl 2q76714s (1 _ q71)2q797205

_ ) B
(1 =g 2)(1 — ¢ 57128) (1 — g7 1728)(1 — ¢ 9-20s)° (A.2.8)

When X4 = Xtriv,

—3—4s -1 —2—4s —1\2
P g oy, =) R -
(87 f7 X) q (1 q ) + (1 _ q—2—4s) + (1 _ q—2—48)

q—7—16s(1 _ q—1)2

+(1 _ q—2—45)(1 _ q_5_125)' (A29)
X% = Xriv, We obtain
Z(s, f,X) = A7) (g
o (1—g 3 6)(1—g512) " (1—g36)
—4—6s —1
q I—gq i B
* (1 _(q36s) : +q (1 —q7h). (A.2.10)
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For ' = X, then

( f X) _ — 1 Zq 5n— 12n3 —q_l)(q—Q)q_l
PN N 2)(1 — g 1)go12s
=X WX W~ )= Sy (A.2.11)

where Y is the multiplicative character induced by x in Fy. Finally for

20 __
X = Xtriv,

Zq 5n— 12ns . q—l)(q—4n—8ns—1)

n

_(1 —1)( —10— 205)
(1 _ q—9 205)

(A.2.12)

In all other cases, > Z(s, f,x,A;) = 0.
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The local zeta function of

(4 — eD2yP — ea?) + 'y

In this section we present the example 2.3.2 computed in full detail. In this
example we assume that the characteristic of the residue field of K is different
from 2 and 3. We shall compute explicitly the local zeta functions for g(z,y) =
(v — %) (y® — cx?) + 2*y* € Klx,y], with ¢ € O and ¢ # 1(mod p). This
polynomial is degenerate with respect to its geometric Newton polygon in the
sense of Kouchnirenko. We obtain an explicit list of candidates for the poles in
terms of geometric data obtained from a family of arithmetic Newton polygons

attached to the polynomial g(z,y).

The conical subdivision of R? subordinated to the geometric Newton polygon of
g(z,y)is R2 = {(0,0) UU?:1 A;}, and it do possible to reduce the computation of
Z(s, g, x) to the computation of the p— adic integrals Z(s, g, x, Ox), Z(s, g, x, Ai), i =
1,---,9.

B.1 Computation of Z(s, g, x, ;)

These integrals correspond to the case in which g is non-degenerate on A,.

92
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(a) Case Z(S, 9, X, Al)

X2
OK

where the polynomial g;(z,y) = (p3"y3 — 22)?(p3"y3 — cz?) + pP"aty?, and
g1(z,y) = —ca®. By using equation (A.1.1), thus

Zgxd)=3a" Y [ e giw)loo)Fldsdy)
n=1

@DEFF? (a,b)+(pOx)?

=> ¢ > /X(ac91(a+mr,b+py))lgl(a+px7b+py)lsldfcdy|-
n=1

— T 2
(a,b) E]F; O%(

Now we apply the change variables (A.1.3) to function g; and since that

%(a,b) = —6ca’ # 0(mod p), then

Z(Sag7X7A1) =
g > /X(ac g1(a+pz,b+py))|gi(a + pz, b+ py)[*|dedyl,
n=1 (6 B) E]F;( 202

=Yam? Y [ e (ailab) + pe)lana.b) + paallda

n=1 @b)EF;? Oy

= ¢ A, (s, (a, b)),
n=1

B.1. Computation of Z(s, g, x, A;)
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where In, (87 (a’ b)) = Z(E,E)eﬂ?;2 f X(CLC (gl(a7 b)—l—pzl))|gl(a, b)+pz1|s|d21|,
Ok
then by Lemma 1.2.2 and given that

N = Card{(a,b) € (F})*:g,(a,b) = 0} = Card{(a,b) € (F;)*: —ca® = 0} =0,

then we get
(

(q - 1)2 if X = Xtriv

[Al(s> ((I, b)) = Z(E,E)EIF;Z 7(51 (E, B)) if X = Xtriv
51(6,5)750

0 all other cases,

\
where  is the multiplicative character induced by x in F,. Thus,
(

(q - 1)2 Zf X = Xtriv

In, (s, (a,b)) = Z(a,E)elF(?ZY(_mﬁ) if X = Xtriv

0 all other cases,
\
Now since that X° = X¢riv, and x| = Xerivs U = 14+ pOg implies X® = X4,

we have

—c)-0= [ 0 triv,
S x(ea) X(=0)-0=0 if x"#x (B.11)

(@,b)eFy> x(—¢) (g —1)* if X° = Xuriv,
Therefore,

(

(q - 1)2 Zf X = Xtriv

I, (s (a,b)) = X(=2)(g = 1)* if X° = Xerivs > X|U = Xeriv,

0 all other cases.

Finally, since that Z(s, g, x, A1) =Y o0, ¢ " 21, (s, (a,b)), we conclude

B.1. Computation of Z(s, g, x, A;)
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(

q_l(l - q_l) Zf X = Xtriv

Z(8797X7A1) - X(_E)qil(l - qil); Zf X6 = XtriU7X|U = Xtriv,

0
(b) Case Z(Su 9, X, AQ)

all other cases,

25,9000 =3 % / x(ae (g(z, )9z, 9)I* |dzdy,

meIX( X pn+m OIX(

=SS [ vfae (o) lonto )l dndy)

m=1n=1 2
Ok

Since that polynomial go(x, y) = (p3"Tmy3—22)2 (p37 T3 —ca?)+-pint2mpiyt

and gz(z,y) = —ca® thus we obtain that the origin of K is the only singular

point of go(z,y) over (IF;)Q. By using equation (A.1.1), so we obtain that,

Z(SJgJX7 A?) =

DO gt N / x(ac ga(w,y))|g2(x, y)I*|dadyl,

m=1 n=1 (E7B)EF;2(a,b)+(pOK)2

_ g 2monoms=2 §° / X(ga(a+ pz, b+ py))|dedy|,

m (@,b)elr ;> 02

=1

where X(ga(a + px, b+ py) = x(ac(gz(a + px,b+py))) |g2(a+ px, b+ py)|°.

Now we apply the change variables (A.1.3) to function go and since that
95

%2 (7@, b) = —6ca’® # 0, then

B.1. Computation of Z(s, g, x, A;)
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Z(SagaX7A2) =
— —2m—n—6ms—2 s
53¢ > [ ac (ga(ab) + pe)lgatab) + o)l
m=1n=1 (675)€F;2OK

_ Z q_2m_n_6ms_21A2 (S, (CL, b)),
1 n=1

m=

where L, (5, (a,5)) = Yaperss | x(ac (ga(a,b)+p2))lgala b)-+p2) [z .
Ok

Then since that N = Card{(a,b) € (F))* : gy(a,b) = 0} = Card{(a,b) €

(Fy)? : —ca® = 0} = 0, we have

;

(g —1)* if X = Xtriv

In,(s,(a, b)) = Z(a,é)e]F;QY(?Q(@ b)) if X = Xwriv
52(675)750

0 all other cases,

\
where  is the multiplicative character induced by x in F,. Then
(

(q — 1)2 Zf X = Xtriv
Iny(s, (a, b)) = E(EE)GIF(?Q Y<_m6) if X = Xtriw

)

0, all other cases.

\

Now since that XG = Xtriv and X’U = Xtriv, U=1 ‘HJOK anhes X6 = Xtriv,
thus follows by the same method as in procedure above,
Finally since Z(s, g, x, Do) = > oo >0 g~ 2mn=0ms=2[ (s, (a, b)), we ob-

tain
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(

(1—q~1)g=3-5¢ . _
17(1—2—63 Zf X - XtTi’U

—3—6s(1_,—1 .
Z(8797X7A2) = X(—E)M Zf XG = Xtriv7X|U = Xtriv

0 all other cases,

(C) Case Z(Sv 9, X A3)

Zs.g. 00 =Y | vlac gz, y))lg(z,y)|*|dzdy],
n=1 pnOIX(XpnOIX(
=S [ P - ) ety [dody).
n=1 0;22

where

X((p"y® — 2°)*(p"y® — ca®) + p*atyt) =

x(ac (p"y® — 22)2(p"y® — ca®) + p* 2ty |(p"y® — 2°)2 (p"y® — ca®) + pP Yt

Since that polynomial gs3(z,y) = (p"y® — 2%)?(p"y® — ca?) + p?"z*y*, we have

6 we obtain that the origin of K is the only singular point of

%(.CE, y) = —Cr
gs(z,y) over (FX)2.

By using equation (A.1.1), so we obtain that,
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The local zeta function of (y* — 22)*(y® — cz?) + zty? 98

Z(5,9,x, y) = Zq—% s 3 / x(ac gs(z,9))|gs(z, y) P |dzdy],

2
(@,b) G]FXQ +(OK)

o0

= Z g nbns=2 Z x(ac gs(a+px, b+ py))|gs(a + px, b+ py)|*|dzdy|.

= — 7 2
(a,b) EF; O%{

Now we apply the change variables (A.1.3) to function g3 and since that
%5 (a@,b) = —6ca’® # 0, we obtain

Z(SagaX7A3) -

D g Y /X(acgg(a+p$,b+py))|gs(a+P$,b+Py)|s|d$dy|>

— T 2
((J,,IJ)G]F;< O%{

=t 3 [ e (o) +pa)lgsla ) + pa) Pl
n=1

@b)eFy® O

_ Z q—2n—6ns—21A3(S’ (a’ b)),
n=1

where Ia,(s, (a,0)) = X g penze [ X(ac (g3(a,b)+pz1))lgs(a, b)+pzr)*|dz .
Ok

Then given that N = Card{(a,b) € (F})* : g5(a,b) = 0} = Card{(a,b) €

(F¥)?: —ca® = 0} = 0, we have

;

(q - 1)2 Zf X = Xtriv

IAs( (a b)) = Z(E,B)GF;QY(gii(a? b)) if X = Xtriv
?3(6’5)7£0

0 all other cases.

\
where  is the multiplicative character induced by x in F,. Then by applying

similar arguments to the case above and (B.1.1),

and given that Z(s, g, x, Az) = > oo, ¢ 2727, (s, (a, b)), we have
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(

_1\2.,—2-6s )
(qlii—q2—6s Zf X = Xtriv
—2—6s(1_,—1)2 3
Z(Sugu X5 A3) = X(—E)q(l_q(+65)) Zf X6 = Xtrivs X|U = Xtriv

0 all other cases.
\

(d) Case Z(Su 9, X, A4)

290000 =33 / x(ae gz, 9))\ga, y)°|drdy],

pn+3mo X % pn+2m0 X

:qu —2—6s)n+(—5—18s)m /Xlg4l'y |d9§'dy|
02

m=1n=1

where

Xi(ga(w,y)) = x(ac ga(z,y))|ga(z,y)|*,

and the polynomial g4(z,y) = (p"y> — 2%)2(p"y? — ca?) + p?2myiyt), with
Ga(z,y) = —cab, we obtain that the origin of K is the only singular point of
ga(x,y) over (IF;)?

By using equation (A.1.1), so we can assert that

Z(S,Q,X,A4) =
DN g tentoantsm R / x(ac ga(z,y))|ga(@,y)|°|dzdy],
=1 n—=1 (@D)EFF*(a,b)+(pOx )2
qu —2—65)n-+(—5—18s)m— Z / Xo(ga(a + px, b+ py))|dxdy|.
m=1n=1 (@, b)eFXQ

where Xs(g4(a+pz,b+py)) = x(ac gs(a+ pz,b+py)) |ga(a+pz,b+ py)]*.
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Now we apply the change variables (A.1.3) to function g, and since that
@(57 b) = —6ca’ # 0, we see that,

Oz
Z(SagaX7A4) =
qu —2—6s)n+(—5—18s)m— Z / )('2 g4(a—|—p$ b—l—py))) ]da?dy|
m=1n=1 (@ I))G]F><2
:qu( 2—6s)n+(=5-18s)m—2 (s, (a, b)),

m=1 n=1

where ]A4 (87 (a7 b)) = Z(E,E)GIE‘;Q f X(CLC (94(a7 b>+pzl))|g4(a7 b)+p21)|5|d21|,
Ok

then we apply Lemma 1.2.2 and given that N = Card{(a,b) € (Fx)?

gy(a,b) =0} = Card{(a,b) € (F})*: —ca® = 0} = 0, we get that

(q - 1)2 Zf X = Xtriv

[A4(Sa (av b)) = 9 Z(E,E)E(]Fg)z Y(§4(5, 5)) if X = Xtriv

§4 (aa b) #O

0 all other cases,

Finally, by applying (B.1.1) and since that

Z(S,g,X, A4) - Z Zq i 5_185)m_2]A4(87 <a7b))7

m=1 n=1
we conclude that
4
1—g—1)2g—7—24s )
(1_51—211—633(]?_(1—5—185) if X = Xtriv

—T—245(1_,—1)2 ‘
Z(s,9,x, Ba) = x(—2) (1,(;72763)((117(;—5)7183) if X® = Xtrivs Xlv = Xtriv

0 all other cases,

\

(e) Case Z(S, 9, X, AG)
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Z(s,9.x. De) =D > / x(ac g(x,9))|g(x, y)|*|dzdy],

m=1 n=1 p3n+2mo§ Xp2n+m0§
= 30> et ) ol ) o,
m=1 n=1 O}><(2

where polynomial g¢(x,y) = (y> — p™2?)?(y3 — cp™a?) + p2" 3yt we
have gg(z,y) = v°. Then we obtain that,

Z(Sa97X7 AG) =
T3 g § [ o idsdy,
m=1n=1 (@D)EFS* (a,b)+ (pOx )2
_ Z q(75718s)n+(7379s)m72 Z X(gG(a + pz, b+ py)) |d$dy‘,
m=1n=1 (E,E)GM 20%(

where X (gs(x,y)) = x(ac(gs(x,y)))|gs(x,y)|*. Now we apply the change
variables (A.1.3) to function g and since that 96 > (@, b) = (58) # 0, we

obtain that,

Z(S,Q,X,A(S) =
SN gtz 7 /X(g6((a,b)+p21))! |dzl,
m=1 n=1 (@b)e ]F;QOK
= 30D g (s (a,0)),

m=1 n=1

where Iny(s, (a,0)) = X ageme | X(96((a,) +pz1))|dz], then given that
Ok

N = Card{(a,b) € (F})?: gs(a,b) = 0} = Card{(a,b) € (F})*:b =0} =

B.1. Computation of Z(s, g, x, A;)
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0, we obtain
.

(q - 1)2 Zf X = Xtriv

IA6(87 (CL, b)) - Z:(E,E)GIF(;<2 Y(§6(67 l_))) Zf X = Xtriv
§6(675)7£0

0 all other cases.

Then,

(q - 1)2 Zf X = Xtriv

[Ae(sa (a7 b)) = Z(E,E)E]F;Q Y(b ) X = Xeriv

0 all other cases,

where Y is the multiplicative character induced by x in F,.
Now since that X? = xuiv and x|v = Xuriw, U = 1+pOx implies X* = Xiriv,

we get

(q - 1>2 Zf Xg = Xtriv, X’U = Xtriv
> X)) = (B.1.2)

(@b)e(Fy)? 0 all other cases.

Therefore,

(q - 1)2 Zf X = Xtriv

[AG (37 (a7 b)) - (q - 1)2 Zf Xg = XtrimX‘U = Xtriv

0 all other cases.

\
Finally, since that

Z(57 g, X, AG) — Z Z q(—5—185)n+(—3—95)m—2]A6(S’ (a7 b)),

m=1n=1

B.1. Computation of Z(s, g, x, A;)
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we obtain
(
—8-27s(]_,—1)2 )
(1_(5]—3—95)(1_?1—5)—185) if X = Xtriv
—8—27s(1_,—1)2 .
Z(S’ 95 Xs A6) - (1,[;73793)((117(51—5)—185) Zf Xg = Xtrivs X|U = Xtriv

0 all other cases,
\
(f) Case Z(S, 9. X, A?)

Z(s,9,x, A7) = Z/ X(ac g(z,y))lg(x,y)|*|dzdy,

n=1 anolé XpnOIX(

=St [ i) ldod
n=1 O;;Q

where X (g7(z,y)) = x(ac(g:(z,y))) and the polynomials

gr(z,y) = (v° — p"2®)*(y° — ep"a?) + p*zty?, with gr(z,y) =y’

Y

therefore the origin of K is the only singular point of g7(x,y) over (F;)?

Then we have,

Z(5797X7 A?) -
St Y0 / x(ac gi(x,9))lgs (2, y) | dedy]
n—=1 (@,b)eFy? (a,b)+(pOx)?

_ Z g3 ms =2 Z / X(gs(a+px, b+ py)) |dedy|.
n=1

@hew)? %k

Now we apply the change variables (A.1.3) to function g7 and since that
%—f(a, b) = 95" # 0, we obtain that,
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The local zeta function of (y* — 22)*(y® — cz?) + zty? 104

Z(s,9,x, A7) =
Zq-?m -z 5 / X(gr(a+ pa.b+ py))|dady)
(@,b)elF ;>
= Zq_?’"—%s—Q Z X(g7(a,b) +pz1) |dz|
n=1 (a b)E 2 O%(

where Ia; (s, (a,0)) = X apemz Jo, x(ac (g7(a,b)+p21))lgr(a, b)+pz1)[*|dz],
then since N = Card{(a,b) € (F})* : g;(a,b) = 0} = Card{(a,b) € (F))*
v = 0} = 0, we apply the argument above again, and for the equation

(B.1.2) in

o0

Z(s,9.x A7) = > q "5 (s, (a,D)),

n=1

we conclude

—3—9s 1— —1)\2 .
1 (1_q(—3—%s)) Zf X = Xtriv

—3-9s(1_,—1)2 .
Z(5797X7A7) = % Zf X9 - Xtriv>X|U = Xtriv

0 all other cases.

\

(g) Case Z<87 9, X, AS)
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Z(S,Q,X7A8) =

S [ wacGlotey)l )

p2n+mo X XpnOIX{

=SS [ ae (o) los(o )l dndyl

m=1 n=1
X2
OK

Since that polynomial gg(z,y) = (y*—p™T2mx?)2(y3 —cpT2mg?) p3ntimgpiyt

we have gg(z,y) = y°, then we obtain that the origin of K is the only singular

point of gs(z,y) over (F;)?. By using equation (A.1.1), so we obtain that,

Z(S,Q,X,Ag) =

Syt 3 [ e gl )los(o ) lildadyl,

@D)EFT)? (ab)+(pOx)?

=Y ) g N / X (gs(a +px, b+ py))|dzdy|,

m=1n=1 (@,b)e(F))? 02

where X (gs(a +pz,b+py))) = x(ac gs(a+ pz, b+ py))|gs(a+ px, b+ py)[°.

Now we apply the change variables (A.1.3) to function gg and since that

998 (

5, (a, ) = b # 0, we can assert that,

Z(SagaX7A8) =

Z Z g3 9In—m=2 Z / x(ac (gs(a,b) + pz1))|gs(a, b) + pz1)|°ldz1],
m=1 n=1 (@b)e(Fy )20
K

[e.9]

ZZ ~3-Sejn—m- QIAs( (a’vb))7

B.1. Computation of Z(s, g, x, A;)
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where Ia,(s, (a,b)) = Z(aé (FX)2 foK ac (gs(a, b)+pz1))|gs(a, b)+pz1)]*|dz],
and since N = Card{(a,b) € (F))?: g5(a,b) = 0} = Card{(a,b) € (Fy)?
b =0} =0 we yields,

Z(87g7X7A8>:ZZq ~8-9sn—m— 2IA8< (a’vb)7

m=1 n=1
and by applying (B.1.2) we conclude that

/

—4—9s 1— —1 .
1 (l_qﬁafgs) ) Zf X = Xtriv

—4—9s(1_—1 .
Z(5797X7A8 = % Zf Xg :Xtm'vaX|U = Xtriv

0 all other cases.

\

(h) Case Z(S’ 9. X, A9)

Z(5,9,x,Ag) = Z/ x(ac g(z,y))|g(x,y)|*|dzdy],
1 /PO x0p

e e}

-3 /  X(ac (go(x.9))) ool )|* |dzdy.

Since that polynomial go(x,y) = (y3 — p>22)%(y® — cp?2?) + p*"aty?, we
have go(z,y) = y° then we obtain that the origin of K is the only singular
point of go(z,y) over (F;)2.

Then we obtain that,
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Z(SagaX7A9) =

S g 72 / vlac golw,y))lgo(,y)ldady

(@B)e(F) (a,b)+(pOx)?

_S e Y / x(ae gola -+ b, b+ py))lgo(a + b, b+ py)|*|dedy.
n= (@b)e(Fy)

Now we apply the change variables (A.1.3) to function go and since that
%—?(E,T)) =95 # 0, we get,

Z(£797X7A9) -

D"t Y / x(ac gola +px, b+ py))|go(a + pz, b+ py)|*|drdyl
n=1 (@b)e(Fy)2 (052

Dﬂg

Y [ e nfa.b) + pa)lgalab) + pa)Flda

n=1 @b)e(Fy)? O

= Zq—n QIAQ CL b))

where Ia, (s, (a,b)) = Z(a@)e(quX)? I x(ac (go(a,b)+pz1))|go(a, b)+p21)[*|dz],
Ok
then given that

N = Card{(a,b) € (FX)*: gy(a,b) = 0} = Card{(a,b) € (F)*:b =0} =0

we obtain,

B.1. Computation of Z(s, g, x, A;)
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;

(q o 1)2 Zf X = Xtriv
IAQ (87 (G’J b)) - Z(E,B)G(FQX)Z Y(EQ (aa 5)) Zf y = Xtriv
§9(675)7£0
0 all other cases,

\
where Y is the multiplicative character induced by x in F.

Now since that Z(s, g, x, Ag) = > o, ¢ " 2Ia,(s, (a,b)), then as in the case
Z(s,q,x, ), the equation (B.1.2) gives

(

qil(]- - qil) Zf X = Xtriv
Z(Saga X A9) = q_l(l - q_l) Zf Xg = Xtriv; X|U = Xtriv

0 all other cases.

\
Now we are going to find Z(s, f, x, A;) fori =1,2,3,4,6,7,8,9 with the computes

above:

When X = Xtriv-

—2—6s 1 — —1) q—7—24s<1 _ q—1)2
Z riv) = 2 - 1- - 1 ( d
(Sv fa Xt ) q ( q ) + (1 - q,2,63) (1 . q,2,63)(1 - q,5,185)
q78727s(1 _ q71>2 q73795(1 _ qfl)

+(1 _ q—3—95)(1 _ q—5—18s> + (]_ _ q—3—9s)

When x # Xuio and x|1 + pOg = Xuriv We have several cases: if X = Yeriv, We

have

B . 1 o q—3—6s(1 _ q—l) q—2—6s(1 _ q—1)2
Z(Sv f: X) - X( ) (q (1 q ) + (1 _ q—2—65) + (1 _ q72765) )

o) (=)

(1 _ q7276s)<1 _ q75718s)

B.1. Computation of Z(s, g, x, A;)
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In the case where x” = Y4, We obtain

—8—-27s 1 — —1\2 —3—9s 1 — —1)2
Z(s. fx) = q”( q,), L4 (77q )
(1_q393)(1_q5 185) (1_q39s)
—4—9s -1
q (1—q") -1 -1
+ TEr==n +q (1—q).

In all other cases, Z(s, f,x) = 0.

B.2 Computation of Z(s, g, x, As)

(An integral on a degenerate face in the sense Kouchnirenko).

o0

Z(s,9,%,05) = Y x(ac g(x,y))|g(x,y)|*|dzdy,
p3nO% xp2nO%

n=1
_ Zq—5n—18ns/ 2 X(ac((y3 _ x2)2(y3 _ cx2) + p2nx4y4)
n=1 O;;

(y* — 2®)*(y° — ex®) + p*"aty’|*|dxdy].
Let g™ (z,y) = (y° — 2%)? + p?"a*y*, for n > 1. For compute the integral,

I(s,9™,x) = [ore xlac((y® — 2*)*(y° — ca®) + p*a'y")) (1 — 2%)°(y° — ca?) +

p2ratyd|*|dadyl, for n > 1, we use the following change of variables:

o O —O0F

(z,y) ¥ (2%, 2%y)
The map ® gives an analytic bijection of O}? onto itself and preserves the Haar
measure since that its Jacobian Jg(z,y) = xly satisfies |Js (2, y)|x = 1, for every

z,y € Of. Thus

B.2. Computation of Z(s, g, x, As)
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g™ o ®(z,y) = 218ySg (z,y), with

—_—

9 (z,y) = (y = 1)*(y — c) + p>"a*y?, (B.2.1)

Then we have that,

I(s,9"™.x) = / Xlac(zy g™ (z,9))) g™ (z, y)|"|dady|.
OX

K

In order to compute the integral I(s, g™, x),n > 1, we decompose O* as follows:

X2
OK -

(0% x {yo + pOxklyo # 1,c(mod p)}) U (O x {14 pOk}) U (O x {c+pOk}),
(B.2.2)

where yo runs through a set of representatives of F in Ok. From partition

(B.2.1) and formula (B.2), it follows that,

—_— —_—

I(s, g™, x) = / x(ac(z'®y’g™ (z,y))) g™ (z, y)|*|dzdy|
O x{yo+pOx }

—

+f e g ) g . ) dody
OR x{14+pOk}

— —_—

+ [ ey g ., )g (o )] ey
OIX(X{C-HJOK}
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The integral I admits the following expansion:

I(s,9™,x) =

—_— —_—

S / x(ac(a'®(yo + py)° 9™ (2, yo + py)))1g™ (2, yo + py)|*|dzdy]
yoZ£1,c(modp) ¥ Ox X OK

e

+q_1/0x o Xlae(@®(1 +py)°g™ (2, 1+ py))) g™ (x, 1 + py)|’|dzdy|

—_—

[ acla™ e+ g0 o )l o ) ldady|

Now we use Og = | |72, p’O; and it follows that,
I(s,9"™.x) =

> Zq_l : / X (g (2, yo + py)) |dudy]
O><2

yoZ1,c(modp) j=0

+Zq [ w14 y) [dady)
O><2

#0 [RG aew ) [dody.

X (g (x,y0 + ' y)) =x(ac(z™®(yo + p )9 (2, yo + Y)W (2, yo + pTy)|?

Bal
N
S
—~
8
—_
_|_
=3
<
+
=
<
~—
~—
I

Xlac(@™® (1 + p T y)Sgm (2, 1 + pTy))) g (z, 1 + pitly))*

X (g™ (z, ¢+ p 1Y) =xlac(zS(c + p7 ) g (z, ¢ + p 1)) |g™ (z, ¢ + pi )|
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where

N(s,g™ )= > Zq‘” / X (g (2, yo + p'y)) |dady]
O><2

yoZl,c(modp) j=0

Jo( Zq_l J / X (g™ (2,14 p’*1y)) |dady]
O><2
Ja(s, g™ Zq_l : / X(g0 (@, ¢+ p'ty))) |dady
J=0 0% x0

Then we can expand Jy(s, g™, x) and J3(s, g™, x) as following

n—2
To(s, g™ x) = S g2 / v(ac gs(a, y))|dedy
‘ J

x(ac gs(z,y))|gs(z, y)|*|dzdy|

_|_
()
3
|
H
—

0x?
g / x(ac ga(x,y))|dzdyl.
Jj=n OIX(Q
2n—2
Ta(s, 9™, x) = > ¢ 0 / x(ac gs(z,y))|ddy|
5=0

X2
OK

g / x(ac gs(@.9))|g6(z )| dedy]

O}?
+ 1_]_2%/)((@0 g7(x,y))|dzdy|
j=2n

X2
OK
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So, we can write

where,

Ji(s, 9™, x) =h(s, 9™, %)
Ta(s,9"™, x) =La(s, 9™, x) + Is(s, 9™, x) + Li(s, 9™, X)

Ja(s,9"™, x) =Is(s. 9™ x) + Io(s, 9™, x) + (s, 9", X)

L= Y S [ e gt

yoZ1,c(modp) j=0

O><2
n—2
b= 32 [ (ae ala)ldedy),
J=0 0x2
K

Iy = / v(ae g(, ) gs(, 1) |*|dzdy],

ox?
L= [ e glop)ldedyl,
2n—2
=30 a0 [ ae gata ) ldady],
J=0 Ox2
K

I =72 [ x(ae go, )l ) Koy,

X2
OK

=Y [ ae grla.)ldody|.

Jj=2n X2
Ok
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and,

gi(z,y) =2 (yo + P79 ((yo — 1+ p" )% (o + Py — ) + 9™ (o + P 'y)?),

=23 (1+p"y)°[(1*(1 = e+ p") + 2°(1 4 p"y)?),

(2, y)
(2, y)
(z,9)
ga(w,y) =" (L +p" ) [(p* 722 (1 — e+ p"Hy) + (1 + p'Hy)?),
(2, y)
(z,9)
(z,9)

g1(z,y) =" (yo)" (yo — 1) ga(z,y) =2y’ (1 - ¢),

gs(x,y) ="y (1 — ¢) + 2% ga(x,y) =2,

gs(x,y) ="*y* (e — 1) Go(x,y) =2"yc(c — 1) + 2%¢,
g7(x,y) ="

Note that we can find every integral I;, 7 = 1,2, 3,4 and we compute Z(s, g, x, A5) =
Sool g (s, 9™ X), where I(s, g™, x) = L+ L+ I+ I+ Iy + I + I

Now we’ll find every integral I; for i = 1,2,3,4,5,6,7.

(a) I = Eyg%l,c(modp) z;)i(] q_l_j f X(CLC gl(zv y))‘d.ﬁlﬁdy‘

X2
OK

Since that the polynomial g1 (x,y) = @ (yo + " 'y)°((yo — 1+ 07 y)? (yo +
pi Ty —¢) + p?a?(yo + pPTy)?), we have gi(z,y) = xByf(yo — 1)

By using equation (A.1.1), so we obtain that,
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L= > a7 / X(ac gi(w,y))|dzdy|

y0$17

- ¥

c(modp) j=0 @B)EFG)*(a,b)+(pOx )2

S Y / (ac gr(a+ pz, b+ py))|dady].

yo#EL,c(modp) j=0 (@b)e(F;)20

Now we apply the change variables (A.1.3) to function g; and since that
%1(a,b) = 18y3(yo — 1)%@"" # 0, we obtain that,

I =

> Yot Y [ el )l

yo#1,c(modp) j=0 @, B)qu“oK

where I (s, (a,

the Lemma 1.2.2, and given that N = Card{(a,b) € (FX)? :g,(a, b)

Card{(a,b) €

[_1(57 (a7 b)) =

where Y is the

I_I(S’ (a’7 b)) =

= Z qu?’ ITy(s, (a,b)),

yoZl,c(modp) 7=0

b)) = X @newee J xlac (g1(a,b)+pz1))|dz |, then we apply
Ok

(Fy)? :a®yi(yo — 1)> = 0} = 0, we obtain

(¢ — 1)2 if X = Xtriv

Z(E b)e(F )2 Y(gl (av 5)) Zf X = Xtriv
§1(675)7é0

0 all other cases,

\
multiplicative character induced by x in F. Then,
(

(q - 1)2 Zf X = Xtriv

> (@heFry? X@*% (W6 — 1)?)  if X = Xeriv
(@757 (Jo—1)2)#0

0 all other cases,

=0} =

B.2. Computation of Z(s, g, x, As)



The local zeta function of (y* — 22)*(y® — cz?) + zty? 116

Therefore,

;

(q - 1)2 Zf X = Xtriv

I_l(s7 (CL, b)) - Z (@b)e(Fy)? YlS(a)y(%7(% - 1)2) Zf X = Xtriv
@70 (1o—1)%)#0

0 all other cases,

\
where U = 1+ pOg. Now since that X'® = x40 and x|y = Xsrie implies

X'® = Xuriv, We get

;

(q - 1)2 Zf X = Xtriv
Li(s,(a:0) = 4 Xm0 2@ — (g — 1% if x*® = xrios v = 1

0 all other cases.

Finally, since that It = 37 1 modp) 2-i=0 q 3 771,(s, (a,b)), we obtain

(

¢ ' (g—-3)(1—-q") if X = Xtriv

L= X" @0)x* W — Vg (g =3)1—q) if X = Xerio: Xlv = Xtriw

0 all other cases.

\

(b) I, = Z;L;g q 1=+ [ y(ac go(w,y))|dzdy|. Since that polynomial

X2
OK

go(2,y) = [5(1+ p ) [Y? (1 — ¢ + pTThy) + p? = CT222(1 + p/Thy)?)),
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we have gz(x,y) = x'%y*(1 — ¢). Then we get,

-2

S g Y [ e stelaoy

7=0 (@D)EFG )2 (a,b)+(pOx )2
n—2

=S e x(ac ga(a + px, b+ py))|dzdy|.
3=0 @beF;)’o

Now we apply the change variables (A.1.3) to function g, and since that

agz( B) = 8(617)(52)(1 —¢) # 0, we obtain,

Z —(2+24)s Z /X(ac (g2(a,b) +p21))|dz |
=0 (@b)e(Fy )20
n—2

= q I (s, (),

.
Il
o

where I5(s, (a,b)) = > @h)e(F f x(ac (g2(a,b) + p21))|da|.

Now given N = Card{(a,b) € (]F;) 1 Gy(a,b) = 0} = Card{(a,b) € (F))?
@%b’ (1 — ) = 0} = 0, we can assert that

(

(q - 1)2 Zf X = Xtriv
Iy =Sx(1-2)(g—1)? if X*= Xeriw

0 all other cases,

\
Given that XZ = Xtriv and X|U = Xtriv lmphes X2 = Xtriv, W€ get
,

(q - 1)2 Zf X = Xtriv

I2 - Y(l - E)(q - 1)2 Zf X2 = Xtriv, X|U = Xtriv

0 all other cases,
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where U = 1+ pOg.

Finally, since that [, = Z;‘:—g q377=(@+2)s], (s, (a, b)), we conclude that

(
q_1_25(1711(”_1)(_1_23))(1*(1_1)2

T_qg-1-25 Zf X = Xtriv
Iy = § (1 — ) U IO i3 = i, X0 = Xerio
0, all other cases.
\
Iy=q " [ x(ac gs(z,y))|gs(z, y)|° |dadyl.

ox?
Since that polynomial gs3(x,y) = 2 (1+p"y)®[(y*(1 —c+p"y) +22(1+p"y)?],
we have g3(x,y) = x'%y*(1 — ¢) + 2?. Then we get that,

E=gm 3 [ e po)loslo)ldady
EFG)? (a,b)+(pOx )2

—~
ol
<

—n—2ns—2

-4 > / x(ac gs(a+pz,b+py))|gs(a + px,b + py)|*|dzdy|.
@HeF;)? G2

Now we apply the change variables (A.1.3) to function g3, and like 88—9;3(6, b) =
2(@'®)(b) # 0, we obtain

E=q 2 3 [ ae () +pa)lm(ab) + bl

@b)E(Fq)? O

— qfnf2nsf273(57 (CL, b)),

where I3(s, (a,0)) = 3 @5)eq7)2 Of x(ac (gs(a, b)+pz1))|gs(a, b)+p21)[*|dz .

q
K
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Now given that

N, =Card{(a,b) € (IF;)2 . 5(@,b) = 0}
—Card{(a,b) € (F)?:a®(5*(1 —¢) + @) = 0},

q

—s(1—g~ )N .
% Zf X = Xtriv

I34(s,(a,b)) =

0 all other cases.
\

and
.

(q_1>2_N1 Zf X = Xtriv

73,2(8, (a,b)) = Z(E,B)e(u?;)? x(ac(gs(a, 5)) if X|lu = Xtriv
53(675)750

0 in other case,

\
where U =1+ pOk.

Since that  is the multiplicative character induced by x in F,, we have that

4
(q - 1)2 - N if X = Xtriv

— — /18 /72 _ s po—
I32(s, (a, b)) = 2 (@b)e(Fq)? X@® (1—2)+a)) if X = Xerio
@18(5° (1—8)+a2)#0

0 all other cases.
\
Given that X = Xtriv and X|U = Xtriv lmphes X = Xtriv, We get

(q_1>2_N1+T2 Zf X = Xtriv
7372(87 (Cl, b)) =

0 all other cases.
By writing,
Ty=7) (a,b)e(F))2 x(a®(0*(1 —¢) + a?)),
(a18 (b2 (1-2)+a?) #0
Finally, since that I3 = ¢7"72"72 (I3 (s, (a,b)) 4+ I52(s, (a,b))), we obtain

that
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—s(1_—1 .
q—n—2ns—2 (% + (q — 1)2 — Nl + Tg) Zf X = Xtriv
[3 -

0 all other cases.

(d) Li=>"72, ¢ [ x(ac ga(z,y))|dzdyl.
o)

Since that polynomial g4(z,y) = z'8(1+p?T1y)0[(p> T2 72"y (1 —c+p/Tly) +
#2(1 4 pHy)?), we have 7z, ) = o,

By using equation (A.1.1), so we obtain that,

L=y v(ac ga(a, y))ldady|
i (a;:b)+(pOx)?

J
=Yt S [ Maegiactpnb+py)ldedy)
02

g=n @b)e(Fq)? 7K

Now we apply the change variables (A.1.3) to function g, and since that

%ggf( ,b) = 20a" # 0, we obtain that,

_ Zq_3—j—2n8 Z / ac g4 a, b +pzl))‘d21’
j=n

€(F)? O

(ab
Z —3—j— 2nsl ((l,b)),

where I,(s, (a,b)) = 2(675)6(]17;()2 | x(ac (ga(a,b) + pz1))|dz|, then given
Ok

that N = Card{(a,b) € (F})*: g,(a,b) = 0} = Card{(a,b) € (F))*:a* =

0} = 0, we obtain
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;

(g — 1)2 if X = Xtriv
I4(s, (a,b)) = Z(E,E)E(qu)? X@°) if X = Xurio

0 all other cases,

where Y the multiplicative character induced by x in F,.

Now since that Y*° = X and |y = Xeriv implies X2 = X4, We get

(q - 1)2 Zf X20 = Xtriv, X|U = Xtriv
P @peryz X(@) =
0 all other cases,

where U =1 4 pOk.
Then,

;

(q - 1)2 Zf X = Xtriv
74(57 (CL, b)) = (q - 1)2 Zf X20 = Xtrivs X|U = Xtriv

0 all other cases.

Finally since that [y = Y2 ¢~*772"I,(s, (a,b)), we conclude that

(

q—Qns—n—l(l - q—1> X = Xtriv

Is= g2 11— ¢ X = Xerivs XU = Xtriv

0 all other cases.
\

(€) I = 322102 g =00 [ y(ac g5(x,y))|dxdyl,

X2
OK

where polynomial
g5(x,y) = [#"%(c + " 1y)Yy(c = L+ p/Hy)? + p* U2 (e 1 p7y)?),

and g5(z,y) = 2'8y*®(c — 1)%
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By using equation (A.1.1), so we obtain that,

E=Yq i ST [ ae go(oy))ldady

@b)EFS)? (ab)+(pOx )2

Now we apply the change variables (A.1.3) to function g5 and since that
%(57 b) = 18(517)(52)56(5 — 1) # 0, we obtain that,

2n—2

I, = Z g 3I—(Hd)s Z /X(ac (g5(a,b) + pz1))|dz |
J=0 @b)E(Fq)? O
2n—2

- Z q737j7(1+j)575<87 (aa b))a
=0

where I5(s, (a,b)) = D (@h)ems)? | x(ac (gs(a,b) + pz1))|dz]|, thus we use
o

K

Lemma 1.2.2 and give that

N =Card{(a,b) € (F))* : g5(@,b) =0,}
—Card{(a,b) € (FX)?: ab’e(c — 1)* = 0},

(q - 1)2 Zf X = Xtriv

T5(s, (a,b)) = ¢ Z@pems)y x(ac(gs(@, b)) if Xlv = Xtriv

0 in other case,

where U =1 4 pOg.
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Now, since that X is the multiplicative character induced by x in F,, we

have that

(

(q - 1)2 Zf X = Xtriv

Ts(s, (a,b)) =< 20 (@b)e(Fy)? XP@XPOx(E (€@ -1)%) X = Xiriw
a'85°2% (6—1)#£0

0 all other cases.

and given that X = Xtriv and X|U = Xtriv 1mphes X = Xtriv, W€ get
(

(q - 1)2 Zf X = Xtriv

75(87 (CL, b)) = X(EG(E - 1)2)((1 - 1)2 Zf X2 = Xtriv7X|U = Xtriv

0, all other cases,

Finally, since that Iy = 23262 q377~(+)s] (s, (a,b)), then we conclude

that

(
—l=s(1_g(2n—-1)(-1=s)y(1_4—1)2 .

1 (1-g 1—gq1-s —g) Zf X = Xtriv

_ - —1-s(1_,2n—1)(—1—s) _ 12 .
Is = X(C6<C - 1)2)q =g 1 g1 M-g) ) Zf X2 = XtrimX‘U = Xtriv
0, all other cases.
\
(f) Is =g [ x(ac gs(x,9))|g6(, y)|*|dxdy].

X2
OK

Since that polynomial gg(z, y) = 2 (c+p?"y)°[(y(c—14p**) 2 +2?(c+p*y)?],
we have gg(z,y) = 2'%yc®(c — 1) + 2208,

By using similar argument apply in previous cases we get
—2(a@,b) = 2a""c®[9b(c — 1)* + 10a*c*] # 0

and therefore,
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Iy =g 2o 3" /nm@mw+mmmwm+mmwm

(@b)e(F5)? O

:q—2n3—2n—276 (57 (CL, b))a

where I = D (@herEs)? [ x(ac (gs(a,b) + pz1))|gs(a,b) + pz1]¥|dz], then
Ok

we have

—s(1_,—1 5 i
B % if X = Xtriv
Is1 =

0 all other cases,

where

Ny =Card{(a.b) € (F)? : 5o(a,b) = 0},

=Card{(a,b) € (F))* : a'*bc°(c — 1)* + a*°¢* = 0},

and

(

(q - 1)2 - N2 Zf X = Xtriv

Tso = 2 @ner;y X((@, b)) if Xlu = xtriv
56(675)7&0

0 all other cases,

\
where U = 1 4+ pOk-.

Now, since that X is the multiplicative character induced by x in F,, we

have that
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(

(¢—1)> =N, if X = Xtriv

76,2(37 (a,b)) = > (ab)e(Fy)? Y(51852(554(5 - 1)2 +52)) if X = Xtriv
(bc*(e—1)2+a2)#£0

0 all other cases.
\

Give that X = x4 and x|u = Xuriv 1S equivalent to x = i, We get
(q_1)2_N2+T3 Zf X = Xtriv
Iso =
0 all other cases,
where T3 =Y. Gperre  X(@*@ (et (e —1)* +a%),
(bet(e—1)2+a?)#£0
and since that Is = ¢~ 2" 2"72(I; (s, (a,b)) + (Is2(s, (a,b)), we conclude

that
g e (—qi(sl(iq_g:s)j\b +(g—1)* = Ny + T3> if X = Xtriv
Is =
0 all other cases.
(8) Ir =230, Q‘l‘j‘mo[ x(ac gr(w,y))ldzdy|.
K

Since that polynomial g;(z,y) = z'®(c+ p'1y)°[(p! " 2"y(c — 1+ p/Tly)? +
z?(c + p?y)?], we have g7(z,y) = %5

By using equation (A.1.1), so we obtain that,

E=Y a3 [ xae gia.)ldudy

g=2n (@b)E(FF)? (a,b)+ (9O )?
= Z g e Z / x(ac g7(a+ px, b+ py))|dzdy].
j=2n @HEF;)? 62

Now we apply the change variables (A.1.3) to function g; and since that

% (7@, b) = 20c%a' # 0, we obtain that,
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YYD [ xae (grta.b) + pa)dal,

yo#1,c(modp) j=0 (@b)e(Fg)? Ok

- Z q 27 (s, (a, b)),

j=2n

where I;(s, (a,b)) = > @heEx)? J x(ac (g7(a,b) + pz1))|dz1|, then by
Ok

Lemma 1.2.2 and given that

N = Card{(@,b) € (F}): 3,(@,b) = 0} = Card{(a,b) € (F})%} : @ = 0} =0,

(q— 1)2 if X = Xtriv
I7 = { 2 @pems) x(ac(gq (@, b)) if xlv = Xeriv
97(@,b)#0
0 all other cases,

\
Now, since that X is the multiplicative character induced by x in F,, we

have that
(

(q - 1)2 Zf X = Xtriv
Iy = Z(a b)e(F))2 2 X(@X(E) if X = Xerio

0 all other cases.

\
Now since that X = x4 and x|y = Xeriv 1S equivalent to x = Xyriv, We get

that

X@)(g—=1)? if x*° = Xerivs XU = Xeriv
Z(ag)e(p )2 Y20<E)Y(68) =

0 all other cases.
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Furthermore,
(

(q - 1)2 Zf X = Xtriv

I7 = Y(ES)(q - 1)2 Zf XZO = Xtriv, X|U = Xtriv

0 all other cases.
\
Now since that Ir = > 72, q 37725 (s, (a, b)), we obtain
(
g (L= ) if X = Xuriv

I = IX@)g 722 (1 = ¢7Y)  if X*° = Xorios XU = Xtriv

0 all other cases.

\
Finally, since that

Z(8,9,x,A5) = >00 g onldns] = 570 gon—ldns S Lofor i =1, 7,
then when x = X¢riv,

—n—2ns—2— s(l_q )

Z(s, 9,0 85) = 3 o8 ( L (g1 - N+ TQ)
n=1

(1—q)
0 —2n—2ns—2—s(1 _ o~
g (q — q(ls LN (g1 - Ny Tg)
> —1-2s(1 _ ,(n—1)(—1-2s) _ 12
—5n—18ns 4 (1 q )(1 4q )
>
n=1

1—s

o0 — —2n—2ns —1)2
—5n—18ns [ 4 —q - q
3 ()
n=1

+ I (g =3) (=g )+ (L= )(gTY)

+ Z q—5n—18ns<1 _ q—1>(q—2ns—2n—1)
n=1
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Therefore,

a2 Un(q~) a0 (¢)
200000 80) = T 1= o) T T = (1 - )
(1 —q 1)2(] 6—20s B (1 _ q—1)2q—6—208
(1 _ q—l 25)(1 _ q—5—18s) (1 _ q—1—25)(1 _ q—6—205)
(L — g ") (¢*™™) (L—g¢ "))
(I=g> ™)1 —g')  (1—g?*)(1=g¢g')
(¢=3)A-¢ g™  (1—g)a)
(]_ _ q—5—185) (]_ _ q—6—208)

(A=)
(1 _ q777203)

+

+

where Up(q™*) = ¢ 2 *(1 — ¢ )Ny + To(1 — ¢ *){(¢ — 1)* — Ny}, with
Ny = Card{(a,b) € (F})2:a*(5'(1 —¢) +a2) = 0} and
_18 /72 _ .
=3 (@,b)e(F))2 x(@® (" (1 —¢) +a?),
(6° (1—2)+a2)#0
where, Uy(q™*) = ¢ 27*(1 — ¢ )Na 4+ T5(1 — g7 *){(q — 1)* — No}, with
= Card{(a,b) € (F)*: @b’ (c — 1)? + a*°¢* = 0}

and

— -2 _ _
Li=% @pemy X@E1-7)+3)),
(b° (1-2)+a2)#0
When x # Xtriv and x|14po, = Xeriw We have several cases: if x* = Xypiv, We

have

q—1—2$(1 _ q(n—l)(—1—2s))<1 _ q—1)2

Z S .9, XaAS Zq 5n— 18n5— —E)

1 — q7172s
—1—s —2n—2ns —1\2
—5n— 18ns— —4q (1 —q )
+Zq C_l)> 1_q—1—s
(1 —q 1)2q—6 20s _ 3 (1 o q—1>2q—6—205

=x(1-79) (1— g -2)(1 —go18) x(1-7¢) (1— g 1-25)(1 — ¢—6-20%)

(1 _ q—1)2(q—6—193) b ) (1 _ q—l)Q(q—'?—QOs)
Ao )1 —qi) TN g )
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It Xlg = Xtriv, then

Z(s.9,x,85) =X (%' (%0 — 1)) Zq_5n g g =3) (1 - ¢

I (q— 3)(1 . qfl)qufl&s
=X@" (o — 1)) (1 — g=5-189)

Finally for v% = Yurie, X|o' = Xaries Where U = 14 pO.

Z 8 " X)A5 Zq—Sn 18ns _ q—1)<q—2ns—n—1>+

o0

8) Z q—5n—18n5(1 _ q—l)(q—2ns—2n—1)

(- q—ln;(q—7—205) (1= g Yy (q7520)
T (1= 629 - X(@) (1 —q~7-209)

Summarizing over all cones, we conclude that,

When X = Xtriv-

205, o) = 2071 — g )+ L)
» Iy Xtriv) = 44 q (1 s s)
N q77724s(1 . q71)2 N qu 273(1 q )2
(]_ _ q—2—6s)(1 _ q—5—188) (]_ _ q—3 95)(1 —5 188)
+q—3—9s(1 . q—l) ¢ 205U0(q—s)
(I—g2%)  (1—=g ') —q 2%
N q—7—2OsU1 (q—s) (1 o q—1>2q—6—205
(]_ _ q—l—s>(1 _ q—7—20$) (1 _ q—1—2$>(1 _ q—5—18s)
(1— q—1)2q—6—205 (1— q—1)2(q—6—193)

- (]_ _ q—1—25)(1 q—ﬁ 205) (]_ _ q—5—183)(1 _ q—l—s)

P el U ) (q=3)A—q g™
(1— 7 205)(1 — ¢~ 1) (1 — g5 189)
+(1 —q (g - ) Q=g (")
(1 — q6-205) (1— g 7-209)
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where
Uo(g™) =¢ (1= ¢ )N+ To(1 — ¢~ ) {(¢ — )* = M1},
Ny =Card{(a,b) € (F¥)*: @b’ (1 — ©) + a°) = 0},
L= Y  x@01-o+a),
(@,b)€(Fy)?
(6° (1—2)+a2)#0
Furthermore,

Ur(q®) =¢ (1 = ¢ )Na + T5(1 — ¢ ) {(g = 1)* = Na},
Ny =Card{(a,b) € (F;)* :a"*bc’(c — 1)’ + a*’¢> = 0},
= Y X@E0-0+a).

(@b)e(Fs)?
(6° (1—2)+a2)#0

X 7# Xtriv @0d X|14p0, = Xtriv We have several cases: if X2 = Xtriv, We have

Z(S, g, X) = Y(l - E) (1 _(;__1_(]2;)2161: q_—5s—18s)

(1 _ q—l)Qq—G—ZOS 6 2 (1 _ q—1>2(q—6—195)
(1 _ q7172s)(1 _ q767205) + X(C (C 1) )(1 _ q757185)<1 _ qflfs)

e b (1= g2
+x(c’(c—1) >(1 —T208) (1 — 19

—X(1-7¢)
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In the case where x® = Yipiv-

Z(Sv s X) = X(—E) (q_l(l _ q—l) + q_3_68(1 - q—l) q_2—68<1 _ q—1)2>

T—g2) " T—q%)

—T-245(1 _ ,—1)2
+x(=°) ( : —2-6 ( . 7?57185 ) :
(1—g2%)(1—q )
If Xg = Xtriv-
—8—27s ~1\2
q (1—-q¢7Y
(8’ f’ X ) (1 _ q—3—95)<1 _ q—5—18s>
—3—9s 1— —1)2 —4—9s 1 — -1 B B
L4 (1—q)° ¢ Q)Jrql(l_ql)'

(1 _ q—3—93) + (1 _ q—3—95)

In the case where ¥ = Yirio.

Z(sagaX,A5) :Y(%7(%_ 1))(61 - 3)(1 —q )q— —18s

(1 — g5 189)
Finally for ¥ = Yrio-
O i R O S e [ C )
Z(Sa 9, X, AB) - (1 _ q,6,208) - X(C ) (1 B q,7,205)

In all other cases, Z(s, f, x,4;) = 0.
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