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Preface

Over	 many	 years	 of	 selecting	 instructional	 materials	 for	 my	 courses,	 I	 came	 to	 understand	 that
textbooks	that	are	congenial	to	students	obey	a	law	of	reciprocity	that	I	wish	to	propose	as	an	axiom:

Axiom	The	more	 effort	 an	 author	puts	 into	writing	 a	 text,	 the	 less	 effort	 is	 required	of	 the	 reader	 to
understand	it.
I	adopted	this	guiding	principle	as	a	categorical	imperative	during	the	writing	of	this	book.	Even	after

all	the	mathematics	was	in	place,	I	reread	and	rewrote	many	times	and	tested	explanatory	strategies	with
my	students.	 I	have	dedicated	 this	book	 to	 them	because	 they	have	been	my	most	patient	and	honest
critics.	The	book	owes	 its	present	 form	largely	 to	 them	and	 to	 their	 (sometimes	naïve,	often	brilliant)
suggestions.
Mathematics	has	a	superbly	efficient	language	by	means	of	which	vast	amounts	of	information	can	be

elegantly	 expressed	 in	 a	 few	 formal	 definitions	 and	 theorems.	 It	 is	 remarkable	 that	 the	 life	work	 of
consecutive	generations	of	great	thinkers	can	often	be	summed	up	in	a	set	of	equations.	The	economy	of
the	 language	masks	 the	 richness	 and	 complexity	 of	 the	 thoughts	 that	 lie	 behind	 the	 symbols.	 Every
mathematics	student	has	to	master	the	conventions	for	using	its	language	effectively.	However,	what	is
far	more	 important	 is	 that	 the	student	be	 initiated	 into	 the	 inner	 life	of	mathematics—the	 images,	 the
intuitions,	the	metaphors	that,	once	grasped,	make	us	say,	“Aha!	Now	I	understand!	Now	I	see	it!”	This
inner	seeing	is	what	makes	mathematics	vital	and	exciting.
What	is	most	unique	about	set	theory	is	that	it	is	the	perfect	amalgam	of	the	visual	and	the	abstract.

The	notions	of	set	theory,	and	the	ideas	behind	many	of	the	proofs,	present	themselves	to	the	inner	eye
in	vivid	detail.	These	pictures	are	not	as	overtly	visual	as	those	of	geometry	or	calculus.	You	don’t	see
them	 in	 the	 same	 way	 that	 you	 see	 a	 circle	 or	 a	 tangent	 line.	 But	 these	 images	 are	 the	 way	 into
abstraction.	For	 the	maturing	student,	 the	 journey	deeper	 into	abstraction	 is	a	 rite	of	passage	 into	 the
heart	of	mathematics.
Set	theory	is	also	the	most	“philosophical”	of	all	disciplines	in	mathematics.	Questions	are	bound	to

come	up	in	any	set	theory	course	that	cannot	be	answered	“mathematically”,	for	example	with	a	formal
proof.	The	big	questions	cannot	be	dodged,	and	students	will	not	brook	a	flippant	or	easy	answer.	Is	the
continuum	hypothesis	a	fact	of	the	world?	Is	the	axiom	of	choice	a	truth?	If	we	cannot	answer	with	a
definite	yes	or	no,	 in	what	manner	are	 they	 justified?	 (That	one	 requires	a	 long	answer).	What	 is	 the
meaning	of	the	Jacob’s	ladder	of	successive	infinities	so	high	that	the	very	thought	of	it	leads	to	a	kind
of	intellectual	vertigo?	To	what	extent	does	mathematics	dwell	in	a	Platonic	realm—and	if	it	does,	then
in	the	words	of	Eugene	Wigner,	“how	do	you	explain	the	unreasonable	effectiveness	of	mathematics	in
the	natural	world?”	Or	as	Descartes	wondered,	where	do	you	find	the	nexus	between	the	material	world
and	the	products	of	thought?
In	 this	 book	 I	 have	 tried,	 insofar	 as	 possible,	 not	 to	 evade	 these	 questions	 nor	 to	 dwell	 on	 them

excessively.	 Students	 should	 perceive	 that	 mathematics	 opens	 doors	 to	 far-reaching	 and	 fascinating
questions,	 but	 on	 the	 other	 hand	 they	must	 remain	 anchored	 in	mathematics	 and	 not	 get	 lost	 in	 the
narcotic	haze	of	speculative	thought.	I	have	tried	to	provide	the	necessary	background	for	understanding
axiomatics	and	the	purpose	and	meaning	of	each	of	the	axioms	needed	to	found	set	theory.	I	have	tried
to	 give	 a	 fair	 account	 of	 the	 philosophical	 problems	 that	 lie	 at	 the	 center	 of	 the	 formal	 treatment	 of
infinities	and	other	abstractions.	Above	all,	of	course,	I	have	endeavored	to	present	the	standard	topics
of	set	theory	with	uncompromising	rigor	and	precision,	and	made	it	clear	that	the	formalism	on	the	one
hand,	and	the	intuitive	explanations	on	the	other	hand,	belong	in	two	separate	domains,	one	useful	for
understanding,	the	other	essential	for	doing	mathematics.



This	book	 is	 a	 revised	 and	 re-written	version	of	 an	 earlier	 edition,	 published	 in	1972	by	Addison-
Wesley.	I	have	retained	most	of	the	formal	definitions,	theorems	and	proofs,	with	nothing	more	than	a
few	corrections	where	needed.	I	have	also	retained	the	initial	chapter	that	narrates	the	origins	and	early
history	of	set	theory,	because	history	(in	general)	does	not	change.	I	have	added	commentary,	introduced
some	new	discussions,	and	reorganized	a	few	proofs	in	order	to	make	them	cleaner	and	clearer.	Finally,
I	have	added	a	new	chapter	on	models	of	set	theory	and	the	independence	results	of	Gödel	and	Cohen.	I
have	 set	 the	 discussion	 of	 these	 topics	 at	 a	 level	 that	 is	 accessible	 to	 undergraduates	 while	 not
concealing	the	difficulties	of	the	subject.



0
Historical	Introduction

1	THE	BACKGROUND	OF	SET	THEORY

Although	 set	 theory	 is	 recognized	 to	 be	 the	 cornerstone	 of	 the	 “new”	mathematics,	 there	 is	 nothing
essentially	new	in	the	intuitive	idea	of	a	set.	From	the	earliest	times,	mathematicians	have	been	led	to
consider	 sets	of	objects	of	one	kind	or	 another,	 and	 the	 elementary	notions	of	modern	 set	 theory	 are
implicit	in	a	great	many	classical	arguments.	However,	it	was	not	until	the	latter	part	of	the	nineteenth
century,	in	the	work	of	Georg	Cantor	(1845–1918),	that	sets	came	into	their	own	as	the	principal	object
of	a	mathematical	theory.
Strangely,	it	was	his	work	in	the	highly	technical	field	of	trigonometric	series	which	first	led	Cantor

to	 study	 the	properties	of	 sets.	At	 first,	he	confined	himself	 to	certain	particular	 sets	of	 real	numbers
which	occurred	in	connection	with	the	convergence	of	series.	But	Cantor	was	quick	to	understand	that
his	discoveries	applied	to	sets	quite	generally;	in	a	series	of	remarkable	papers,	published	between	1873
and	1897,	he	moved	progressively	further	from	the	concrete	problems	which	had	initiated	his	thinking
on	sets,	and	toward	the	powerful	general	concepts	which	underlie	set	theory	today.
The	boldest	step	which	Cantor	had	taken—in	the	eyes	of	his	contemporaries–was	his	use	of	infinite

sets,	which	he	considered	as	no	less	natural	than	using	finite	sets.	The	question	of	“infinity”	had	long
been	one	of	 the	most	 sensitive	problems	of	mathematics.	The	 reader	 is	 undoubtedly	 acquainted	with
Zeno’s	famous	“paradox”,	 in	which	a	unit	 line	segment	 is	divided	into	subintervals	by	the	points	1/2,
1/4,	1/8,	1/16,	etc.	Each	subinterval—no	matter	how	small—has	a	definite,	nonzero	 length,	and	 there
are	 infinitely	 many	 subintervals;	 hence,	 the	 seemingly	 paradoxical	 conclusion	 that	 infinitely	 many
nonzero	lengths	can	be	added	together	to	produce	a	finite	length.	In	order	to	avoid	such	traps,	classical
mathematicians	made	a	distinction	between	the	“actual”	infinite—in	which	infinitely	many	objects	are
conceived	 of	 as	 existing	 simultaneously—and	 the	 “virtual”	 infinite,	which	 is	 simply	 the	 potential	 to
exceed	any	given	finite	quantity.	The	“virtual”	infinite	was	regarded	as	safe,	hence	admissible,	whereas
the	“actual”	infinite	was	taboo.
It	is	not	surprising	then,	that	Cantor’s	theory—with	its	uninhibited	use	of	infinite	sets	(the	notion	of

infinite	was	 obviously	 understood	 here	 in	 the	 “actual”	 sense)—was	not	 immediately	 accepted	 by	 his
contemporaries.	It	was	received	at	first	with	skepticism,	sometimes	even	with	open	hostility.	However,
by	 the	 1890’s	 the	more	 “palatable”	 parts	 of	Cantor’s	 theory	were	widely	 used,	 for	 they	 provided	 an
elegant	framework	for	a	wide	variety	of	mathematical	theories.	And	before	the	turn	of	the	century,	even
the	 most	 revolutionary	 aspects	 of	 set	 theory	 had	 been	 accepted	 by	 a	 great	 many	 mathematicians—
chiefly	because	they	turned	out	to	be	invaluable	tools,	particularly	in	analysis.
Meanwhile,	 the	work	 of	 several	 outstanding	mathematicians,	 in	 particular	Dedekind,	was	 taking	 a

turn	which	would	cast	set	theory	in	its	most	promising	role—as	the	fundamental,	“unifying”	branch	of
mathematics.	From	the	earliest	times,	mathematicians	have	given	thought	to	the	possibility	of	unifying
the	entire	discipline	under	a	small	number	of	basic	principles.	Many	of	the	ancient	schools,	from	Euclid
through	the	Middle	Ages,	contended	that	the	various	branches	of	mathematics	could	be	subsumed	under
geometry	 (numbers	might	 be	 conceived	 as	 geometric	 proportions);	 a	 far	 more	 successful	 attempt	 at
unification	 came	 in	 the	 nineteenth	 century,	 when	 the	 work	 of	 Weierstrass,	 Dedekind,	 and	 others
suggested	that	all	of	classical	mathematics	could	be	derived	from	the	arithmetic	of	the	natural	numbers



(positive	 integers).	 It	 was	 shown	 that	 every	 real	 number	 can	 be	 regarded	 as	 a	 sequence	 (called	 a
“Cauchy	sequence”)	of	rational	numbers;	hence	the	study	of	the	real	numbers	is	reduced	to	that	of	the
rational	 numbers.	But	 the	 rational	 numbers	 can	 easily	be	 regarded	 as	pairs	 of	 integers,	 so	 finally	 the
mathematics	 of	 the	 real	 numbers—which	 includes	 the	 calculus	 and	 (via	 analytic	 geometry)	 all	 of
geometry—can	be	based	on	the	natural	numbers.
It	was	at	this	crucial	point	in	the	evolution	of	ideas	on	the	foundations	of	mathematics	that	Dedekind,

in	 his	 little	 book	Was	 sind	 und	 was	 sollen	 die	 Zahlen	 (1888),	 revealed	 that	 the	 concept	 of	 natural
numbers	 can	 be	 derived	 from	 the	 basic	 principles	 of	 set	 theory.	 A	modern	 way	 to	 show	 this	 is	 the
following:	we	let	“0”	be	the	empty	set	(that	is,	the	set	with	no	elements,	denoted	by	the	symbol	Ø);	“1”
is	defined	to	be	the	set	{Ø},	that	is,	the	set	(of	sets)	containing	the	one	element	Ø.	Then,	“2”	is	defined
to	be	the	set	{0,	1},	“3”	is	defined	to	be	{0,	1,	2},	and	so	on.	All	the	properties	of	the	natural	numbers
can	be	proven	using	these	definitions	and	elementary	set	theory.
By	the	turn	of	the	century,	then,	set	theory	had	not	only	been	accepted	as	an	indispensable	tool	by	a

large	segment	of	the	mathematical	community,	but,	moreover,	it	was	a	serious	contender	for	the	position
of	primacy	among	the	mathematical	sciences.
Ironically,	at	the	very	time	when	Cantor’s	ideas	seemed	finally	to	have	gained	acceptance,	the	first	of

certain	“paradoxes”	were	announced,	which	eventually	cast	serious	doubts	as	to	the	basic	soundness	of
set	theory	in	its	“Cantorian”	form.	These	paradoxes	had	such	wide	repercussions	that	it	is	worth	looking
at	them	in	some	detail.

2	THE	PARADOXES

Between	1895	and	1910	a	number	of	contradictions	were	discovered	in	various	parts	of	set	theory.	At
first,	mathematicians	paid	little	attention	to	them;	they	were	termed	“paradoxes”	and	regarded	as	little
more	than	mathematical	curios.	The	earliest	of	the	paradoxes	was	published	in	1897	by	Burali-Forti,	but
it	 had	 already	 been	 discovered,	 two	 years	 earlier,	 by	Cantor	 himself.	 Since	 the	Burali-Forti	 paradox
appeared	in	a	rather	technical	region	of	set	 theory,	 it	was	hoped,	at	first,	 that	a	slight	alteration	of	the
basic	definitions	would	be	sufficient	to	correct	it.	However,	in	1902	Bertrand	Russell	gave	a	version	of
the	 paradox	 which	 involved	 the	 most	 elementary	 aspects	 of	 set	 theory,	 and	 therefore	 could	 not	 be
ignored.	In	the	ensuing	years	other	contradictions	were	discovered,	which	seemed	to	challenge	many	of
the	“safest”	notions	of	mathematics.

The	“paradoxes”	of	set	theory	are	of	two	different	kinds,	the	one	called	logical	paradoxes,	the	other
called	semantic	paradoxes.	The	reason	for	the	names	“logical”	and	‘semantic”	will	become	clear	to	us
when	we	have	seen	a	few	examples	of	these	paradoxes;	essentially,	the	“logical”	paradoxes	arise	from
faulty	logic	whereas	the	“semantic”	paradoxes	arise	from	the	faulty	use	of	language.
We	 will	 devote	 the	 remainder	 of	 this	 section	 to	 the	 presentation	 of	 two	 of	 the	 most	 celebrated

paradoxes,	which	involve	only	elementary	concepts	of	set	 theory.	The	first	 is	a	“logical”	paradox,	the
second	is	a	“semantic”	paradox;	both	may	be	considered	as	typical	of	their	kind.
The	simplest	of	the	logical	paradoxes	is	Russell’s	paradox,	which	can	be	described	as	follows:

If	A	is	a	set,	its	elements	may	themselves	be	sets;	this	situation	occurs	frequently	in	mathematics
—for	example,	A	may	be	a	set	of	 lines,	where	each	line	 is	regarded	as	a	set	of	points.	Now	the
possibility	 arises	 that	 A	 may	 be	 an	 element	 of	 itself;	 for	 example,	 the	 set	 of	 all	 sets	 has	 this
property.

Let	S	denote	the	set	of	all	sets	that	are	not	elements	of	themselves.	Is	S	an	element	of	itself?
Well,	if	S	is	an	element	of	S,	then—by	the	very	definition	of	S—S	is	not	an	element	of	S.	If	S	 is



not	an	element	of	S,	then	(again,	because	of	the	way	S	is	defined)	S	is	an	element	of	S.	Thus,	we
have	proven	that	S	is	an	element	of	S	if	and	only	if	S	is	not	an	element	S—a	contradiction	of	the
most	fundamental	sort.

Usually,	in	mathematics,	when	we	reach	a	contradiction	of	this	kind,	we	are	forced	to	admit	that	one
of	 our	 assumptions	was	 in	 error.	 In	 this	 case,	we	 are	 led	 to	 conclude	 either	 that	 it	 is	meaningless	 to
speak	of	a	set	as	being	an	element	of	itself,	or	that	there	is	no	such	thing	as	a	“set	of	all	sets	which	are
not	 elements	 of	 themselves.”	We	will	 return	 to	 this	 question	 presently;	meanwhile,	 let	 us	 say	 a	 few
words	about	the	semantic	paradoxes.

Typical	of	the	semantic	paradoxes	is	Berry’s	paradox:

For	the	sake	of	argument,	let	us	admit	that	all	the	words	of	the	English	language	are	listed	in	some
standard	dictionary.	Let	T	be	the	set	of	all	the	natural	numbers	that	can	be	described	in	fewer	than
twenty	words	of	the	English	language.	Since	there	are	only	a	finite	number	of	English	words,	there
are	only	finitely	many	combinations	of	 fewer	 than	 twenty	such	words—that	 is,	T	 is	a	 finite	set.
Quite	 obviously,	 then,	 there	 are	 natural	 numbers	which	 are	 greater	 than	 all	 the	 elements	 of	T;
hence	there	is	a	least	natural	number	which	cannot	be	described	in	fewer	than	twenty	words	of	the
English	 language.	 By	 definition,	 this	 number	 is	 not	 in	 T;	 yet	 we	 have	 described	 it	 in	 sixteen
words,	hence	it	is	in	T.

Once	 again,	 we	 are	 faced	 with	 a	 glaring	 contradiction;	 since	 the	 above	 argument	 would	 be
unimpeachable	if	we	admitted	the	existence	of	the	set	T,	we	are	irrevocably	led	to	the	conclusion	that	a
set	such	as	T	simply	cannot	exist.
Before	the	paradoxes,	the	question	of	the	existence	of	sets	had	never	been	posed.	Cantor	“defined”	a

set	to	be	“a	collection	of	definite	distinguishable	objects	of	our	perception	which	can	be	conceived	as	a
whole.”	More	specifically,	Cantor	and	his	early	followers	accepted	the	“common-sense”	notion	that	if
we	 can	 describe	 a	 property	 of	 objects,	 we	 can	 also	 speak	 of	 the	 set	 of	 all	 objects	 possessing	 that
property.	 The	 paradoxes	 had	 the	 singular	 merit	 of	 proving	 this	 native	 conception	 of	 sets	 to	 be
unacceptable—if	only	because	certain	“properties”	lead	to	paradoxical	sets.
In	 the	 various	movements	which	 sprang	 up,	 during	 the	 early	 1900’s,	with	 the	 aim	 of	 revising	 the

foundations	 of	 set	 theory,	 the	 topic	 of	 central	 concern	 was	 the	 existence	 of	 sets.	 What	 properties
legitimately	defined	sets?	Under	what	conditions	do	properties	define	sets	at	all?	How	can	new	sets	be
formed	from	existing	ones?

3	THE	AXIOMATIC	METHOD

The	appearance	of	 the	paradoxes	marked	 the	beginning	of	a	crisis	 in	 the	 foundations	of	mathematics
which	 has	 not	 been	 completely	 resolved	 to	 our	 day.	 It	 became	 abundantly	 clear	 that	 the	 intuitive
conception	of	a	set,	as	embodied	in	Cantor’s	“definition,”	does	not	provide	a	satisfactory	basis	for	set
theory—much	less	for	mathematics	as	a	whole.	Minor	attempts	to	eliminate	the	paradoxes	by	excluding
specific	 types	 of	 concepts	 and	 definitions	were	 doomed	 to	 failure;	 nothing	 less	 than	 an	 entirely	 new
approach	was	needed.	Starting	about	1905,	several	ways	of	dealing	with	the	problem	were	proposed	and
developed	 by	 their	 adherents;	 most	 of	 them	 can	 be	 classified	 into	 three	 major	 groups,	 called	 the
“axiomatic,”	 the	“logistic,”	and	 the	“intuitionist”	schools.	The	remainder	of	 this	chapter	 is	devoted	 to



presenting	these	three	ways	of	thought.	First,	however,	we	shall	briefly	review	the	development	of	the
axiomatic	method.
The	axiomatic	method	in	mathematics	emerged	in	a	highly	developed	form,	about	300	B.C.,	with	the

appearance	 of	 Euclid’s	 Elements.	 Although	 the	 method	 popularized	 by	 Euclid	 has	 become	 a
characteristic	 feature	of	every	branch	of	mathematics	 today,	only	 in	comparatively	recent	years	has	 it
been	applied	outside	of	geometry.	For	this	reason,	our	modern	understanding	of	axiom	systems,	and	of
deductive	reasoning	generally,	has	 to	a	great	extent	come	out	of	studies	 in	 the	field	of	geometry.	It	 is
worth	 examining	 a	 few	 of	 the	major	 developments	 in	 geometry	which	 influenced	 the	 growth	 of	 the
axiomatic	method.
To	 Euclid	 and	 his	 times,	 the	 axioms	 and	 postulates	 represent	 “truths”	 whose	 validity	 is	 beyond

question.	For	example,	it	was	this	belief	in	the	absolute	truth	of	geometric	propositions	which	led	to	the
millenia-long	controversy	over	Euclid’s	“parallel	postulate.”	This	postulate	asserts	 that	 if	 two	lines,	A
and	B,	intersect	a	third	line	C,	and	if	the	interior	angles	which	A	and	B	make	with	C	(on	a	given	side	of
C)	 add	 up	 to	 less	 than	 two	 right	 angles,	 then	A	 and	B	 necessarily	 intersect.	 Because	 this	 statement
appeared	to	be	“obviously	true”—yet	it	lacked	the	terse	simplicity	of	the	other	axioms	and	postulates—
geometers	 from	 Euclid	 to	 the	 1700’s	 succeeded	 one	 another	 in	 vain	 attempts	 to	 prove	 it	 from	 the
remaining	assumptions.	Only	in	the	midnineteenth	century	was	the	question	resolved	when	Bolyai	and
Lobachevski,	each	replacing	the	parallel	postulate	by	an	assumption	which	contradicted	 it,	developed
“non-Euclidean”	geometries.	The	non-Euclidean	geometries	were	shown	to	be	no	 less	consistent	 than
Euclidean	 geometry,	 since	 they	 could	 be	 given	 Euclidean	 interpretations	 (that	 is,	 by	 suitably
reinterpreting	“point,”	“line,”	“angle,”	and	so	forth,	the	postulates	of	either	Bolyai	or	Lobachevski	can
be	made	 to	 hold	 in	Euclidean	 geometry).	 Thus,	 not	 only	 is	 the	 parallel	 postulate	 independent	 of	 the
other	 axioms	 and	postulates	 of	Euclid’s	 system,	but	 alternative,	 equally	 consistent	 geometries	 can	be
founded	which	do	not	describe	 the	space	of	our	everyday	experience.	With	 this	came	 the	 recognition
that	axioms	are	not	“universal	 truths,”	but	are	whatever	 statements	we	wish	 to	use	as	premises	 in	an
argument.
Perhaps	 the	 greatest	 defect	 in	 the	Elements	 is	 the	 number	 of	 tacit	 assumptions	made	 by	 Euclid—

assumptions	not	granted	by	the	postulates.	For	example,	in	a	certain	proof	it	is	assumed	that	two	circles,
each	passing	through	the	center	of	the	other,	have	a	pair	of	points	in	common—yet	the	postulates	do	not
provide	 for	 the	 existence	 of	 these	 points.	 Elsewhere,	 Euclid	 speaks	 of	 a	 point	 as	 being	between	 two
others,	yet	he	does	not	define	“betweenness’	or	postulate	any	of	its	properties.	Other	arguments	in	the
Elements	 involve	 the	 concept	 of	 rigid	motion—a	 concept	 which	 is	 not	 defined	 or	 mentioned	 in	 the
postulates.	Thus,	throughout	Euclid,	the	orderly	chain	of	logical	inferences	is	frequently	broken	by	tacit
appeals	to	visual	evidence.	With	the	discovery	of	these	gaps,	mainly	in	the	nineteenth	century,	grew	the
understanding	that	a	mathematical	argument	must	be	able	to	proceed	without	the	mediation	of	spatial	or
other	 intuition;	 that	 certain	 objects	 and	 relations	 (such	 as	 “point,”	 “line,”	 “betweenness”)	 must	 be
regarded	as	undefined	notions	and	their	properties	fully	specified;	that	deduction	is,	in	a	very	essential
manner,	independent	of	the	meaning	of	concepts.	In	1882,	M.	Pasch	published	the	first	formulation	of
geometry	in	which	the	exclusion	of	any	appeal	to	intuition	is	clearly	stated	as	a	goal	and	systematically
carried	out.
By	the	end	of	 the	nineteenth	century,	 then,	a	modern	conception	of	 the	axiomatic	method	began	 to

emerge.	In	its	broad	outlines,	it	did	not	differ	from	the	ideas	held	by	Euclid:	a	mathematical	theory	is
“axiomatic”	if	certain	statements	are	selected	to	be	“axioms,”	and	all	the	remaining	propositions	of	the
theory	are	derived	from	the	axioms	by	logical	inference.	However,	there	was	a	new	understanding	of	the
formal	nature	of	mathematical	proof.	Inasmuch	as	possible,	the	axioms	should	be	sufficiently	detailed,
and	the	rules	of	logical	deduction	sufficiently	explicit,	that	neither	intuition	nor	intelligence	is	needed	to
go	through	the	steps	of	a	proof.	Ideally,	it	should	be	possible	for	a	computer	to	verify	whether	or	not	a



proof	is	correct.
As	long	as	mathematics	is	formulated	in	ordinary	languages,	such	as	English,	human	understanding	is

indispensable	 for	 interpreting	 statements	 and	 finding	 the	 structure	 of	 complex	 sentences.	 Thus,	 if
intuition	 is	 to	 be	 completely	 removed	 from	 mathematical	 proof,	 an	 essential	 prerequisite	 is	 the
development	of	a	formal	mathematical	language:	the	“rules”	of	this	language	must	be	strictly	codified,
so	 that	 every	 statement	 is	 unambiguous	 and	 its	 structure	 clear.	 The	 creation	 of	 formal,	 symbolic
languages	was	one	of	 the	most	 important	developments	of	modern	mathematics;	here	 is	what	 such	a
language	looks	like.
The	most	basic	mathematical	statements	look	like	this:

“X	is	parallel	to	Y,”
“y	lies	between	x	and	z,”
“X	is	an	open	set,”	etc.

They	are	statements	about	an	object,	a	pair	of	objects,	or	more	generally,	about	an	ordered	n-tuple	of
objects.	These	statements	are	called	elementary	predicates,	and	 the	 letters	X,	Y,	x,	y,	z	are	called	 their
variables.
It	is	convenient	to	denote	a	predicate	by	a	single	letter	followed	by	the	list	of	its	variables.	Thus,	“X	is

parallel	to	Y	”	may	be	written	A(X,	Y),	“y	 lies	between	x	and	z”	may	be	written	B(x,	y,	z),	and	so	on.
Now	 the	mature	 student	 is	 aware	 of	 the	 fact	 that	 the	 “meaning”	 of	 a	 predicate	 is	 immaterial	 in	 the
process	of	mathematical	reasoning.	For	example,	the	“meaning”	of	the	word	parallel	has	no	bearing	on
the	course	of	a	geometrical	argument;	all	 that	matters	 is	 the	 relationship	between	 the	 statement	“X	 is
parallel	 to	Y	 ”	 and	other	 statements	 such	as	“X	 intersects	V	 ”	 and	“Y	 is	 perpendicular	 to	Z.”	For	 this
reason,	elementary	predicates	are	also	called	atomic	formulas;	they	are	integral,	“indivisible,”	not	to	be
analyzed	further;	they	are	only	to	be	distinguished	from	each	other.
It	is	a	remarkable	fact	that	every	known	branch	of	mathematics	requires	only	a	finite	number	(usually

a	 very	 small	 number)	 of	 distinct	 elementary	 predicates.	 For	 example,	 every	 statement	 of	 plane
Euclidean	geometry	can	be	expressed	in	terms	of	the	following	basic	predicates:

Set	 theory,	 as	we	 shall	 see,	may	be	 formulated	 entirely	 in	 terms	of	 the	one	predicate	x	∈	A	 (x	 is	 an
element	of	A).
Predicates	alone	are	not	sufficient	to	express	all	 the	statements	of	mathematics,	 just	as	nouns	alone

would	be	inadequate	to	write	English	sentences.	For	example,	we	may	wish	to	say	that	if	“x	is	parallel	to
y”	and	“y	 is	perpendicular	 to	z,”	 then	“x	 is	perpendicular	 to	z.”	Such	statements	consist	of	predicates
joined	together	by	means	of	logical	connectives.	Thus,	if	P	and	Q	are	statements	in	our	language,	then
so	are	the	following:



Finally,	we	may	wish	to	say,	for	example,	that	if	“x	is	a	point”	and	“y	is	a	point,”	then	there	exists	a
point	z	such	that	“z	is	between	x	and	y.”	This	requires	the	use	of	quantifiers.	Thus,	if	P(x)	is	a	statement
with	a	variable	x,	then	the	following	are	also	statements:

This	 completes	our	 formal	mathematical	 language.	All	 of	known	mathematics	 can	be	 expressed	 in
terms	of	elementary	predicates,	 logical	connectives,	and	quantifiers.	To	illustrate	how	this	language	is
used,	let	us	take	a	simple	example.	The	sentence

“If	x	and	y	are	distinct	points,	then	there	is	a	point	z	between	x	and	y”

can	be	symbolized	as

where	the	meaning	of	the	predicates	is	given	in	(1)	above.
One	of	 the	many	benefits	 to	be	derived	 from	 the	use	of	 a	 formal	 language	 is	 that	 it	 is	 possible	 to

described	precisely	and	explicitly	the	process	of	deduction	in	this	language.	A	few	clear,	unambiguous
rules	decide	when	a	statement	T	may	be	inferred	from	a	statement	S.	A	few	such	rules	are	the	following:

These,	and	a	few	other	laws,	*	are	called	“rules	of	inference”	in	our	language.	A	formal	argument,	from
given	premises,	is	a	sequence	of	expressions	of	the	formal	language,	where	each	expression	is	either	a
premise,	 or	 is	 derived	 from	 a	 preceding	 expression	 (or	 expressions)	 by	 applying	 one	 of	 the	 rules	 of
inference.

Example	Consider	a	formal	language	with	a	predicate	L(x,	y);	let	us	agree	to	write	x	<	y	for	L(x,	y).	The
following	is	a	very	simple	formal	argument	in	this	language.

Premises
i) 	 a	<	b.
ii) 	 b	<	c.
iii) 	 [(a	<	b)	∧	(b	<	c)]	→	(a	<	c).



Theorem	∃x	∋	[(a	<	x)	∧	(b	<	x)].

Proof.

The	reader	should	note	that	the	rules	of	inference	are	applied	to	expressions	in	a	perfectly	mechanical
way.	To	all	intents	and	purposes,	the	expressions	can	be	regarded	as	meaningless	arrays	of	symbols;	the
fact	that	they	have	a	meaning	to	us	in	irrelevant	to	the	task	of	carrying	out	the	proof.	Thus	intuition	is
totally	absent	from	a	formal	mathematical	proof.
An	axiomatic	theory	is	said	to	be	formalized	if	its	axioms	are	transcribed	in	the	formal	language	(for

example,	formula	(2)	on	p.	8	is	an	axiom	of	Hilbert’s	plane	geometry),	and	all	of	its	proofs	are	formal
proofs.	While	 it	 is	 commonly	 accepted	 as	 the	 ideal,	 today,	 that	 every	 axiomatic	 theory	be	developed
formally,	it	would	be	far	too	tedious,	in	practice,	to	do	so.	Symbolic	statements	are	difficult	to	decipher,
and	 formal	 proofs	 tend	 to	 be	 exceedingly	 long.	 Thus	mathematicians	 are	 usually	 content	 to	 satisfy
themselves	that	an	axiomatic	theory	can	be	formalized,	and	then	proceed	to	develop	it	 in	an	informal
manner.	This	will	be	our	procedure	in	this	book.

4	AXIOMATIC	SET	THEORY

To	a	great	many	mathematicians	in	the	early	1900’s,	the	answer	to	the	problem	posed	by	the	paradoxes
was	to	provide	set	 theory	with	an	axiomatic	basis.	The	term	“set”	and	the	relation	“is	an	element	of”
would	be	 the	undefined	notions	of	 such	 a	 theory,	 just	 as	 “point”	 and	 “line”	 are	undefined	notions	 in
geometry;	 their	 “meaning”	would	 be	 irrelevant,	 and	 their	 properties	would	 be	 given	 formally	 by	 the
axioms.	 In	 particular,	 the	 axioms	 would	 be	 chosen	 in	 such	 a	 manner	 that	 all	 the	 useful	 results	 of
Cantor’s	theory	could	be	proven,	whereas	the	paradoxes	could	not.
The	first	axiomatization	of	set	theory	was	given	in	1908	by	Zermelo.	Zermelo’s	system,	with	certain

modifications	 due	 to	 Skolem	 and	 Fraenkel,	 is	widely	 used	 up	 to	 the	 present	 day.	 Zermelo	wrote	 his
work	before	the	time	when	formal	methods	became	widely	understood	and	accepted;	thus	his	set	theory
is	not	written	in	a	formal	language,	but	is	closer	in	style	to	the	older	axiomatic	treatments	of	geometry.
In	Zermelo’s	system,	there	is	one	primitive	relation,	denoted	by	the	symbol	∈;	the	expression	x	∈	Y	is

to	be	read	“x	is	an	element	of	Y	”.	The	variables	x,	y,	z,	X,	Y,	etc.,	which	we	place	to	the	right	or	to	the
left	of	the	symbol	∈,	stand	for	objects	which	we	agree	to	call	“sets.”
The	reader	may	feel	there	ought	to	be	two	kinds	of	objects,	namely	sets	and	elements.	Actually,	this

distinction	is	unnecessary:	For,	on	the	one	hand,	the	relationship	between	element	and	set	is	a	relative
one	rather	than	an	absolute	one	(in	fact,	the	element-set	relationship	is	precisely	the	relation	∈).	On	the
other	hand,	almost	every	set	in	mathematics	is	a	set	of	sets.	For	example,	in	plane	analytic	geometry,	a
line	is	a	set	of	points;	a	point	is	a	pair	of	real	numbers	(its	coordinates);	a	real	number	is	regarded	as	a
sequence	 (that	 is,	 a	 set)	 of	 rational	 numbers;	 etc.	 Thus	 a	 useful	 simplification	 which	 is	 made	 in
axiomatic	set	theory	is	to	regard	the	elements	of	every	set	to	be	sets	themselves;	in	other	words,	every



set	 is	 considered	 to	 be	 a	 set	of	sets.	 This	 simplification	 has	 no	 harmful	 effects,	 and	 has	 the	merit	 of
reducing	the	number	of	primitive	notions	and	axioms	of	set	theory.
This	suggests	a	comment	on	notation.	Although	it	is	customary	to	use	small	and	capital	letters	as	in	x

∈	Y,	 it	 is	 in	no	way	necessary.	In	fact,	we	will	sometimes	write	things	like	x	∈	Y	and	X	∈	Y.	All	 the
variables	in	these	expressions	denote	sets.
Almost	every	set	that	arises	in	our	thinking	is	a	set	consisting	of	all	the	objects	of	a	specified	kind—

that	 is,	 consisting	 of	 all	 the	 objects	which	 satisfy	 a	 given	 condition.	This	 is	 the	most	 natural	way	 in
which	sets	occur:	we	are	able	to	describe	a	condition	on	x—let	us	symbolize	this	condition	by	S(x)—and
we	are	led	to	speak	of	the	set	of	all	objects	x	which	satisfy	S(x).

Examples
The	set	of	all	objects	x	which	satisfy	the	condition	“x	 is	an	irrational	number	and	0	 	x	 	1”	 (loosely
speaking,	the	set	of	all	irrational	numbers	between	0	and	1).

The	set	of	all	objects	x	which	can	be	described	by	the	sentence	“x	is	a	man”	(loosely	speaking,	the	set	of
all	men).

Since	this	is	the	most	natural	way	that	sets	arise,	it	is	clearly	desirable	to	have	a	principle	in	set	theory
which	makes	it	possible—given	any	condition	S(x)—to	form	the	set	of	all	objects	x	which	satisfy	S(x).
However,	as	we	noted	in	Section	2,	if	such	a	principle	is	adopted	without	any	restrictions,	we	are	led	to
the	paradoxes	(for	example,	we	can	form	the	set	of	all	sets	which	are	not	elements	of	themselves).	Thus,
we	must	devise	such	restrictions	on	this	principle	as	will	eliminate	 the	paradoxes.	Zermelo	conceived
the	following	restriction:	Let	S(x)	be	a	condition	on	x;	we	cannot	form	the	set	of	all	x	which	satisfy	S(x);
but,	if	A	is	a	given	set,	we	can	form	the	set	of	all	x	in	A	which	satisfy	S(x).	Thus,	roughly	speaking,	a
property	 of	 objects	 cannot	 be	 used	 to	 form	 a	 “	 new”	 set,	 but	 only	 to	 “	 select,”	 from	 a	 set	A	 whose
existence	has	already	been	secured,	all	the	elements	which	satisfy	the	given	property.
Zermelo	introduced	this	principle	as	an	axiom	in	his	system.	Because	its	role	is	to	select	elements	in

sets,	he	called	it	the	axiom	of	selection	and	stated	it	as	follows:

Let	A	be	a	set,	and	 let	S(x)	be	a	statement	about	x	which	 is	meaningful	 for	every	object	x	 in	A.
There	exists	a	set	which	consists	of	exactly	those	elements	in	x	and	A	which	satisfy	S(x).

The	set	whose	existence	is	give	by	the	axiom	of	selection	is	customarily	denoted	by

[to	be	read:	“the	set	of	all	x	in	A	 such	 that	S(x)”].	Thus	 the	reader	should	note	 that	Zermelo’s	system
does	not	allow	us	to	form	{x	:	S(x)},	[the	“set	of	all	x	which	satisfy	S(x)”];	but,	for	any	set	A,	we	can
form	{x	∈	A	:	S(x)}.
How	does	 the	 axiom	of	 selection	 avoid	 the	 paradoxes?	First,	 let	 us	 see	what	 happens	 to	Russell’s

paradox:	 the	 crucial	 set	 in	 Russell’s	 argument	 is	 the	 “set	 of	 all	 sets	 which	 are	 not	 elements	 of
themselves,”	which	can	be	symbolized	as	{x	:	x	∉	x}.	As	we	have	noted,	this	set	cannot	be	formed	in
Zermelo’s	system;	the	best	we	can	do	is	to	produce	{x	∈	A	:	x	∉	x},	where	A	is	any	set	which	can	be
shown	 to	exist.	 If	we	substitute	{x	∈	A	 :	x	∉	x}	 for	 {x	 :	x	∉	x}	 in	Russell’s	 argument,	 the	 outcome
changes	completely.	Indeed,	let	us	go	through	the	steps	of	the	argument,	with	S	denoting	{x	∈	A	:	x	∉
x}:



S	∈	S	is	impossible,	for	S	∈	S	implies	S	∉	S,	a	contradiction!	Thus	S	∉	S.	It	follows	that	S	∉	A,	for
if	S	were	in	A,	then	(because	S	∉	S)	we	would	have	S	∈	S,	which	would	be	a	contradiction.

Hence	Russell’s	argument	merely	proves	that	if	A	is	any	set,	then	the	set	{x	∈	A	:	x	∉	x}	cannot	be	an
element	of	A.
The	 other	 logical	 paradoxes	 disappear	 in	 similar	 fashion.	 The	 crucial	 sets	 in	 all	 of	 the	 logical

paradoxes	 have	 a	 common	 trait:	 they	 are	 overly	 comprehensive—that	 is,	 they	 are	 “too	 large,”	 they
include	too	much.	In	Russell’s	paradox	it	is	the	“set	of	all	sets	which	are	not	elements	of	themselves”;	in
Cantor’s	paradox	 (which	 is	closely	 related	 to	 that	of	Russell)	 it	 is	 the	“set	of	all	 sets.”	The	axiom	of
selection	cannot	contribute	to	the	formation	of	these	“excessively	large”	sets,	since	it	can	only	be	used
to	form	subsets	of	existing	sets.

The	problem	of	avoiding	the	semantic	paradoxes	is	a	more	difficult	one.	The	crucial	sets	in	paradoxes
such	as	Berry’s	are	not	“too	large.”	The	trouble	seems,	rather,	to	be	inherent	in	the	condition	S(x)	which
determines	 the	 set;	 even	 the	 restriction	 imposed	by	 the	 axiom	of	 selection	 is	not	 an	 effective	barrier.
Thus,	 if	S(x)	 designates	 the	 sentence	 “x	 can	 be	 described	 in	 fewer	 than	 twenty	words	 of	 the	English
language,”	then	the	offending	set	in	Berry’s	paradox	is	{x	∈	N	:	S(x)},	where	N	denotes	the	set	of	the
natural	 numbers.	 This	 set	 can	 be	 formed	 in	 Zermelo’s	 system,	 if	 we	 admit	 S(x)	 as	 an	 acceptable
condition	on	x.
Thus,	to	prevent	the	semantic	paradoxes,	we	must	place	restrictions	on	the	type	of	“conditions”	S(x)

which	are	admissible	for	determining	sets.	Zermelo	attempted	to	do	this	by	stipulating,	in	the	axiom	of
selection,	 that	 {x	∈	 A	 :	 S(x)}	 can	 be	 formed	 only	 if	 S(x)	 is	 meaningful	 for	 every	 element	 x	 in	 A.
However,	in	so	doing,	he	only	raised	new	questions:	How	are	we	to	understand	“meaningful”?	How	do
we	determine	whether	S(x)	is	meaningful?
We	are	forced,	at	last,	to	face	a	question	which	the	alert	reader	may	already	have	asked	himself:	What

do	we	mean	by	a	“condition”	S(x),	by	a	“statement	about	an	object	x”?	We	cannot	be	content	to	regard
the	concept	of	a	“statement	about	x”	as	intuitively	known,	since	our	purpose	now	is	to	axiomatize	set
theory,	that	is,	to	free	it	of	all	dependence	on	intuition.	Zermelo	failed	to	give	a	satisfactory	answer	to
this	question,	because	he	did	not	frame	his	system	in	a	formal	language.	However,	in	1922,	Skolem	and
Fraenkel,	 both	 working	 on	 formal	 axiomatizations	 of	 set	 theory,	 saw	 the	 natural	 way	 out	 of	 the
dilemma:	a	“statement	about	x”	is	simply	a	statement	in	the	formal	language	with	one	“free”	variable	x.
(We	say	that	x	is	free	in	S(x)	if	x	is	not	governed	by	a	quantifier	∃x	or	∀x;	thus,	in	∃y	∋	(x	<	y),	x	is	free
whereas	y	is	not).
In	 Zermelo’s	 system	 there	 is	 only	 one	 elementary	 predicate,	 denoted	 by	 the	 symbol	 ∈.	 Thus	 a

statement	in	the	formal	language	is	an	expression	which	can	be	written	using	only	predicates	x	∈	Y,	u	∈
V,	etc.,	logical	connectives,	and	quantifiers.
If	we	restrict	 the	“statements”	S(x)	which	can	be	used	 in	 the	axiom	of	selection	 to	 those	which	are

expressible	in	the	formal	language,	we	immediately	eliminate	all	the	semantic	paradoxes.	For	example,
there	is	no	way	of	writing	the	sentence	“x	can	be	described	in	fewer	than	twenty	words	of	the	English
language”	in	terms	of	the	formal	language.	This	solution—this	way	of	avoiding	the	semantic	paradoxes
—is	 acceptable	 from	 the	 mathematical	 point	 of	 view,	 though	 it	 is	 hardly	 an	 ideal	 solution
philosophically.	Mathematically,	we	can	still	form	all	the	sets	essential	for	mathematics;	from	a	broader
point	of	view,	though,	we	cannot	form	anything	like	the	“set	of	all	men,”	the	“set	of	all	Latin	verbs,”
etc.	No	better	solution	has	been	devised	to	this	day.
We	have	seen	how	Zermelo’s	 system,	with	modifications	due	 to	Skolem	and	Fraenkel,	manages	 to

avoid	 the	 paradoxes.	 The	 remaining	 axioms	 of	 Zermelo’s	 system	 are	 similar	 to	 those	which	will	 be
developed	 in	 the	 following	 chapters.	 Essentially,	 they	 provide	 for	 the	 existence	 of	 the	 set	 of	 all	 the



natural	 numbers	 (from	 which	 we	 can	 construct	 the	 other	 number	 systems	 of	 mathematics),	 and
guarantee	the	existence	of	unions,	intersections,	and	products	of	sets.	Before	going	on,	we	will	briefly
review	another	way	of	axiomatizing	set	theory,	which	is	of	increasing	interest	in	our	day;	the	essential
ideas	are	due	to	von	Neumann.
Von	Neumann	noted	that	two	facts	combine	to	produce	the	logical	paradoxes:	in	the	first	place,	as	we

have	seen,	 the	crucial	sets	(for	example,	 the	set	S	 in	Russell’s	paradox)	are	“too	large;”	in	the	second
place,	these	“large”	sets	are	allowed	to	be	elements	of	sets	(for	example,	it	is	admitted	that	Russell’s	set
S	may	be	an	element	of	itself).	Of	these	two	facts,	Zermelo	used	the	first;	he	avoided	the	paradoxes	by
making	it	impossible	to	form	the	‘large”	sets.	Von	Neumann	proposed	to	use	the	second	of	these	facts:
he	would	permit	the	excessively	large	sets	to	exist,	but	would	not	allow	them	to	be	elements	of	sets.
Briefly,	von	Neumann’s	system	can	be	described	as	follows.	As	in	Zermelo’s	theory,	there	is	only	one

elementary	predicate,	namely	the	predicate	x	∈	Y.	The	variables	x,	y,	X,	Y,	etc.	stand	for	objects	which
we	 agree	 to	 call	 classes;	 however,	we	 distinguish	 between	 two	 kinds	 of	 classes,	 namely	 elements—
which	are	defined	to	be	those	classes	which	are	elements	of	classes—and	proper	classes,	which	are	not
elements	 of	 any	 class.	 Zermelo’s	 axiom	 of	 selection	 is	 now	 replaced	 by	 a	 principle	 called	 the	 class
axiom,	which	states	the	following:

If	S(x)	is	any	statement	about	an	object	x,	there	exists	a	class	which	consists	of	all	those	elements	x
which	satisfy	S(x).

In	other	words,	if	S(x)	is	any	statement	about	x,	we	can	form	the	class

To	 verify	 that	 Russel’s	 paradox	 does	 not	 “work”	 in	 this	 system,	 let	 us	 go	 through	 the	 steps	 of
Russell’s	argument,	with	S	denoting	{x	:	x	is	an	element	and	x	∉	x}.

S	∈	S	is	impossible,	for	S	∈	S	implies	S	∉	S,	which	is	a	contradiction.	Thus	S	∉	S.	It	follows	that	S
is	 not	 an	 element,	 for,	 if	 S	 were	 an	 element,	 then	 we	 would	 have	 S	∈	 S,	 which	 would	 be	 a
contradiction.

Thus	Russell’s	argument	merely	proves	that	the	class	S,	defined	above,	is	not	an	element.
The	 semantic	 paradoxes	 are	 avoided,	 as	 in	 the	 revised	 Zermelo	 system,	 by	 admitting	 in	 the	 class

axiom	only	those	“statements”	which	can	be	written	in	the	formal	language.
Variants	 of	 von	 Neumann’s	 system	 have	 been	 developed	 by	 Gödel	 and	 Bernays.	 They	 have	 an

advantage	over	Zermelo’s	system	in	that	the	class	axiom	is	closer	to	the	spirit	of	intuitive	set	theory	than
the	axiom	of	selection.	Indeed,	if	S(x)	is	any	statement	about	x,	the	class	axiom	guarantees	the	existence
of	a	class	containing	all	the	elements	x	which	satisfy	S(x).	In	mathematics,	systems	of	the	von	Neumann
type	provide	us	with	the	convenience	of	being	able	to	speak	to	the	“class	of	all	elements”	and	of	being
able	to	operate	on	classes	which	are	not	elements.	(Such	classes	tend	to	occur	at	various	points	in	higher
mathematics;	they	can	be	avoided,	but	only	at	price.)	The	chief	disadvantage	of	these	systems	is	that	the
distinction	between	classes	which	are	elements	and	classes	which	are	not	elements—a	highly	artificial
one—must	 always	 be	 borne	 in	mind;	 however,	 this	 disadvantage	 is	 undoubtedly	 outweighed	 by	 the
greater	 flexibility	 and	 naturalness	 of	 von	Neumann	 type	 systems.	 In	 this	 text	we	 shall	 use	 a	 slightly
modified	form	of	von	Neumann’s	system	of	axioms.



5	OBJECTIONS	TO	THE	AXIOMATIC	APPROACH.	OTHER	PROPOSALS

What	are	the	chief	goals	of	axiomatic	set	theory,	and	to	what	extent	have	these	goals	been	successfully
attained?	 In	 order	 to	 answer	 that	 question	 we	 must	 remember	 the	 circumstances	 which	 led
mathematicians,	 in	 the	 early	 years	 of	 the	 twentieth	 century,	 to	 search	 for	 an	 axiomatic	 basis	 to	 set
theory.	The	ideas	of	Cantor	had	already	thoroughly	permeated	the	fabric	of	modern	mathematics,	and
had	become	indispensable	 tools	of	 the	working	mathematician.	Algebra	and	analysis	were	formulated
within	a	 framework	of	 set	 theory,	and	some	of	 the	most	elegant,	powerful	new	results	 in	 these	 fields
were	 established	 by	 using	 the	 methods	 introduced	 by	 Cantor	 and	 his	 followers.	 Thus,	 when	 the
paradoxes	were	 discovered	 and	 there	 arose	 doubts	 as	 to	 the	 basic	 validity	 of	 Cantor’s	 system,	most
mathematicians	were	understandably	reluctant	to	give	it	up;	they	trusted	that	some	way	would	be	found
to	circumvent	the	contradictions	and	preserve,	if	not	all,	at	least	most	of	Cantor’s	results.	Hilbert	once
wrote	in	this	connection:	“We	will	not	be	expelled	from	the	paradise	into	which	Cantor	has	led	us.”
With	 the	discovery	of	newer	paradoxes,	 and	 the	 failure	of	 all	 the	 initial	 attempts	 to	 avoid	 them,	 it

became	 increasingly	clear	 that	 it	would	not	be	possible	 to	preserve	 intuitive	 set	 theory	 in	 its	entirety.
Something—possibly	quite	a	lot—would	have	to	be	relinquished.	The	best	that	one	could	hope	for	was
to	retain	as	much	of	intuitive	set	theory	as	was	needed	to	save	the	new	results	of	modern	mathematics
and	provide	an	adequate	framework	for	classical	mathematics.
Briefly,	 then,	 axiomatic	 set	 theory	was	 created	 to	 achieve	 a	 limited	 aim:	 it	 had	 to	 provide	 a	 firm

foundation	for	a	system	of	set	theory	which—while	it	did	not	need	to	be	as	comprehensive	as	intuitive
set	theory—must	include	all	of	Cantor’s	basic	results	as	well	as	the	constructions	(such	as	the	number
systems,	functions,	and	relations)	needed	for	classical	mathematics.
The	systems	of	both	Zermelo	and	von	Neumann	were	successful	in	achieving	this	limited	aim.	But

the	 amount	 of	 intuitive	 set	 theory	 which	 they	 had	 to	 sacrifice	 was	 considerable.	 For	 example,	 in
Zermelo’s	system,	as	we	have	already	seen,	the	intuitive	way	of	making	sets—by	naming	a	property	of
objects	 and	 forming	 the	 set	 of	 all	 objects	which	 have	 that	 property—does	 not	 take	 place	 at	 all.	 It	 is
replaced	by	the	axiom	of	selection,	in	which	properties	are	allowed	only	to	determine	subsets	of	given
sets.	Furthermore,	the	only	admissible	“properties”	are	those	which	can	be	expressed	entirely	in	terms
of	the	seven	symbols	∈,	∨,	∧,	¬,	⇒,	∀,	∃	and	variables	x,	y,	z,	…	As	a	result,	many	of	the	things	that	we
normally	think	of	as	sets—for	example,	the	“set	of	all	apples,”	the	“set	of	all	atoms	in	the	universe”—
are	not	admissible	as	“sets”	in	axiomatic	set	theory.	In	fact,	the	only	“sets”	which	the	axioms	provide	for
are,	first,	 the	empty	set	Ø,	and	then	constructions	such	as	{Ø},	{Ø,	{Ø}},	etc.,	which	can	be	built	up
from	 the	 empty	 set.	 It	 is	 remarkable	 fact	 that	 all	 of	mathematics	 can	 be	 based	 upon	 such	 a	meager
concept	of	set.
While	the	various	axiomatic	systems	of	set	theory	saved	mathematics	from	its	immediate	peril,	they

failed	 to	 satisfy	 a	 great	 many	 people.	 In	 particular,	 many	 who	 were	 sensitive	 to	 the	 elegance	 and
universality	of	mathematics	were	quick	 to	point	out	 that	 the	 creations	of	Zermelo	and	von	Neumann
must	be	regarded	as	provisional	solutions—as	expedients	to	solve	a	temporary	problem;	they	will	have
to	be	replaced,	sooner	or	later,	by	a	mathematical	theory	of	broader	scope,	which	treats	the	concept	of
“set”	in	its	full,	intuitive	generality.
This	argument	against	axiomatic	set	theory—that	it	deals	with	an	amputated	version	of	our	intuitive

conception	of	a	set—has	important	philosophical	ramifications;	it	 is	part	of	a	far	wider	debate,	on	the
nature	 of	mathematical	 “truth.”	The	 debate	 centers	 around	 the	 following	 question:	Are	mathematical
concepts	 creations	 (that	 is,	 inventions)	 of	 the	human	mind,	 or	 do	 they	 exist	 independently	of	 us	 in	 a
“platonic”	realm	of	concepts,	merely	to	be	discovered	by	the	mathematician?	The	latter	opinion	is	often
referred	to	as	“platonic	realism”	and	is	the	dominant	viewpoint	of	classical	mathematics.	We	illustrate
these	 two	opposing	points	of	view	by	showing	how	they	apply	 to	a	particular	concept—the	notion	of



natural	numbers.	From	the	viewpoint	of	platonic	realism,	the	concepts	“one,”	“two,”	“three,”	and	so	on,
exist	in	nature	and	existed	before	the	first	man	began	to	count.	If	intelligent	beings	exist	elsewhere	in
the	universe,	then,	no	matter	how	different	they	are	from	us,	they	have	no	doubt	discovered	the	natural
numbers	and	found	them	to	have	the	same	properties	they	have	for	us.	On	the	other	hand,	according	to
the	 opposing	 point	 of	 view,	while	 three	 cows,	 three	 stones,	 or	 three	 trees	 exist	 in	 nature,	 the	 natural
number	 three	 is	 a	 creation	 of	 our	minds;	we	 have	 invented	 a	 procedure	 for	 constructing	 the	 natural
numbers	(by	starting	from	zero	and	adding	1	each	time,	thus	producing	successively	1,	2,	3,	etc.)	and
have	in	this	manner	fashioned	a	conceptual	instrument	of	our	own	making.
How	 does	 platonic	 realism	 affect	 the	 status	 of	 axiomatic	 set	 theory?	 From	 the	 point	 of	 view	 of

platonic	realism,	mathematical	objects	are	given	to	us	ready-made,	with	all	 their	features	and	all	 their
properties.	It	follows	that	to	say	a	mathematical	theorem	is	true	means	it	expresses	a	correct	statement
about	the	relevant	mathematical	objects.	(For	example,	the	proposition	2	+	2	=	4	is	not	merely	a	formal
statement	 provable	 in	 arithmetic;	 it	 states	 an	 actual	 fact	 about	 numbers.)	 Now—if	 we	 admit	 that
mathematical	objects	are	given	to	us	with	all	their	properties,	it	follows,	in	particular,	that	the	notion	of
set	 is	a	fixed,	well-defined	concept	which	we	are	not	free	 to	alter	for	our	own	convenience.	Thus	 the
“sets”	created	by	Zermelo	and	von	Neumann	do	not	exist,	and	theorems	which	purport	to	describe	these
nonexistent	 objects	 are	 false!	 In	 conclusion,	 if	 we	 were	 to	 accept	 a	 strict	 interpretation	 of	 platonic
realism,	we	would	 be	 forced	 to	 reject	 the	 systems	 of	 Zermelo	 and	 von	Neumann	 as	mathematically
invalid.
Fortunately,	the	trend,	for	some	time	now,	has	been	away	from	platonism	and	toward	a	more	flexible,

more	 “agnostic”	 attitude	 toward	 mathematical	 “truth.”	 For	 one	 thing,	 developments	 in	 mathematics
have	 been	 conforming	 less	 and	 less	 to	 the	 pattern	 dictated	 by	 platonic	 philosophy.	 For	 another,	 the
cardinal	 requirement	 of	 platonism—that	 every	mathematical	 object	 correspond	 to	 a	 definite,	 distinct
object	of	our	intuition	(just	as	“point”	and	“line”	refer	to	well-defined	objects	of	our	spatial	intuition)—
came	 to	 be	 an	 almost	 unbearable	 burden	 on	 the	 work	 of	 creative	mathematicians	 by	 the	 nineteenth
century.	They	were	dealing	with	a	host	of	new	concepts	 (such	as	 complex	numbers,	 abstract	 laws	of
composition,	 and	 the	 general	 notion	 of	 function)	 which	 did	 not	 lend	 themselves	 to	 a	 simple
interpretation	 in	concrete	 terms.	The	case	of	 the	complex	numbers	 is	 a	good	 illustration	of	what	was
happening.	Classical	mathematics	never	felt	at	ease	with	the	complex	numbers,	for	it	lacked	a	suitable
“interpretation”	 of	 them,	 and	 as	 a	 result	 there	were	 nagging	 doubts	 as	 to	whether	 such	 things	 really
“existed.”	Real	numbers	may	be	interpreted	as	 lengths	or	quantities,	but	 the	square	root	of	a	negative
real	 number—this	 did	 not	 seem	 to	 correspond	 to	 anything	 in	 the	 real	 world	 or	 in	 our	 intuition	 of
number.	Yet	the	system	of	the	complex	numbers	arises	in	a	most	natural	way—as	the	smallest	number
system	which	 contains	 the	 real	 numbers	 and	 includes	 the	 roots	 of	 every	 algebraic	 equation	with	 real
coefficients;	whether	or	not	 the	complex	numbers	have	a	physical	or	psychological	counterpart	seems
irrelevant.
The	case	of	the	complex	numbers	strikes	a	parallel	with	the	problem	of	axiomatic	set	theory.	For	the

“sets”	created	by	Zermelo	and	von	Neumann	arise	quite	naturally	in	a	mathematical	context.	They	give
us	the	simplest	notion	of	set	which	is	adequate	for	mathematics	and	yields	a	consistent	axiomatic	theory.
Whether	or	not	we	can	interpret	them	intuitively	may	be	relatively	unimportant.
Be	that	as	it	may,	many	mathematicians	in	the	early	1900’s	were	reluctant	to	make	so	sharp	a	break

with	 tradition	as	axiomatic	set	 theory	seemed	 to	demand.	Furthermore,	 they	felt,	on	esthetic	grounds,
that	 a	mathematical	 theory	 of	 sets	 should	 describe	 all	 the	 things—and	only	 those	 things—which	 our
intuition	recognizes	to	be	sets.	Among	them	was	Bertrand	Russell;	in	his	efforts	to	reinstate	intuitive	set
theory,	Russell	was	led	to	the	idea	that	we	may	consider	sets	to	be	ordered	in	a	hierarchy	of	“levels,”
where,	if	A	and	 	are	sets	and	A	is	an	element	of	 ,	then	 	is	“one	level	higher”	than	A.	For	example,
in	plane	geometry,	a	circle	(regarded	as	a	set	of	points)	is	one	level	below	a	family	of	circles,	which,	in



turn,	 is	one	level	below	a	set	of	 families	of	circles.	This	basic	 idea	was	built	by	Russell	 into	a	 theory
called	the	theory	of	types,	which	can	be	described,	in	essence,	as	follows.
Every	set	has	a	natural	number	assigned	to	it,	called	its	level.	The	simplest	sets,	those	of	level	0,	are

called	 individuals—they	 do	 not	 have	 elements.	 A	 collection	 of	 individuals	 is	 a	 set	 of	 level	 1;	 a
collection	of	sets	of	level	1	is	a	set	of	level	2;	and	so	on.	In	the	theory	of	types	the	expression	a	∈	B	is
only	meaningful	if,	for	some	number	n,	a	is	a	set	of	level	n	and	B	is	a	set	of	level	n	+	1.	It	follows	that
the	statement	x	∈	x	has	no	meaning	in	the	theory	of	types,	and	as	a	result,	Russell’s	paradox	vanishes
for	the	simple	reason	that	it	cannot	even	be	formulated.
Russell’s	 theory	of	 types	 is	built	upon	a	beautifully	simple	 idea.	Unfortunately,	 in	order	 to	make	 it

“work,”	Russell	was	forced	to	add	a	host	of	new	assumptions,	until	finally	the	resulting	theory	became
too	cumbersome	to	work	with	and	too	complicated	to	be	truly	pleasing.	For	one	thing,	corresponding	to
the	hierarchy	of	“levels”	of	sets,	 it	was	necessary	to	have	a	hierarchy	of	“level”	of	logical	predicates.
Then—as	a	way	of	avoiding	the	semantic	paradoxes—sets	at	the	same	level	were	further	divided	into
“orders.”	Finally,	Russell	had	to	admit	a	so-called	Axiom	of	Reducibility	which	was	just	as	arbitrary,	just
as	 ungrounded	 in	 intuition,	 as	 any	 of	 the	ad	hoc	 assumptions	made	 by	Zermelo.	A	 a	 result	 of	 these
shortcomings,	the	theory	of	types	has	not	gained	wide	acceptance	among	mathematicians,	although	it	is
still	an	interesting	(and	maybe	promising)	area	of	research.
A	far	more	radical	approach	was	taken	by	a	group	of	mathematicians	calling	themselves	intuitionists.

To	 the	 intuitionists,	much	of	modern	mathematics,	 including	 almost	 all	 of	Cantor’s	 theory	of	 sets,	 is
based	on	the	uncritical	use	of	rules	of	logic	which	they	consider	to	be	invalid.	The	intuitionist	attitude
toward	set	theory	can	therefore	be	summed	up	very	easily:	it	is	one	of	almost	total	rejection.
In	order	to	properly	understand	the	philosophy	of	intuitionism,	we	must	first	gain	an	understanding	of

its	attitude	toward	logic.	As	the	intuitionist	sees	it,	 the	rules	of	logic	used	by	mathematicians	have	an
empirical	character.	Certain	methods	of	proof	came	to	be	commonly	used	by	mathematicians,	and,	over
the	 years,	 were	 codified	 into	 a	 body	 of	 rules.	 These	 rules	 were	 observably	 correct	 in	 their	 original
context,	but—after	they	were	codified—they	came	to	be	used	uncritically	in	totally	different	contexts	in
which	they	no	longer	applied.	Let	us	be	more	specific:	 in	Euclidean	geometry,	which	is	 the	source	of
most	mathematics	before	the	fifteenth	century,	every	theorem	involves	only	a	finite	number	of	objects,
and	 each	of	 these	objects	 (geometric	 figures)	 is	 given	by	 an	 explicit	 construction.	The	 rules	 of	 logic
used	 by	 Euclid	 are	 perfectly	 valid	 in	 this	 context,	 say	 the	 intuitionists;	 it	 is	 only	 when	 they	 are
transposed	to	problems	involving	an	infinite	domain	of	objects,	or	in	which	the	objects	are	not	given	by
an	explicit	construction,	that	the	rules	are	incorrect.
As	an	example,	let	us	take	the	law	of	the	excluded	middle.	This	is	the	rule	which	says	that	if	S	is	any

statement,	then	either	S	 is	 true	or	the	denial	of	S	 is	 true.	In	particular,	 let	A	be	a	set	and	let	P(x)	be	a
statement	which	 is	meaningful	 for	every	element	x	 in	A.	By	 the	 law	of	excluded	middle,	either	 there
exists	an	x	in	A	such	that	P(x)	is	true,	or	else	 for	every	x	 in	A	P(x)	is	false.	Now	the	 intuitionists	will
accept	this	rule	if	A	is	a	finite	set	and	if	each	of	its	elements	can	be	tested	to	determine	whether	P(x)	is
true	or	false.	In	fact,	say	the	intuitionist,	this	is	where	the	rule	originated—our	experience	tells	us	that	if
we	examine	every	element	x	in	A	to	determine	whether	or	not	P(x)	is	true	(to	do	so,	A	has	to	be	a	finite
set),	there	can	be	only	two	possible	outcomes:	either	we	have	found	an	x	for	which	P(x)	is	true,	or	else,
for	every	x	in	A	we	have	found	P(x)	to	be	false.	Our	experience,	then,	confirms	the	law	of	the	excluded
middle	in	the	case	of	finite	sets.	But,	say	the	intuitionists,	to	assume	it	is	true	in	the	case	of	infinite	sets
—in	an	area	where	we	have	no	experience	and	experience	is	impossible—is	wholly	without	foundation.
On	 grounds	 such	 as	 these,	 the	 intuitionists	 deny	 the	 law	 of	 the	 excluded	 middle.	 Other	 rules	 of
traditional	logic	are	similarly	rejected,	because	they	go	beyond	the	realm	of	our	experience.
The	 intuitionist	points	out	 that	mathematics	originated	as	a	study	of	certain	mental	constructions—

chiefly	 geometric	 figures	 and	 simple	 constructions	 involving	whole	 numbers.	 The	 theorems	 of	 early



mathematics	were	essentially	statements	to	the	effect	that	if	certain	constructions	are	carried	out,	certain
results	will	be	achieved.	For	example,	consider	the	following	theorem	of	geometry:	Given	two	triangles,
if	two	sides	and	the	included	angle	of	one	triangle	are	equal,	respectively,	to	two	sides	and	the	included
angle	of	the	other	triangle,	then	the	two	triangles	are	congruent.	What	is	expressed	here	is	the	fact	that	if
we	construct	two	triangles,	with	two	sides	and	an	included	angle	equal	as	stated	above,	we	will	be	able
to	 verify	 (for	 example,	 by	 using	 a	 compass)	 that	 the	 remaining	 side	 of	 one	 triangle	 is	 equal	 to	 the
remaining	 side	 of	 the	 other	 triangle.	 The	 proofs	 of	 Euclidean	 geometry,	 and	 of	 early	 mathematics
generally,	 have	 a	 constructive	 character.	 For	 example,	 the	 Pythagorean	 theorem	 is	 proven	 by
constructing	a	figure	in	which	corresponding	parts	are	congruent,	hence	have	the	same	area.	Once	the
construction	is	completed,	it	remains	only	to	point	out	the	congruent	parts	and	thereby	reach	the	desired
conclusion.	 Thus,	 say	 the	 intuitionists,	 rules	 of	 logic	 were	 originally	 intended	 to	 describe	 situations
which	 arose	 in	 the	 context	 of	 such	 constructions	 and	 determinations.	 For	 example,	 the	 rule	 of	 the
excluded	middle	was	intended	simply	to	note	the	fact	that	if	we	are	given	a	(finite)	set	of	object	and	a
method	(for	example,	using	a	ruler	and	compass)	 to	 test	each	object	 for	some	property	P,	 then,	if	we
perform	the	test	on	every	object,	either	one	of	the	objects	will	pass	the	requirements	of	the	test,	or	else
every	object	will	fail	the	requirements.
To	sum	up,	then,	the	intuitionist	maintains	that	a	mathematical	theorem	is	nothing	more	than	a	factual

statement	to	the	effect	that	a	given	mental	construction	will	lead	to	a	given	result.	Every	proof	must	be
constructive.	 If	we	claim	 that	 a	mathematical	object	 exists,	we	must	prove	 it	by	giving	a	method	 for
actually	 constructing	 the	 object.	 If	we	 assert	 that	 a	 relation	 holds	 among	 given	 pairs	 of	 objects,	 our
proof	 must	 include	 a	 method	 for	 testing	 every	 pair	 of	 objects	 in	 question.	 The	 “rules	 of	 logic”	 are
nothing	more	 than	 simple	observations	on	 the	process	 of	 performing	mathematical	 constructions;	we
have	no	grounds	to	believe	these	rules	apply	outside	the	context	of	constructive	mathematics—in	fact,	it
is	meaningless	to	apply	them	outside	this	context.	Logic	is	incidental,	not	essential,	to	mathematics.
It	 is	 obvious	 that	 the	 intuitionist’s	 notion	 of	 set	 must	 be	 quite	 different	 from	 ours.	 Consider,	 for

example,	 Cantor’s	 principle	 that	 if	we	 can	 name	 a	 property	 of	 objects,	 then	 there	 exists	 a	 set	 of	 all
objects	which	have	that	property.	Now	this	principle—as	well	as	the	limited	versions	of	it	accepted	by
Zermelo	 and	 von	 Neumann—is	 anathema	 to	 the	 intuitionists.	 An	 object	 exists	 only	 if	 it	 can	 be
constructed;	hence,	a	set	exists	only	if	we	are	able	to	describe	a	procedure	for	building	it.
A	 full	 discussion	 of	 intuitionist	 set	 theory	 is	 outside	 the	 scope	 of	 this	 book;	 however,	 it	 is	 worth

mentioning	 a	 particular	 kind	 of	 set	 which	 is	 important	 in	 intuitionist	 mathematics;	 this	 is	 called	 a
spread.	A	spread	is	identified	with	a	rule	for	producing	all	of	its	elements.	Thus,	a	spread	is	not	regarded
as	 an	 “already	 formed”	 totality,	 but	 rather	 as	 a	 “process	 of	 formation”;	 each	 of	 its	 elements	 can	 be
formed	if	we	apply	the	rule	long	enough.
The	paradoxes	do	not	occur	in	intuitionist	set	theory	because	the	crucial	sets	in	the	paradoxes	cannot

be	 produced	 in	 intuitionist	 mathematics,	 and	 the	 essential	 arguments	 cannot	 be	 rendered	 using
intuitionist	logic.

6	CONCLUDING	REMARKS

During	 the	 early	 part	 of	 the	 twentieth	 century,	 as	 we	 have	 seen,	 various	 ways	 of	 building	 a
noncontradictory	theory	of	sets	were	proposed	and	developed	by	different	“schools”	of	mathematicians.
We	 have	 reviewed	 the	 basic	 principles	 of	 axiomatic	 set	 theory,	 Russell’s	 theory	 of	 types	 and	 the
intuitionist	 (or	 “constructivist”)	 approach	 to	 sets.	 In	 addition	 to	 these,	 a	 great	many	other	 ideas	were
proposed,	too	various	to	describe	in	this	brief	introduction.
Of	all	the	ways	of	dealing	with	sets,	the	axiomatic	method	seemed	to	best	suit	the	needs	of	modern

mathematics.	 The	 notion	 of	 “set”	 embodied	 in	 the	 system	 of	 Zermelo	 and	 von	 Neumann	 is	 broad



enough	 for	 the	 purposes	 of	 mathematics,	 and	 therefore	 in	 a	 mathematical	 setting	 it	 is	 virtually
indistinguishable	from	the	Cantorian	notion	of	set.	The	methods	of	proof,	the	symbolism,	the	rigor—all
of	 these	correspond	to	current	mathematical	usage,	Most	 important	of	all,	axiomatic	set	 theory	seems
“natural”	to	most	working	mathematicians.
Those	 who	 reject	 axiomatic	 set	 theory	 do	 so	 on	 the	 basis	 of	 some	 philosophical	 bias.	 Those

philosophical	positions,	however,	which	refuse	to	accept	axiomatic	set	theory	also	deny	the	validity	of	a
large	 part	 of	 modern	 mathematics.	 For	 example,	 the	 intuitionist	 school	 rejects	 the	 greater	 part	 of
contemporary	analysis,	because	 it	 is	 founded	on	nonconstructivist	principles.	While	 the	arguments	of
these	critic	present	a	challenge,	and	certainly	give	us	food	for	thought,	they	are	not	powerful	enough	to
destroy	the	achievements	of	three	brilliant	generations	of	mathematicians.
In	 the	 course	 of	 the	 past	 seventy	 years	 or	 so,	 set	 theory	 has	 come	 to	 be	widely	 recognized	 as	 the

fundamental,	“unifying”	branch	of	mathematics.	We	have	already	seen	how	the	natural	numbers	can	be
constructed,	and	their	properties	derived,	within	 the	framework	of	set	 theory;	from	there,	 it	 is	easy	to
develop	 the	 rational	 numbers,	 the	 real	 and	 complex	numbers,	 as	well	 as	 remarkable	 systems	 such	 as
Cantor’s	 “transfinite	 cardinals.”	 The	 notions	 of	 function,	 relation,	 operation,	 and	 so	 forth	 are	 easily
defined	in	terms	of	sets,	and,	as	a	result,	every	known	branch	of	mathematics	can	be	formulated	within
set	theory.	It	is	therefore	legitimate—and,	in	fact,	vital—to	ask	the	question:	“How	secure	a	foundation
does	set	theory	provide	for	the	whole	edifice	of	mathematics?”	In	particular,	are	we	absolutely	certain
that	axiomatic	set	theory	is	consistent,	that	is,	free	of	contradictions?	If	it	is,	then	everything	we	develop
within	 it—in	other	words,	 all	 of	mathematics—is	 consistent;	 and	 if	 it	 is	 not,	 then	whatever	we	build
upon	it	is	worthless.
The	fact	 is	 that	 there	 is	no	known	proof	of	 the	consistency	of	axiomatic	set	 theory.	This	 is	not	 too

surprising	 though,	 in	 view	 of	 some	 of	 the	 results	 of	modern	 logic.	 For	 example,	 in	 1931,	K.	Gödel
proved	 that	 it	 is	 impossible	 to	 give	 a	 finitary	 proof	 of	 the	 consistency	 of	 ordinary	 arithmetic	 (of	 the
natural	numbers).	The	situation	in	almost	every	other	branch	of	mathematics	is	much	the	same.	Thus	the
best	assurance	that	we	have,	at	this	time,	of	the	consistency	of	axiomatic	set	theory	is	the	fact	that	the
familiar	contradictions	cannot	be	obtained	in	the	usual	way.	We	cannot	do	any	better	at	this	time.
A	 result	 relating	 to	 relative	 consistency	 is	 of	 some	 interest.	 It	 has	 been	 proven	 recently	 that	 if

Zermelo’s	 axiomatization	 of	 set	 theory	 is	 consistent,	 then	 von	 Neumann’s	 axiomatization	 is	 also
consistent.
It	is	probable	that,	in	the	final	analysis,	any	assurance	of	the	consistency	of	mathematics	will	have	to

rest	on	some	combination	of	basic	intuition	and	empirical	evidence.

∗	The	four	rules	given	in	(3)	above,	together	with	seven	additional	rules,	make	up	the	system	of	natural
deduction	described	in	Slupecki	and	Borkowski	[8];	these	eleven	rules	are	sufficient	for	every	valid
logical	argument.	Other	systems	are	described	in	Quine	[6]	and	Suppes	[9].



1
Classes	and	Sets

1	BUILDING	SENTENCES

Before	introducing	the	basic	notions	of	set	theory,	it	will	be	useful	to	make	certain	observations	on	the
use	of	language.
By	a	sentence	we	will	mean	a	statement	which,	in	a	given	context,	 is	unambiguously	either	 true	or

false.	Thus

London	is	the	capital	of	England.

Money	grows	on	trees.

Snow	is	black.

are	examples	of	sentences.	We	will	use	letters	P,	Q,	R,	S,	etc.,	to	denote	sentences;	used	in	this	sense,	P,
for	instance,	is	to	be	understood	as	asserting	that	“P	is	true.”
Sentences	may	be	combined	in	various	ways	to	form	more	complicated	sentences.	Often,	the	truth	or

falsity	of	the	compound	sentence	is	completely	determined	by	the	truth	or	falsity	of	its	component	parts.
Thus,	 if	P	 is	 a	 sentence,	 one	 of	 the	 simplest	 sentences	 we	may	 form	 from	P	 is	 the	 negation	 of	P,
denoted	by	¬P	(to	be	read	“not	P	”),	which	is	understood	to	assert	that	“P	is	false.”	Now	if	P	is	true,
then,	 quite	 clearly,	 ¬P	 is	 false;	 and	 if	 P	 is	 false,	 then	 ¬P	 is	 true.	 It	 is	 convenient	 to	 display	 the
relationship	between	¬P	and	P	in	the	following	truth	table,

where	t	and	f	denote	the	“truth	values”,	true	and	false.

Another	simple	operation	on	sentences	is	conjunction:	if	P	and	Q	are	sentences,	the	conjunction	of	P
and	Q,	denoted	by	P	∧	Q	(to	be	read	“P	and	Q”),	is	understood	to	assert	that	“P	is	true	and	Q	is	true.”	It
is	 intuitively	clear	that	P	∧	Q	 is	 true	if	P	and	Q	are	both	true,	and	false	otherwise;	 thus,	we	have	the
following	truth	table.

The	disjunction	of	P	and	Q,	denoted	by	P	∨	Q	(to	be	read	“P	or	Q”),	is	the	sentence	which	asserts



that	“P	is	true,	or	Q	is	true,	or	P	and	Q	are	both	true.”	It	is	clear	that	P	∨	Q	is	false	only	if	P	and	Q	are
both	false.

An	especially	important	operation	on	sentences	is	implication	:	if	P	and	Q	are	sentences,	then	P	⇒	Q
(to	be	 read	“P	 implies	Q”)	 asserts	 that	 “if	P	 is	 true,	 then	Q	 is	 true.”	A	word	 of	 caution:	 in	 ordinary
usage,	“if	P	is	true,	then	Q	is	true”	is	understood	to	mean	that	there	is	a	causal	relationship	between	P
and	Q	(as	in	“if	John	passes	the	course,	then	John	can	graduate”).	In	mathematics,	however,	implication
is	always	understood	in	the	formal	sense:	P	⇒	Q	is	true	except	if	P	is	true	and	Q	is	false.	In	other	words,
P	⇒	Q	is	defined	by	the	truth	table.

The	 properties	 of	 formal	 implication	 differ	 somewhat	 from	 the	 properties	we	would	 expect	 “causal”
implication	to	have.	For	example,

is	 true,	 even	 though	 there	 is	 no	 causal	 relationship	 between	 the	 two	 component	 sentences.	 To	 take
another	example,

is	true,	even	though	the	two	component	sentences	are	false.	This	should	not	disturb	the	reader	unduly,
for	formal	implication	still	has	the	fundamental	property	which	we	demand	of	implication—namely,	if
P	⇒	Q	is	true,	then,	necessarily,	if	P	is	true	then	Q	is	true.
Certain	 compound	 sentences	 are	 true	 regardless	 of	 the	 truth	 or	 falsity	 of	 their	 component	 parts;	 a

typical	example	is	the	sentence	P	⇒	P.	Regardless	of	whether	P	is	true	or	false,	P	⇒	P	is	always	true;	in
other	words,	no	matter	what	sentence	P	is,	P	⇒	P	is	true.	For	future	reference	we	record	a	few	sentences
which	have	this	property.

1.5	Theorem	For	all	sentences	P	and	Q,	the	following	statements	are	true.



Proof

i) 	 We	wish	to	prove	that	if	P	and	Q	are	any	sentences,	 then	P	⇒	P	∨	Q	 is	 true;	 in	other	words,	we
wish	to	prove	that	no	matter	what	truth	values	are	assumed	by	P	and	Q,	P	⇒	P	∨	Q	is	always	true.
To	do	this,	we	derive	a	truth	table	for	P	⇒	P	∨	Q	as	follows.

The	basic	idea	of	the	derived	truth	table	is	this:	in	line	1,	P	and	Q	both	take	the	value	t;	thus,	by	1.3,
P	∨	Q	takes	the	value	t;now,	P	has	the	value	t	and	P	∨	Q	has	the	value	t,	so,	by	1.4,	P	⇒	P	∨	Q
takes	the	value	 t.	We	do	 the	same	for	each	 line,	and	we	find	 that	 in	every	 line	(that	 is,	 for	every
possible	assignment	of	truth	values	to	P	and	Q)	P	⇒	P	∨	Q	has	the	value	t	(true).	This	is	what	we
had	set	out	to	prove.

i)′ 	 The	derived	truth	table	for	Q	⇒	P	∨	Q	is	analogous	to	the	one	for	P	⇒	P	∨	Q;	the	conclusion	is	the
same.

ii) 	 In	order	to	prove	that	P	∧	Q	⇒	P	for	all	sentences	P	and	Q,	we	derive	a	truth	table	for	P	∧	Q	⇒	P.

In	every	line	(that	is,	for	every	possible	assignment	of	truth	values	to	P	and	Q),	P	∧	Q	⇒	P	 takes
the	value	t;	thus,	P	∧	Q	⇒	P	is	true	irrespective	of	the	truth	or	falsity	of	its	component	sentences	P
and	Q.

ii)′ 	 The	truth	table	for	P	∧	Q	⇒	Q	is	analogous	to	the	one	for	P	∧	Q	⇒	P,	and	the	conclusion	is	the
same.	

1.6	Theorem	For	all	sentences	P,	Q	and	R,	the	following	is	true:

Proof.	The	reader	should	derive	the	truth	table	for

and	verify	that	this	sentence	takes	the	truth	value	t	in	every	line	of	the	table.	

1.7	Theorem	For	all	sentences	P,	Q	and	R,	if	Q	⇒	R	is	true,	then



i) 	 P	∨	Q	⇒	P	∨	R	is	true,	and
ii) 	 P	∧	Q	⇒	P	∧	R	is	true.

Proof

i) 	 We	assume	that	Q	⇒	R	is	true,	and	derive	the	truth	table	for	P	∨	Q	⇒	P	∨	R.

Since	we	assume	that	Q	⇒	R	is	true,	we	cannot	have,	simultaneously,	Q	true	and	R	false;	thus,	we
may	disregard	the	sixth	line	of	the	table.	In	all	of	the	remaining	lines,	P	∨	Q	⇒	P	∨	R	 takes	 the
value	t.

ii) 	 The	proof	that	P	∧	Q	⇒	P	∧	R	is	analogous	to	the	above.	
We	agree	that	P	⇔	Q	is	to	be	an	abbreviation	for	(P	⇒	Q)	∧	(Q	⇒	P).

1.8	Theorem	For	all	sentences	P,	Q	and	R,	the	following	are	true:

The	proof	of	this	theorem	is	left	as	an	exercise	for	the	reader.
In	this	and	the	subsequent	chapters,	⇒	will	be	used	as	an	abbreviation	for	implies,	⇔	will	be	used	as

an	abbreviation	for	 if	and	only	 if	 (we	will	 sometimes	write	 “iff”	 instead	of	⇔),	∧	will	be	used	as	an
abbreviation	for	and,	and	∨	will	be	used	as	an	abbreviation	for	or.	If	P,	Q,	R,	…	are	any	statements,	an
expression	of	the	form	P	⇒	Q	⇒	R	⇒	…	should	be	understood	to	mean	that	P	⇒	Q,	Q	⇒	R,	and	so	on;
analogously,	P	⇔	Q	⇔	R	⇔	…	should	be	understood	to	mean	that	P	⇔	Q,	Q	⇔	R,	and	so	on.
As	is	customary,	∃	is	to	be	read	there	exists,	∀	is	to	be	read	for	all,	and	∋	is	to	be	read	such	that.

EXERCISES	1.1

1. 	 Prove	Theorem	1.8.
2. 	 Prove	that	the	following	sentences	are	true	for	all	P	and	Q	(DeMorgan’s	Laws).



3. 	 Prove	that	the	following	sentences	are	true,	for	every	sentence	P.

4. 	 Prove	that	the	following	sentences	are	true	for	all	P	and	Q.

5. 	 Prove	the	following	sentences	are	true	for	all	P,	Q	and	R.

6. 	 Prove	that,	for	all	sentences	P,	Q	and	R,	if	Q	⇔	R	is	true,	then	the	following	are	true.

7. 	 Prove	that	for	all	sentences	P,	Q,	R	and	S,	if	P	⇒	Q	and	R	⇒	S,	then

2	BUILDING	CLASSES

We	will	now	begin	our	development	of	axiomatic	set	theory.
Every	axiomatic	system,	as	we	have	seen,	must	start	with	a	certain	number	of	undefined	notions.	For

example,	in	geometry,	the	words	“point”	and	“line”	are	generally	taken	to	be	undefined.	While	we	are
free	in	our	own	minds	to	attach	a	“meaning,”	in	the	form	of	a	mental	picture,	to	each	of	these	notions,
mathematically	we	must	proceed	“as	if”	we	did	not	know	what	they	meant.	Now	an	“undefined”	notion
has	no	properties	except	those	which	are	explicitly	assigned	to	it;	therefore,	we	must	state	as	axioms	all
the	elementary	properties	which	we	expect	our	undefined	notions	to	have.
Our	system	of	axiomatic	set	theory	is	based	on	just	two	undefined	notions:	The	word	class	and	 the

membership	relation	∈.	All	the	objects	of	our	theory	are	called	classes.	It	was	explained	in	Chapter	1
that	 in	order	 to	avoid	 logical	paradoxes,	we	have	 to	distinguish	between	 two	kinds	of	classes—those
that	are	called	sets	and	those	that	are	called	proper	classes.	We	shall	say	no	more	about	this	distinction
now,	but	shall	return	to	it	later.
If	x	and	A	are	classes,	 the	expression	x	∈	A	 is	read	“x	 is	an	element	of	A”,	or	“x	belongs	 to	A”,	or

simply	“x	is	in	A”.	It	is	convenient	to	write	x	∉	A	for	“x	is	not	an	element	of	A“.

Definition	Let	x	be	a	class.	If	x	is	an	element	of	some	class	A	then	x	is	called	an	element.

We	shall	have	more	to	say	about	elements	and	classes	in	the	final	section	of	this	chapter.	From	here
on,	we	shall	use	 the	following	notational	convention:	 lower-case	 letters	a,	b,	c,	x,	y,	…	will	be	used
only	to	designate	elements.	Thus,	a	capital	letter,	such	as	A,	may	denote	either	an	element	or	a	class
which	is	not	an	element,	but	a	lower-case	letter,	such	as	x,	may	denote	only	an	element.	Intuitively,	two
classes	should	be	called	equal	if	they	are	elements	of	the	same	classes.

1.9	Definition	 Let	A	 and	B	 be	 classes.	We	 define	A	 =	B	 to	mean	 that	 every	 class	 that	 has	A	 as	 an
element	also	has	B	as	an	element,	and	vice-versa.	In	symbols,



We	 have	 defined	 two	 classes	 to	 be	 equal	 if	 and	 only	 if	 they	 are	 members	 of	 the	 same	 classes.
Informally,	we	may	therefore	think	of	them	as	interchangeable.	Equal	classes	have	another	property.	If
A	and	B	are	equal,	we	expect	them	to	have	the	same	elements.	This	property	is	stated	as	our	first	axiom:

A1.	A	=	B	iff	x	∈	A	⇒	x	∈	B	and	x	∈	B	⇒	x	∈	A.
This	axiom	is	sometimes	called	the	Axiom	of	Extent.

1.10	Definition	Let	A	and	B	be	classes;	we	define	A	⊆	B	to	mean	that	every	element	of	A	is	an	element
of	B.	In	symbols,

If	A	⊆	B,	then	we	say	that	A	is	a	subclass	of	B.

We	define	A	⊂	B	to	mean	that	A	⊆	B	and	A	≠	B;	in	this	case,	we	say	that	A	is	a	strict	subclass	of	B.

If	A	is	a	subclass	of	B,	and	A	is	a	set,	we	will	call	A	a	subset	of	B.

A	few	simple	properties	of	equality	and	inclusion	are	given	in	the	next	theorem.

1.11	Theorem	For	all	classes	A,	B	and	C,	the	following	hold:
i) 	 A	=	A.
ii) 	 A	=	B	⇒	B	=	A.
iii) 	 A	=	B	and	B	=	C	⇒	A	=	C.
iv) 	 A	⊆	B	and	B	⊆	A	⇒	A	=	B.
v) 	 A	⊆	B	and	B	⊆	C	⇒	A	⊆	C.

Proof

i) 	 The	statement	x	∈	A	⇒	x	∈	A	and	x	∈	A	⇒	x	∈	A	is	obviously	true;	thus,	by	Axiom	A1,	A	=	A.
ii) 	 Suppose	A	=	B;	then	x	∈	A	⇒	x	∈	B	and	x	∈	B	⇒	x	∈	A;	hence	by	1.8(i)′x	∈	B	⇒	x	∈	A	and	x	∈	A
⇒	x	∈	B;	thus,	by	Axiom	A1,	B	=	A.

iii) 	 Suppose	A	=	B	and	B	=	C;	then	we	have	the	following:

From	 the	 first	and	 third	of	 these	 statements	we	conclude	 (by	1.6)	 that	x	∈	A	⇒	x	∈	C.	 From	 the
second	and	fourth	of	these	statements	we	conclude	that	x	∈	C	⇒	x	∈	A.	Thus,	by	Axiom	A1,	A	=	C.
We	leave	the	proofs	of	(iv)	and	(v)	as	an	exercise	for	the	reader.	



We	have	seen	that	the	intuitive	way	of	making	classes	is	to	name	a	property	of	objects	and	form	the
class	of	all	 the	objects	which	have	 that	property.	Our	second	axiom	allows	us	 to	make	classes	 in	 this
manner.

A2. 	 Let	P(x)	designate	a	statement	about	x	which	can	be	expressed	entirely	in	terms	of	the	symbols	∈,
∨,	∧,	¬,	⇒,	∃,	∀,	brackets,	and	variables	x,	y,	z,	A,	B,	…	Then	there	exists	a	class	C	which	consists	of	all
the	elements	x	which	satisfy	P(x).

Axiom	A2	is	called	the	axiom	of	class	construction.

The	reader	should	note	that	axiom	A2	permits	us	to	form	the	class	of	all	the	elements	x	which	satisfy
P(x),	not	 the	 class	 of	 all	 the	 classes	x	which	 satisfy	P(x);as	 discussed	 on	 page	13,	 this	 distinction	 is
sufficient	to	eliminate	the	logical	paradoxes.
The	semantic	paradoxes	have	been	avoided	by	admitting	in	axiom	A2	only	those	statements	P(x)	which
can	be	written	entirely	in	terms	of	the	symbols	∈,	∨,	∧,	¬,	⇒,	∃,	∀,	brackets	and	variables.
The	class	C	whose	existence	is	asserted	by	Axiom	A2	will	be	designated	by	the	symbol

1.12	Remark.	The	use	of	 a	 small	x	 in	 the	expression	{x	 :	P(x)}	 is	 not	 accidental,	 but	 quite	 essential.
Indeed,	we	have	agreed	that	lower-case	letters	x,	y,	etc.,	will	be	used	only	to	designate	elements.	Thus

asserts	that	C	is	the	class	of	all	the	elements	x	which	satisfy	P(x).

We	will	now	use	the	axiom	of	class	construction	to	build	some	new	classes	from	given	classes.

1.13	Definition	 Let	A	 and	B	 be	 classes;	 the	 union	 of	A	 and	B	 is	 defined	 to	 be	 the	 class	 of	 all	 the
elements	which	belong	either	to	A,or	B,	or	to	both	A	and	B.	In	symbols,

Thus,	x	∈	A	∪	B	if	and	only	if	x	∈	A	or	x	∈	B.

1.14	Definition	Let	A	and	B	be	classes;	the	intersection	of	A	and	B	is	defined	to	be	the	class	of	all	the
elements	which	belong	to	both	A	and	B.	In	symbols,

Thus,	x	∈	A	∩	B	if	and	only	if	x	∈	A	and	x	∈	B.

1.15	Definition	 By	 the	 universal	 class	 	 we	 mean	 the	 class	 of	 all	 elements.	 The	 existence	 of	 the
universal	 class	 is	 a	 consequence	 of	 the	 axiom	 of	 class	 construction,	 for	 if	 we	 take	 P(x)	 to	 be	 the
statement	x	=	x,	 then	A2	guarantees	 the	existence	of	a	class	which	consists	of	all	 the	elements	which
satisfy	x	=	x;	by	1.11(i),	every	element	is	in	this	class.



1.16	Definition	By	the	empty	class	we	mean	the	class	Ø	which	has	no	elements	at	all.	The	existence	of
the	empty	class	is	a	consequence	of	the	axiom	of	class	construction;	indeed,	A2	guarantees	the	existence
of	a	class	which	consists	of	all	the	elements	which	satisfy	x	≠	x;	by	Theorem	1.11(i),	this	class	has	no
elements.

1.17	Theorem	For	every	class	A,	the	following	hold:

Proof

i) 	 In	 order	 to	 prove	 that	 Ø	⊆	 A,	 we	 must	 show	 that	 x	∈	 Ø	⇒	 x	∈	 A.	 It	 suffices	 to	 prove	 the
contrapositive	of	this	statement,	that	is,	x	∉	A	⇒	x	∉	Ø.	Well,	suppose	x	∉	A;	then	certainly	x	∉	Ø,
for	Ø	has	no	elements;	thus	x	∉	A	⇒	x	∉	Ø.

ii) 	 If	x	∈	A,	then	x	is	an	element;	hence	 .	

1.18	Definition	If	two	classes	have	no	elements	in	common,	they	are	said	to	be	disjoint.	In	symbols,

1.19	Definition	The	complement	of	a	class	A	is	the	class	of	all	the	elements	which	do	not	belong	to	A.
In	symbols,

Thus,	x	∈	A′	if	and	only	if	x	∉	A.

Relations	among	classes	can	be	 represented	graphically	by	means	of	a	useful	device	known	as	 the
Venn	diagram.	A	class	is	represented	by	a	simple	plane	area	(circular	or	oval	in	shape);	if	it	is	desired	to
show	the	complement	of	a	class,	then	the	circle	or	oval	is	drawn	within	a	rectangle	which	represents	the
universal	class.	Thus,	A	∪	B	is	rendered	by	the	shaded	area	of	Fig.	1,	A	∩	B	by	the	shaded	area	of	Fig.
2,	and	A′	by	the	shaded	area	of	Fig.	3.	The	reader	will	find	that	Venn	diagrams	are	helpful	in	guiding	his
reasoning	 about	 classes,	 and	 that	 they	 give	more	meaning	 to	 set-theoretic	 formulas	 by	making	 them
more	concrete.	For	example,	in	Section	3	of	this	chapter	we	will	prove	the	formula

This	formula	is	illustrated	in	Fig.	4,	where	the	shaded	area	represents	A	∩	 (B	∪	C);	one	 immediately
notices	that	this	same	shaded	area	represents	(A	∩	B)	∪	(A	∩	C).

Fig.1



Fig.2

Fig.3

Fig.4

EXERCISES	1.2

1. 	 Suppose	that	A	⊆	B	and	C	⊆	D;	prove	that

[Hint:	Use	the	result	of	Exercise	7,	Exercise	Set	1.1.]
2. 	 Suppose	A	=	B	and	C	=	D;	prove	that

[Hint:	Use	the	result	of	the	preceding	exercise.]
3. 	 Prove	that	if	A	⊆	B,	then	B′	⊆	A′.

[Hint:	Use	the	result	of	Exercise	4(a),	Exercise	Set	1.1.]
4. 	 Prove	that	if	A	=	B,	then	A′=	B′.
5. 	 Prove	that	if	A	=	B	and	B	⊆	C,	then	A	⊆	C.
6. 	 Prove	that	if	A	⊂	B	and	B	⊂	C,	then	A	⊂	C.
7. 	 Prove	Theorem	1.11,	parts	(iv)	and	(v).
8. 	 Let	S	={x	:	x	∉	x};	use	Russell’s	argument	to	prove	that	S	is	not	an	element.
9. 	 Does	Axiom	A2	allow	us	to	form	the	“class	of	all	classes”?	Explain.
10. 	 Explain	why	Russell’s	paradox	and	Berry’s	paradox	cannot	be	produced	by	using	Axiom	A2.

3	THE	ALGEBRA	OF	CLASSES

One	 of	 the	 most	 interesting	 and	 useful	 facts	 about	 classes	 is	 that	 under	 the	 operations	 of	 union,
intersection,	 and	 complementation	 they	 satisfy	 certain	 algebraic	 laws	 from	which	we	 can	develop	 an
algebra	of	classes.	We	shall	see	later	(Chapter	4)	that	the	algebra	of	classes	is	merely	one	example	of	a



structure	known	as	a	Boolean	algebra;	 another	 example	 is	 the	“algebra	of	 logic,”	where	∨,	∧,	 ¬	 are
regarded	as	operations	on	sentences.

1.20	Theorem	If	A	and	B	are	any	classes,	then
i) 	 A	⊆	A	∪	B	and	B	⊆	A	∪	B.
ii) 	 A	∩	B	⊆	A	and	B	∩	B	⊆	B.

Proof

i) 	 To	prove	that	A	⊆	A	∪	B,	we	must	show	that	x	∈	A	⇒	x	∈	A	∪	B:

Analogously,	we	can	show	that	B	⊆	A	∪	B.
ii) 	 To	prove	that	A	∩	B	⊆	A,	we	must	show	that	x	∈	A	∩	B	⇒	x	∈	A.

1.21	Theorem	If	A	and	B	are	classes,	then
i) 	 A	⊆	B	if	and	only	if	A	∪	B	=	B,
ii) 	 A	⊆	B	if	and	only	if	A	∩	B	=	A.

Proof

i) 	 Let	us	first	assume	that	A	⊆	B;	that	is,	x	∈	A	⇒	x	∈	B.	Then

Thus,	A	∪	B	⊆	B;but	B	⊆	A	∪	B	by	1.20(i);	consequently,	A	∪	B	=	B.
Conversely,	let	us	assume	that	A	∪	B	=	B.	By	1.20(i),	A	⊆	A	∪	B;	thus	A	⊆	B.

ii) 	 To	proof	is	left	as	an	exercise	for	the	reader.	

1.22	Theorem	(Absorption	Laws).	For	all	classes	A	and	B,

Proof



i) 	 By	1.20(ii),	A	∩	B	⊆	A;	therefore,	by	1.21(i),	A	∪	(A	∩	B)	=	A.
ii) 	 By	1.20(i),	A	⊆	A	∪	B;	therefore,	by	1.21(ii),	A	∩	(A	∪	B)	=	A.	

1.23	Theorem	For	every	class	A,	(A′)′	=	A.

Proof

1.24	Theorem	(DeMorgan’s	Laws).	For	all	classes	A	and	B,

Proof

ii) 	 The	proof	is	left	as	an	exercise	for	the	reader.	

1.25	Theorem	For	all	classes	A,	B	and	C,	the	following	are	true.

Commutative	Laws: i)	A	∪	B	=	B	∪	Aii)	A	∩	B	=	B	∩	A

Idempotent	Laws: iii)	A	∪	A	=	A
iv)	A	∩	A	=	A

Associative	Laws: v)	A	∪	(B	∪	C)	=	(A	∪	B)	∪	C
vi)	A	∩	(B	∩	C)	=	(A	∩	B)	∩	C

Distributive	Laws: vii)	A	∩	(B	∪	C)	=	(A	∩	B)	∪	(A	∩	C)
viii)	A	∪	(B	∩	C)	=	(A	∪	B)	∩	(A	∪	C)

Proof



The	proofs	of	(ii),	(iii),	(iv),	(vi),	and	(viii)	are	exercises	for	the	reader.	

The	empty	class	and	the	universal	class	are	identity	elements	for	union	and	intersection	respectively;
they	satisfy	the	following	simple	rules:

1.26	Theorem	For	every	class	A,

Proof

i) 	 By	1.17,	Ø	⊆	A,	and	therefore	by	1.21(i),	A	∪	Ø	=	A.
iii) 	 By	1.17(ii), ,	and	therefore	by	1.21(i),	 .

The	proofs	of	the	remaining	parts	of	this	theorem	are	left	as	an	exercise	for	the	reader.	

By	using	the	laws	of	class	algebra	which	we	have	developed	above,	we	can	prove	all	the	elementary
properties	of	classes	without	referring	to	the	definitions	of	the	symbols	∪,	∩,	′,	and	⊆.	The	following	is
an	example	of	how	such	proofs	are	carried	out.

Example	Prove	that	A	∩	(A′∪	B)	=	A	∩	B.

Proof



The	following	definition	is	frequently	useful:	The	difference	of	two	classes	A	and	B	is	the	class	of	all
elements	which	belong	to	A,	but	do	not	belong	to	B.	In	symbols,

Example	Prove	that	A	−	B	=	B′−	A′.

Proof

It	is	useful	to	note	that	with	the	aid	of	Theorem	1.21,	relations	involving	inclusion	(⊆),	not	merely
equality,	can	be	proved	using	class	algebra.

EXERCISES	1.3

1. 	 Prove	Theorem	1.21(ii).
2. 	 Prove	Theorem	1.24(ii).
3. 	 Prove	Theorem	1.25,	parts	(ii),	(iii),	(iv),	(vi)	and	(viii).
4. 	 Prove	Theorem	1.26,	parts	(ii),	(iv),	(v)	through	(viii).
5. 	 Use	class	algebra	to	prove	the	following.

6. 	 Use	class	algebra	to	prove	the	following.
a)	If	A	∩	C	=	Ø,	then	A	∩	(B	∪	C)	=	A	∩	B.
b)	If	A	∩	B	=	Ø,	then	A	−	B	=	A.
c)	If	A	∩	B	=	Ø	and	A	∪	B	=	C,	then	A	=	C	−	B.

7. 	 Using	class	algebra,	prove	each	of	the	following.
a)	A	∩	(B	−	C)	=	(A	∩	B)	−	C.
b)	(A	∪	B)	−	C	=	(A	−	C)	∪	(B	−	C).
c)	A	−	(B	∪	C)	=	(A	−	B)	∩	(A	−	C).
d)	A	−	(B	∩	C)	=	(A	−	B)	∪	(A	−	C).

8. 	 We	define	the	operation	+	on	classes	as	follows:	If	A	and	B	are	classes,	then

Prove	each	of	the	following.



9. 	 Prove	each	of	the	following.
a)	A	∪	B	=	Ø	⇒	A	=	Ø	and	B	=	Ø.
b)	A	∩	B′=	Ø	if	and	only	if	A	⊆	B.
c)	A	+	B	=	Ø	if	and	only	if	A	=	B.

10. 	 Prove	each	of	the	following.
a)	A	∪	C	=	B	∪	C	if	and	only	if	A	+	B	⊆	C.
b)	(A	∪	C)	+	(B	∪	C)	=	(A	+	B)	−	C.

11. 	 Use	class	algebra	to	prove	that	A	⊆	B	and	C	=	B	−	A,	then	A	=	B	−	C.

4	ORDERED	PAIRS	CARTESIAN	PRODUCTS

If	a	is	an	element,	we	may	use	the	axiom	of	class	construction	to	form	the	class

It	is	easy	to	see	that	{a}	contains	only	one	element,	namely	the	element	a.	A	class	containing	a	single
element	is	called	a	singleton.
If	a	and	b	are	elements,	we	may	use	the	axiom	of	class	construction	to	form	the	class

Clearly	{a,	 b}	 contains	 two	 elements,	 namely	 the	 elements	a	 and	 b.	 A	 class	 containing	 exactly	 two
elements	is	called	an	unordered	pair,	or,	more	simply,	a	doubleton.
In	like	fashion,	we	can	form	the	classes	{a,	b,	c},	{a,	b,	c,	d},	and	so	on.

1.27	Theorem	If	{x,	y}={u,	v},	then

Proof

Suppose	{x,	y}={u,	v};	we	will	consider	two	cases,	according	as	x	=	y	or	x	≠	y.

Case	1:	x	=	y.	Now	u	∈{u,	v}	and	{u,	v}={x,	y},	so	by	Axiom	A1,	u	∈{x,	y}.

Thus,	u	=	x	or	u	=	y;	in	either	case,	u	=	x	=	y.	Analogously,	v	=	x	=	y,so	we	have	u	=	v	=	x	=	y,	and	we
are	done.

Case	2:	x	≠	y.	Now	x	∈{x,	y}	and	{x,	y}={u,	v},so	x	∈{u,	v};	thus	x	=	u	or	x	=	v.	We	will	consider	these
two	cases	separately:
i) 	 x	=	u:	Now	y	∈{x,	y},	hence	y	∈{u,	v},so	y	=	u	or	y	=	v;	but	x	=	u,so	if	y	=	u,	then	x	=	y,	which	is

impossible	because	we	assume	x	=y.	Thus	y	=	v.	In	this	case,	we	are	done.
ii) 	 x	=	v:	We	repeat	 the	argument	of	 (i),	merely	switching	 the	 roles	of	u	and	v;we	get	y	 =	u;	 hence,

again,	we	are	done.	



An	important	notion	in	mathematics	is	that	of	an	ordered	pair	of	elements.	Intuitively,	an	ordered	pair
is	a	class	consisting	of	two	elements	in	a	specified	order.	In	fact,	the	order	is	not	really	essential;	what	is
essential	is	that	ordered	pairs	have	the	following	property.

1.28	Let	(a,	b)	and	(c,	d)	be	ordered	pairs.	If	(a,	b)	=	(c,	d),	then	a	=	c	and	b	=	d.

We	would	like	to	define	ordered	pairs	in	such	a	way	as	to	avoid	introducing	a	new	undefined	notion	of
“order.”	It	is	an	interesting	fact	that	this	can,	indeed,	be	accomplished;	we	proceed	as	follows.

1.29	Definition	Let	a	and	b	be	elements;	the	ordered	pair	(a,	b)	is	defined	to	be	the	class

It	is	worth	noting	that

Hence	there	is	a	clear	distinction	between	the	two	possible	“orders”	(a,	b)	and	(b,	a):	they	are	different
classes.	It	remains	to	prove	that	ordered	pairs,	as	we	have	just	defined	them,	have	Property	1.28.

1.30	Theorem	If	(a,	b)	=	(c,	d),	then	a	=	c	and	b	=	d.

Proof.	Suppose	that	(a,	b)	=	(c,	d);	that	is,

By	Theorem	1.27,	either

or

we	will	consider	these	two	cases	separately.

Case	 1:	 {a}={c}	 and	 {a,	 b}={c,	 d}.	 From	 {a}={c},	 it	 follows	 that	 a	 =	 c.	 From	 {a,	 b}={c,	 d}	 and
Theorem	1.27,	it	follows	that	either	a	=	c	and	b	=	d,or	a	=	d	and	b	=	c;	in	the	first	case,	we	are	done;	in
the	second	case,	we	have	b	=	c	=	a	=	d,	so	again	we	are	done.

Case	2:	{a}={c,	d}	and	{a,	b}={c}.	Here	c	∈{c,	d}	and	{c,	d}={a},so	c	∈{a};	thus	c	=	a;	analogously,
d	=	a.	Also,	b	∈{a,	b}	and	{a,	b}={c},so	b	∈{c};	hence	b	=	c.	Thus	a	=	b	=	c	=	d,	and	we	are	done.	

1.31	Definition	The	Cartesian	product	of	 two	classes	A	and	B	 is	 the	 class	 of	 all	 ordered	pairs	 (x,	 y)
where	x	∈	A	and	y	∈	B.	In	symbols,

The	following	are	a	few	simple	properties	of	Cartesian	products.



1.32	Theorem	For	all	classes	A,	B,	and	C,
i) 	 A	×	(B	∩	C)	=	(A	×	B)	∩	(A	×	C).
ii) 	 A	×	(B	∪	C)	=	(A	×	B)	∪	(A	×	C).
iii) 	 (A	×	B)	∩	(C	×	D)	=	(A	∩	C)	×	(B	∩	D).

Proof

Just	as	we	found	it	instructive	to	represent	relations	between	classes	by	means	of	Venn	diagrams,	it	is
often	convenient	to	illustrate	relations	between	products	of	classes	by	using	a	graphic	device	known	as	a
coordinate	diagram.	A	coordinate	diagram	is	analogous	to	the	familiar	Cartesian	coordinate	plane;	there
are	two	axes—	a	vertical	one	and	a	horizontal	one—but	we	consider	only	one	“quadrant.”	If	we	wish	to
represent	a	class	A	×	B,	then	a	segment	of	the	horizontal	axis	is	marked	off	to	represent	A	and	a	segment
of	 the	 vertical	 axis	 is	 marked	 off	 to	 represent	 B;	 A	 ×	 B	 is	 the	 rectangle	 determined	 by	 these	 two
segments	(Fig.	5).	As	an	example	of	the	use	of	coordinate	diagrams,	Theorem	1.32(iii)	is	illustrated	in
Fig.	6.

Fig.5



Fig.6

EXERCISES	1.4

1. 	 Let	A	={a,	b,	c,	d},	B	={1,	2,	3},	C	={x,	y,	z}.	Find	A	×	B,	B	×	A,	C	×	(B	×	A),	(A	∪	B)	×	C,	(A	×	C)
∪	(B	×	C),	(A	∪	B)	×	(B	∪	C).

2. 	 Prove	Theorem	1.32(ii).
3. 	 Prove	that	A	×	(B	−	D)	=	(A	×	B)	−	(A	×	D).
4. 	 Prove	that	(A	×	B)	∩	(C	×	D)	=	(A	×	D)	∩	(C	×	B).
5. 	 If	A,	B	and	C	are	classes,	prove	the	following.

a)	(A	×	A)	∩	(B	×	C)	=	(A	∩	B)	×	(A	∩	C).
b)	(A	×	B)	−	(C	×	C)	=[(A	−	C)	×	B]∪[A	×	(B	−	C)].
c)	(A	×	A)	−	(B	×	C)	=[(A	−	B)	×	A]∪[A	×	(A	−	C)].

6. 	 Prove	 that	A	 and	B	 are	disjoint	 if	 and	only	 if,	 for	 any	nonempty	 class	C,	A	 ×	C	 and	B	 ×	C	 are
disjoint.

7. 	 If	A	and	C	are	nonempty	classes,	prove	that	A	⊆	B	ad	C	⊆	D	if	and	only	if	A	×	C	⊆	B	×	D.
8. 	 Let	A,	B,	C,	D	be	nonempty	classes.	Prove	that	A	×	B	=	C	×	D	if	and	only	if	A	=	C	and	B	=	D.
9. 	 If	A,	B,	and	C	are	any	classes,	prove

a)	A	×	B	and	A′×	C	are	disjoint, 	 	b)	B	×	A	and	C	×	A′	are	disjoint.
10. 	 Prove	that	A	×	B	=	Ø	if	and	only	if	A	=	Ø	or	B	=	Ø.
11. 	 Prove	each	of	the	following.

a)	If	a	={b},	then	b	∈	a.
b)	x	=	y	if	and	only	if	{x}={y}.
c)	x	∈	a	if	and	only	if	{x}⊆	a.
d)	{a,	b}={a}	if	and	only	if	a	=	b.

12. 	 We	give	the	following	alternative	definition	of	ordered	pairs:
(x,	y)	={{x,	Ø},	{y,	{Ø}}}.	Using	this	definition,	prove	that

5	GRAPHS



A	class	of	ordered	pairs	is	called	a	graph.	In	other	words,	a	graph	is	an	arbitrary	subclass	of	 .
The	importance	of	graphs	will	become	apparent	to	the	reader	in	Chapters	2	and	3.	It	may	be	shown,

for	 instance,	 that	 a	 function	 from	 A	 to	 B	 is	 a	 graph	 G	⊆	 A	 ×	 B	 with	 certain	 special	 properties.
Specifically,	G	consists	of	all	the	pairs	(x,	y)	such	that	y	=	f(x).	This	example	may	help	to	motivate	the
following	definitions.

1.33	Definition	If	G	is	a	graph,	then	G−1	is	the	graph	defined	by

1.34	Definition	If	G	and	H	are	graphs,	then	 	is	the	graph	defined	as	follows:

The	following	are	a	few	basic	properties	of	graphs.

1.35	Theorem	If	G,	H,	and	J	are	graphs,	then	the	following	statements	hold:

Proof

1.36	Definition	Let	G	be	a	graph.	By	the	domain	of	G	we	mean	the	class

and	by	the	range	of	G	we	mean	the	class

In	other	words,	the	domain	of	G	is	the	class	of	all	“first	components”	of	elements	of	G,	and	the	range	of



G	is	the	class	of	all	“second	components”	of	element	of	G.

1.37	Theorem	If	G	and	H	are	graphs,	then

Proof

1.38	Corollary	Let	G	and	H	be	graphs.	If	ran	H	⊆	dom	G	then	dom	 =	dom	H.

The	proof	of	this	theorem	is	left	as	an	exercise	for	the	reader.

EXERCISES	1.5

1. 	 Let

and

Find	 .
2. 	 Prove	Theorem	1.37,	parts	(ii)	and	(iv).
3. 	 Prove	Theorem	1.38.
4. 	 If	G,	H,	and	J	are	graphs,	prove	each	of	the	following.

5. 	 If	G	and	H	are	graphs,	prove	each	of	the	following.
a)	(G	∩	H)−1	=	G−1	∩	H	−1,	b)	(G	∪	H)−1	=	G−1	∪	H	−1.

6. 	 If	G,	H,	J,	and	K	are	graphs,	prove
a)	if	G	⊆	H	and	J	⊆	K,	then	G	 	J	⊆	H	 	K,
b)	G	⊆	H	if	and	only	if	G−1	⊆	H	−1.

7. 	 If	A,	B,	and	C	are	classes,	prove	each	of	the	following.



8. 	 Let	G	and	H	be	graphs;	prove	each	of	the	following.
a)	If	G	⊆	A	×	B,	then	G−1	⊆	B	×	A.
b)	If	G	⊆	A	×	B	and	H	⊆	B	×	C,	then	 ⊆	A	×	C.

9. 	 If	G	and	H	are	graphs,	prove	each	of	the	following.
a)	dom(G	∪	H)	=	(dom	G)	∪	(dom	H).
b)	ran(G	∪	H)	=	(ran	G)	∪	(ran	H).
c)	dom	G	−	dom	H	⊆	dom(G	−	H).
d)	ran	G	−	ran	H	⊆	ran(G	−	H).

10. 	 Let	G	be	a	graph,	and	let	B	be	a	subclass	of	the	domain	of	G.	By	the	restriction	of	G	to	B	we	mean
the	graph

Prove	each	of	the	following.

11.	Let	G	be	a	graph	and	let	B	be	a	subclass	of	the	domain	of	G.	We	use	the	symbol	G(B)	to	designate
the	class

Prove	each	of	the	following.

6	GENERALIZED	UNION	AND	INTERSECTION

Consider	the	class	{A1,	A2,	…,	An};	its	elements	are	indexed	by	the	numbers	1,	2,	…,	n.	Such	a	class	if
often	called	an	indexed	family	of	classes;	the	numbers	1,	2,	…,	n	are	called	indices	and	the	class	{1,	2,
…,	n}	is	called	the	index	class.
More	generally,	we	are	frequently	led	to	think	of	a	class	I	whose	elements	i,j,k,	…	serve	as	indices	to

designate	the	elements	of	a	class	{Ai,Aj,	Ak,	…}.	The	class	{Ai,Aj,	Ak,	…}	is	called	an	indexed	family	of
classes,	I	is	called	its	index	class,	and	the	elements	of	I	are	called	indices.	A	compact	notation	which	is
often	used	to	designate	the	class	{Ai,	Aj,	Ak,	…}	is

Thus,	speaking	informally,	{Ai}i∈I	is	the	class	of	all	the	classes	Ai,as	i	ranges	over	I.

Remark.	 The	 definition	 of	 an	 indexed	 family	 of	 classes	which	we	 have	 just	 given	 is,	 admittedly,	 an
intuitive	 one;	 it	 relies	 on	 the	 intuitive	 notion	 of	 indexing.	 This	 intuitive	 definition	 is	 adequate	 at	 the



present	time;	however,	for	future	reference,	we	now	give	a	formal	definition	of	the	same	concept:
By	an	indexed	family	of	classes,	{Ai}i∈I,	we	mean	a	graph	G	whose	domain	is	I;	for	each	i	∈	I	we
define	Ai	by

For	example,	consider	{Ai}i∈I	where	I	={1,	2},	A1	={a,	b},	and	A2	={c,	d}.	Then,	formally,	{Ai}i∈I	is	the
graph

If	{Ai}i∈I	is	an	indexed	family	of	classes	such	that	for	each	i	∈	I,	Ai	is	an	element,	then	we	let	{Ai	:	i
∈	I	}	designate	the	class	whose	elements	are	all	the	Ai,	that	is,	{Ai	:	i	∈	I	}={x	:	x	=	Ai,	for	some	i	∈	I	}.
However,	we	shall	follow	current	mathematical	usage	and	use	the	two	expressions,	{Ai}i∈I	and	{Ai	:	i	∈
I	},	interchangeably.

1.39	Definition	Let	{Ai}i∈I	be	an	indexed	family	of	classes.	The	union	of	the	classes	Ai	consists	of	all
the	elements	which	belong	to	at	least	one	class	Ai	of	the	family.	In	symbols,

The	 intersection	 of	 the	 classes	Ai	 consists	 of	 all	 the	 elements	which	 belong	 to	 every	 class	Ai	 of	 the
family.	In	symbols,

The	following	are	some	basic	properties	of	indexed	families	of	classes.

1.40	Theorem	Let	{Ai}i∈I	be	an	indexed	family	of	classes.

Proof

i) 	 Suppose	that	Ai	⊆	B	for	every	i	∈	I	 ;,	then	x	∈	Aj	for	some	j	∈	I;	but	Aj	⊆	B,so	x	∈	B.

Thus	 .

The	proof	of	(ii)	is	left	as	an	exercise	for	the	reader.	



1.41	Theorem	(Generalized	deMorgan’s	Laws).	Let	{Ai}i∈I	be	an	index	family	of	classes.	Then,

Proof

The	proof	of	(ii)	is	left	as	an	exercise	for	the	reader.	

1.42	Theorem	(Generalized	Distributive	Laws).	Let	{Ai}i∈I	and	{Bj	}j∈J	be	indexed	families	of	classes.
Then

Proof

The	proof	of	(ii)	is	left	as	an	exercise	for	the	reader.	

A	theorem	concerning	the	union	of	graphs	will	be	useful	to	us	in	the	next	chapter.

1.43	Theorem	Let	{Gi}i∈I	be	a	family	of	graphs.	Then

Proof



The	proof	of	(ii)	is	left	as	an	exercise	for	the	reader.	

A	variant	notation	for	the	union	and	intersection	of	a	family	of	classes	is	sometimes	useful.	If	 	is	a
class	(its	elements	are	necessarily	classes),	we	define	the	union	of	 ,	or	union	of	the	elements	of	 ,	 to
be	the	union	of	all	the	classes	which	are	elements	for	 .	In	symbols,

In	 other	 words,	 	 A	 if	 and	 only	 if	 there	 is	 a	 class	 A	 such	 that	 x	 ∈	 A	 and	 A	 ∈	 .

Analogously,	we	define	the	intersection	of	 ,	or	intersection	of	the	elements	of	 ,	to	be	the	intersection
of	all	the	classes	which	are	elements	of	 .	In	symbols,

1.46	Example	Let	 ={K,	L,	M},	where	K	={a,	b,	d},	L	={a,	c,	d},	and	M	=	{d,	e}.	Then

1.47	Remark.	It	is	frequent	practice,	in	the	literature	of	set	theory,	to	write

and

We	shall	occasionally	follow	that	practice	in	this	book.

EXERCISES	1.6

1. 	 Prove	Theorem	1.40(ii).
2. 	 Prove	Theorem	1.41(ii).
3. 	 Prove	Theorem	1.42(ii).
4. 	 Prove	Theorem	1.43(ii).



5.	Let	{Ai}i∈I	and	{Bi}i∈I	be	two	families	of	classes	with	the	same	index	class	I.	Suppose	that	∀i	∈	I,
Ai	⊆	Bi;	prove	that

6. 	 Let	{Ai}i∈I	and	{Bj	}j∈J	be	indexed	families	of	classes.	Prove	the	following.

7. 	 Let	{Ai}i∈I	and	{Bj	}j∈J	be	indexed	families	of	classes.	Suppose	that	∀i	∈	I,	∃j	∈	J	Bj	⊆	Ai.	Prove
that

8. 	 Let	{Ai}i∈I	and	{Bj	}j∈J	be	indexed	families	of	classes.	Prove	that

9. 	 We	say	that	an	indexed	family	{Bi}i∈I	is	a	covering	of	A	if	 	Suppose	that	{Bi}i∈I	and

{Cj	}j∈J	are	two	distinct	coverings	of	A.	Prove	that	the	family	{(Bi	∩	Cj	)}(i,j)∈I×J	is	a	covering	of	A.

10. 	 Let	a	={u,	v,	w},	b	={w,	x},	c	={w,	y},	r	={a,	b},	s	={b,	c},	and	p	=	{r,	s}.	Find	the	classes	∪(∪p),
∩(∩p),	∪(∩p),	∩(∪p).

11. 	 Prove	that	 .
12. 	 Prove	each	of	the	following.

7	SETS

Undoubtedly,	 everything	presented	 in	 this	 chapter	 is	 fairly	 familiar	 to	you.	Even	 though	we	used	 the
word	 class	 where	 you	 are	 more	 accustomed	 to	 hearing	 set,it	 is	 obvious	 that	 the	 “union”	 and
“intersection”	defined	 in	 this	 chapter	 are	 the	 same	as	 the	 familiar	union	and	 intersection	of	 sets.	The
Cartesian	product	of	classes	is	no	different	from	the	Cartesian	product	of	sets,	and	the	same	is	true	for
the	other	concepts	introduced	in	this	chapter.	This	has	been	very	convenient,	but	it	 is	time	to	face	the
fact	that	if	we	fail	to	distinguish	between	the	two	kinds	of	classes—namely	sets	and	proper	classes—we
shall	rapidly	find	ourselves	in	the	midst	of	logical	contradictions.
There	are	two	kinds	of	classes:	Sets	and	proper	classes.

1.48	Definition	If	X	∈	Y	for	some	class	Y,	then	X	is	a	set.
If	X	∉	Y	for	any	class	Y,	then	X	is	a	proper	class
You	will	notice	immediately	that	a	set	is	exactly	an	element.	This	is	the	awkward
aspect	 of	 our	 terminology:	 It	may	 irk	 us,	 but	 axiomatic	 set	 theory	 requires	 us	 to	 accept	 the	words

“element”	 and	 “set”	 as	 synonyms,	 to	 be	 distinguished	 from	 proper	 classes,	 which	 are	 not	 sets,	 and



cannot	be	elements	of	anything.
Proper	 classes	 are	 a	 little	 like	 embarrassing	 relatives	 that	we	 are	 forced	 to	 acknowledge,	 but	we’d

rather	 keep	 at	 arm’s	 length.	 Those	 are	 the	 classes	 that	 may	 lead	 to	 paradox,	 and	 in	 order	 to	 do
mathematics	safely	we	want	to	be	sure	that	we	are	dealing	only	with	sets.	So	the	most	important	axioms
of	 set	 theory	 are	 designed	 to	 provide	 the	 assurance	 that	 when	we	 carry	 out	 operations	 on	 sets—for
example	when	we	form	a	generalized	union	of	sets—we	are	not	inadvertently	creating	a	proper	class.	To
be	precise,	we	want	a	guarantee	that	when	performing	operations	on	sets,	the	results	of	the	operations
are	sets	and	not	proper	classes.
Since,	intuitively,	a	set	is	any	class	that	is	not	“too	large”,	we	would	certainly	expect	every	subclass

of	a	set	to	be	a	set.	So	if	A	is	not	“too	large”	and	B	⊆	A,	then	B	should	not	be	“too	large”.	We	state	this
as	an	axiom.

A3.	Every	subclass	of	a	set	is	a	set.

Axiom	A3	has	a	simple	consequence:	From	Theorem	1.20,	A	∩	B	⊆	A.	So	by	Axiom	A3,	if	A	is	a	set,
then	A	∩	B	is	a	set.	That	is,	the	intersection	of	any	two	sets	is	a	set.
With	all	this	talk	about	sets,	one	would	assume	that	we	could	exhibit	one—	in	other	words,	we	could

say,	“Here,	this	is	a	set!”	The	fact	is	that	we	can’t:	Our	definitions	and	axioms	so	far	have	not	given	us
any	sets.	So	we	must	now	state	an	axiom	whose	only	purpose	is	to	assert	that	sets	exist—well,	at	least
one	set	exists.

A4.	∅	is	a	set.

Mighty	oaks	from	little	acorns	grow.	We	shall	see	later	that	from	the	humble	empty	set,	many	more
sets	can	be	shown	to	exist.	As	a	preview,	consider	the	set	{∅}:	It	has	one	element,	namely	the	empty	set.
The	set	{∅,	 {∅}}	has	 two	 elements.	We’ll	 stop	here	 for	 now.	Actually,	 in	 a	 later	 chapter	we	present
another	axiom	that	provides	for	the	existence	of	sets,	this	time	of	infinite	sets.	After	adding	that	axiom,
our	Axiom	A4	will	be	redundant.	Meanwhile	it	will	serve	us	well.
It	is	reasonable	to	assume	that	if	a	and	b	are	sets,	then	the	doubleton	{a,	b},	with	only	two	elements,

is	not	too	large	to	be	a	set.

A5.	If	a	and	b	are	sets,	then	{a,	b}	is	a	set.

From	Axioms	A3	and	A5,	it	follows	immediately	that	if	a	is	a	set,	then	the	singleton	{a}	is	a	set.	The
next	two	axioms	are	especially	important,	because	they	guarantee	 that	 if	you	combine	sets	 into	 larger
sets—for	example	by	forming	the	generalized	union	of	a	family	of	sets,	or	a	Cartesian	product	of	many
sets—these	larger	collections	are	still	sets.

1.49	Definition	Let	A	 be	 a	 set;	 by	 the	power	set	 of	A	we	mean	 the	 class	 of	 all	 the	 subsets	 of	A.	 In
symbols,	the	power	set	of	A	is	the	class

Note	that	by	Axiom	A3,	 is	the	class	of	all	the	sets	B	which	satisfy	B	⊆	A.

1.50	Example	If	A	={a,	b},	then



Note	that	 if	and	only	if	B	⊆	A.

It	 is	 easy	 to	 see	 that	 	 is	 a	 larger	 class	 than	A,	 for	 	 includes	 (among	 other	 things)	 all	 the
singletons	{x}	as	x	ranges	over	A.	Thus	we	may	legitimately	ask	the	following	question:	if	A	is	a	set,	is
it	 necessarily	 true	 that	 	 is	 a	 set?	Or	 is	 it	 possible	 that	 may	 be	 “too	 large”	 to	 be	 a	 set?	 An
analogous	question	may	be	raised	in	regard	to	the	union	of	sets:	 if	 	 is	a	set	of	sets,	 is	a	set,	or
might	it	be	“too	large”	to	be	a	set?	These	questions	may	be	answered	intuitively	as	follows:	none	of	the
“giant”	collections	which	cause	contradictions	in	intuitive	set	theory	can	be	obtained	either	as	a	power
set	of	a	set	or	as	a	union	of	a	set	of	sets.	Thus	we	are	justified	in	adopting	the	following	as	axioms.

A6.	If	 	is	a	set	of	sets,	then	 	is	a	set.

A7.	If	A	is	a	set,	then	power	set	of	A	is	a	set.

If	A	and	B	are	sets,	then	by	Axiom	A5,	{A,	B}	is	a	set;	it	follows	immediately	from	Definition	1.44	that	
;	thus,	by	Axiom	A6,	A	∪	B	is	a	set.	This	shows	that	the	union	of	two	sets	is	a	set.

Several	 other	 axioms	 for	 sets	 have	 been	 proposed,	 but	 are	 not	 essential	 in	 everyday	mathematical
practice.	One	axiom,	that	we	shall	encounter	again	in	the	final	chapter	of	this	book,	is	called	the	Axiom
of	Foundation.	It	states	the	following:

A8.	If	A	is	any	set,	there	is	an	element	a	∈	A	such	that	a	∩	A	=∅.
This	axiom	has	an	equivalent	form	which	has	applications	in	Chapter	11:
Any	descending	sequence	of	sets	…	∈	A4	∈	A3	∈	A2	∈	A1	is	finite.	In	other	words,	you	cannot	have	an
infinite	descending	sequence	of	sets,	each	an	element	of	the	previous	one.

A	very	intriguing	axiom,	which	has	surprisingly	far-reaching	consequences,	is	the	following,	which
we	 do	 not	 include	 in	 the	 axiomatic	 system	 of	 this	 book:	 Every	 proper	 class	 is	 in	 one-to-one
correspondence	with	the	universal	class	 ,	that	is,	with	the	class	of	all	sets.	Though	we	shall	not	adopt
this	axiom	here,	it	helps	us	to	form	an	intuitive	image	of	what	proper	classes	are	like:	They	are	classes
whose	size	is	as	large	as	that	of	the	class	containing	all	sets.
Three	more	axioms,	whose	purpose	will	be	explained	later,	are	introduced	in	Chapters	5,	6	and	7.

1.51	Theorem	If	A	and	B	are	sets,	then	A	×	B	is	a	set.

Proof.	Let	A	and	B	be	sets.	By	Axiom	A6,	A	∪	B	 is	a	set;	by	Axiom	A7,	 	 is	a	set;	 finally,	by
Axiom	A7	again,	 	 is	 a	 set.	We	will	 prove	 that	A	 ×	B	⊆	 ,	 and	 it	will	 follow,	 by
Axiom	A3,	that	A	×	B	is	a	set.
Let	(x,	y)	∈	A	×	B.	By	1.29,	 (x,	y)	={{x},	{x,	y}}.	Now	x	∈	A	∪	B,	hence	{x}⊆	A	∪	B,so	 {x}∈	

.	Similarly,	x	∈	A	∪	B	and	y	∈	A	∪	B,so	{x,	y}⊆	A	∪	B,	hence	{x,	y}∈	 .	We	have	 just
shown	that	{x}	and	{x,	y}	are	elements	of	 ,	hence



it	follows	that

thus	is,

Thus

It	follows	from	Theorem	1.51	and	Axiom	A3	that	if	A	and	B	are	sets,	then	any	graph	G	⊆	A	×	B	is	a
set.
It	is	easy	to	show	that	if	G	is	a	set,	then	dom	G	and	ran	G	are	sets	(see	Exercise	5,	Exercise	Set	1.7).

Using	this	fact,	one	can	easily	show	that	if	G	and	H	are	sets,	then	G	 	H	and	G−1	are	sets	(see	Exercise
6,	Exercise	Set	1.7).

EXERCISES	1.7

1. 	 If	A	and	B	are	sets,	prove	that	A	−	B	and	A	+	B	are	sets.	(See	Exercise	8,	Exercise	Set	1.3.)
2. 	 If	A	 is	a	proper	class	and	A	⊆	B,	prove	 that	B	 is	a	proper	class.	Conclude	 that	 the	union	of	 two

proper	classes	is	a	proper	class.
3. 	 Prove	 that	 the	“Russell	class”	and	 the	universal	class	are	proper	classes.	 [Hint.	Use	 the	 result	of

Exercise	8,	Exercise	Set	1.2.]
4. 	 Let	{Ai}i∈I	be	an	indexed	family	of	sets.	Prove	that	 	is	a	set.
5. 	 Let	G	be	a	graph.	Prove	that	if	G	 is	a	set,	 then	dom	G	and	ran	G	are	sets.	[Hint:	Show	that	both

dom	G	and	ran	G	are	subsets	of	∪(∪G).]
6. 	 Let	G	and	H	be	graphs.	Prove	that	if	G	and	H	are	sets,	then	G−1	and	 	are	sets.
7. 	 Let	r	={a,	b},	s	={b,	c},	p	={r,	s}.	Find	the	sets	 ,	 ,	and	 .
8. 	 Let	A	and	B	be	sets;	prove	the	following.

9. 	 If	A	and	 are	sets,	prove	the	following.

10. 	 Exhibit	the	sets	 .



2
Functions

1	INTRODUCTION

The	 concept	 of	 a	 function	 is	 one	 of	 the	most	 basic	mathematical	 ideas	 and	 enters	 into	 almost	 every
mathematical	 discussion.	 A	 function	 is	 generally	 defined	 as	 follows:	 If	A	 and	B	 are	 classes,	 then	 a
function	from	A	to	B	is	a	rule	which	to	every	element	x	∈	A	assigns	a	unique	element	y	∈	B;	to	indicate
this	connection	between	x	and	y	we	usually	write	y	=	f(x).	For	instance,	consider	the	function	y	=	sin	x;
if	we	take	A	to	be	the	set	of	all	the	real	numbers	and	B	to	be	the	closed	interval	[−1,	1],	then	it	is	easy	to
see	that	y	=	sin	x	is	a	rule	which,	to	every	number	x	∈	A,	assigns	a	unique	number	y	∈	B.
The	graph	of	a	function	is	defined	as	follows:	If	f	is	a	function	from	A	to	B,	then	the	graph	of	f	is	the

class	of	all	ordered	pairs	(x,	y)	such	that	y	=	f(x).	For	example,	let	A	={a,	b,	c}	and	B	={d,	e},	and	let	f
be	the	function	defined	by	the	following	table.

The	graph	of	f	is	{(a,	d),	(b,	e),	(c,	d)}.

Clearly,	we	may	use	the	information	contained	in	the	table	to	construct	the	graph	of	f	;	we	may	also
operate	the	other	way,	that	is,	we	may	use	the	information	contained	in	the	graph	to	construct	the	table
of	f	.	Thus	a	function	f	completely	determines	its	graph,	and	conversely,	its	graph	completely	determines
f	.	Hence	there	is	no	need	to	distinguish	between	a	function	and	its	graph.
Since	a	function	and	its	graph	are	essentially	one	and	the	same	thing,	we	may,	if	we	wish,	define	a

function	to	be	a	graph.	There	is	an	important	advantage	to	be	gained	by	doing	this—namely,	we	avoid
having	 to	 introduce	 the	 word	 rule	 as	 a	 new	 undefined	 concept	 of	 set	 theory.	 For	 this	 reason	 it	 is
customary,	in	rigorous	treatments	of	mathematics,	to	introduce	the	notion	of	function	via	that	of	graph.
We	shall	follow	that	procedure	here.

2	FUNDAMENTAL	CONCEPTS	AND	DEFINITIONS

We	begin	by	giving	our	“official”	definition	of	a	function.

2.1	Definition	A	function	from	A	to	B	is	a	triple	of	objects	 	,	where	A	and	B	are	classes	and	f	is	a
subclass	of	A	×	B	with	the	following	properties.

F1.	∀x	∈	A,	∃y	∈	B	such	that	(x,	y)	∈	f	.
F2.			If	(x,	y1)	∈	f	and	(x,	y2)	∈	f	,	then	y1	=	y2.

It	is	customary	to	write	f	:	A	→	B	instead	of	 	.



In	ordinary	mathematical	applications,	every	function	f	:	A	→	B	is	a	function	from	a	set	A	to	a	set	B.
However,	the	intuitive	concept	of	a	function	from	A	to	B	is	meaningful	for	any	two	collections	A	and	B,
whether	A	and	B	be	sets	or	proper	classes;	hence	it	is	natural	to	give	the	definition	of	a	function	in	its
most	general	form,	letting	A	and	B	be	any	classes.	Once	again,	every	set	is	a	class,	hence	everything	we
have	to	say	about	functions	from	a	class	A	to	a	class	B	applies,	in	particular,	to	functions	from	a	set	A	to
a	set	B.

Let	f	:	A	→	B	be	a	function;	if	(x,	y)	∈	f	,	we	say	that	y	is	the	image	of	x	(with	respect	to	f	);	we	also
say	that	x	is	the	pre-image	of	y	(with	respect	to	f	);	we	also	say	that	f	maps	x	onto	y,	and	symbolize	this
statement	by	 .	(The	reader	may,	if	he	wishes,	picture	these	statements	as	in	Fig.	1.)

Thus,	F1	states	that

every	element	x	∈	A	has	an	image	y	∈	B.

F2	states	that	if	x	∈	A,	then

the	image	of	x	is	unique;

for	if	(x,	y1)	∈	f	and	(x,	y2)	∈	f	,	that	is,	if	y1	and	y2	are	both	images	of	x,	then	F2	dictates	that	y1	=	y2.	It
follows	that	F1	and	F2	combined	state	that

2.2	Every	element	x	∈	A	has	a	uniquely	determined	image	y	∈	B.

2.3	Theorem	Let	A	and	B	be	classes	and	let	f	be	a	graph.	Then	f	:	A	→	B	is	a	function	if	and	only	if
i) 	 F2	holds,
ii) 	 dom	f	=	A,	and
iii) 	 ran	f	⊆	B.

Proof.	Suppose	f	:	A	→	B	is	a	function;	by	2.1,	F2	holds.	Furthermore,

By	(a)	and	(b),	dom	f	=	A;	by	(c),	ran	f	⊆	B.	Thus,	(i),	(ii),	and	(iii)	hold.

For	the	converse,	suppose	that	(i),	(ii),	and	(iii)	hold.



Thus,	f	⊆	A	×	B.
b) 	 Let	x	be	an	arbitrary	element	of	A.	By	(ii),	x	∈	dom	f	;	hence	∃y	(x,	y)	∈	f	;	by	y	∈	ran	f	,	so	by

(iii),	y	∈	B.	This	proves	that	F1	holds.	By	(i),	F2	holds;	thus,	by	2.1,	f	:	A	→	B	is	a	function.	
From	Theorem	2.3	we	conclude,	in	particular,	that	if	f	:	A	→	B	is	a	function,	then	A	is	the	domain	of	f

and	B	contains	the	range	of	f	.	We	call	B	the	codomain	of	f	:	A	→	B.

2.4	Corollary	Let	f	:	A	→	B	be	a	function;	if	C	 is	any	class	such	that	ran	 f	⊆	C,	then	f	 :	A	→	C	 is	a
function.

Proof.	If	f	:	A	→	B	is	a	function,	then	by	2.3,	F2	holds	and	dom	f	=	A;	thus,	if	ran	f	⊆	C,	then,	by	2.3,	f	:
A	→	C	is	a	function.	

Let	 f	 :	A	→	B	be	a	 function	and	 let	x	∈	A;	 it	 is	 customary	 to	use	 the	 symbol	 f(x)	 to	designate	 the
image	of	x.	Thus,

y	=	f(x)	has	the	same	meeting	as	(x,	y)	∈	f.

When	we	write	y	=	f(x)	instead	of	(x,	y)	∈	f	,	Conditions	F1	and	F2	take	the	form

F1.	∀x	∈	A,	∃y	∈	B,	y	=	f(x).
F2.	If	y1	=	f(x)	and	y2	=	f(x),	then	y1	=	y2.

It	is	often	convenient	to	write	F2	in	a	slightly	different	way.	F2	states	that	if	(x,	y1)	∈	f	and	(x,	y2)	∈	f
,	that	is,	if

then	y1	=	y2.	This	is	the	same	as	saying	that	if	 ,	 	and	x1	=	x2,	that	is,	if

then	f(x1)	=	f(x2).	Thus,	F2	may	be	written	in	the	form

.	If	x1	=	x2,	then	f(x1)	=	f(x2).

2.5	Theorem	Let	f	:	A	→	B	and	g	:	A	→	B	be	functions.	Then	f	=	g	if	and	only	if	f(x)	=	g(x),	∀x	∈	A.

Proof.	First,	let	us	assume	that	f	=	g.	Then,	for	arbitrary	x	∈	A,

thus,	f(x)	=	g(x).
Conversely,	assume	that	f(x)	=	g(x),	∀x	∈	A.	Then



thus,	f	=	g.	

Injective,	Surjective	and	Bijective	Functions

The	following	definitions	are	of	great	importance	in	the	study	of	functions.

2.6	Definition	A	function	f	:	A	→	B	is	said	to	be	injective	if	it	has	the	following	property.

INJ.	If	(x1,y)	∈	f	and	(x2,y)	∈	f	,	then	x1	=	x2.

The	reader	should	note	that	INJ	states,	simply,	that	if	y	is	any	element	of	B,	then

y	has	no	more	than	one	pre-image;

for	if	(x1,y)	∈	f	and	(x2,y)	∈	f	,	that	is,	if	x1	and	x2	are	both	pre-images	of	y,	then	INJ	dictates	that	x1	=
x2.

It	is	often	convenient	to	write	INJ	in	a	slightly	different	way.	INJ	states	that	if	(x1,y)	∈	f	and	(x2,y)	∈	f
,	that	is,	if

then	x1	=	x2.	This	is	the	same	as	saying	that	if	x1	and	x2	are	elements	of	A	and	f(x1)	=	f(x2),	that	is,	if

then	x1	=	x2.	Thus,	INJ	may	be	written	in	the	form

INJ .	If	f(x1)	=	f(x2),	then	x1	=	x2.

(The	function	of	Fig.	2	is	injective,	whereas	the	function	of	Fig.	3	is	not	injective.)

2.7	Definition	A	function	f	:	A	→	B	is	said	to	be	surjective	if	it	has	the	following	property:

SURJ.	∀y	∈	B,	∃x	∈	A	y	=	f(x).

Clearly,	condition	SURJ	states	that	every	element	of	B	is	the	image	of	some	element	of	A;	that	is,	B
⊆	ran	f	.	But	ran	f	⊆	B	by	Theorem	2.3;	hence	f	:	A	→	B	is	surjective	if	and	only	if	ran	f	=	B.	 (The
function	of	Fig.	3	is	surjective,	whereas	the	function	of	Fig.	2	is	not	surjective.)



Fig.1

Fig.2

Fig.3

Fig.4

2.8	Definition	A	function	f	:	A	→	B	is	said	to	be	bijective	if	it	is	both	injective	and	surjective.

To	say	that	f	:	A	→	B	is	injective	is	to	say	that	every	element	of	B	is	the	image	of	no	more	than	one
element	of	A;	 to	say	 that	 f	 is	surjective	 is	 to	say	 that	every	element	of	B	 is	 the	 image	of	at	 least	 one
element	of	A;	thus,	to	say	that	f	is	bijective	is	to	say	that	every	element	of	B	is	the	image	of	exactly	one
element	of	A	(Fig.	4).	In	other	words,	if	f	:	A	→	B	is	a	bijective	function,	every	element	of	A	has	exactly
one	image	in	B	and	every	element	of	B	has	exactly	one	pre-image	in	A;	thus	all	the	elements	of	A	and	all
the	elements	of	B	are	associated	in	pairs;	for	this	reason,	if	f	is	bijective,	it	is	sometimes	called	a	one-to-
one	correspondence	between	A	and	B.



2.9	Definition	If	there	exists	a	bijective	function	f	:	A	→	B,	then	we	say	that	A	and	B	are	in	one-to-one
correspondence.

Examples	of	Functions

2.10	Identity	function.	Let	A	be	a	class;	by	the	identity	function	on	A	we	mean	the	function	IA	:	A	→	A
given	by

In	other	words,

IA	is	clearly	injective,	for	suppose	IA(x)	=	IA(y);now	IA(x)	=	x	and	IA(y)	=	y,	so	x	=	y;	thus	 	holds.	IA
is	surjective	because,	obviously,	the	range	of	IA	is	A.	Thus	IA	is	bijective.

2.11	Constant	function.	Let	A	and	B	be	classes,	and	let	b	be	an	element	of	B.	By	the	constant	 function
Kb	we	mean	the	function	Kb	:	A	→	B	given	by

In	other	words,	Kb	={(x,	b)	:	x	∈	A}.
Note	that	if	A	has	more	than	one	element,	Kb	is	not	injective;	if	B	has	more	than	one	element,	Kb	is

not	surjective.

2.12	Inclusion	function.	Let	A	be	a	class	and	let	B	be	a	subclass	of	A.	By	the	inclusion	function	of	B	in	A
we	mean	the	function	EB	:	B	→	A	given	by

Note	 that	 if	B	=	A,	 the	 inclusion	 function	coincides	with	 the	 identity	 function	 IA.	By	 the	argument
used	in	2.10,	EB	is	injective;	however,	if	B	≠	A,	then	EB	is	not	surjective.

2.13	Characteristic	function.	Let	2	designate	a	class	of	two	elements,	say	the	class	{0,	1}.	If	A	is	a	class
and	B	is	a	subclass	of	A,	the	characteristic	function	of	B	in	A	is	the	function	CB	:	A	→	2	given	by

The	CB	maps	every	element	of	B	onto	0	and	every	element	of	A	−	B	onto	1.

2.14	Restriction	of	a	function.	Let	f	:	A	→	B	be	a	function	and	let	C	be	a	subclass	of	A.	By	the	restriction



of	f	to	C	we	mean	the	function	f[C]	:	C	→	B	given	by

To	put	it	another	way,	f[C]	={(x,	y)	:	(x,	y)	∈	f	and	x	∈	C}.	Note	that	f[C]	⊆	f	.
Restrictions	of	functions	have	the	following	properties,	which	will	be	useful	to	us	later.

2.15	Theorem	If	f	:	B	∪	C	→	A	is	a	function,	then	f	=	f[B]	∪	f[C].

The	simple	proof	of	this	theorem	is	left	as	an	exercise	for	the	reader.

2.16	Theorem	Let	f1	:	B	→	A	and	f2	:	C	→	A	be	functions,	where	B	∩	C	=	Ø.	If	f	=	f1	∪	f2,	then	the
following	hold:
i) 	 f	:	B	∪	C	→	A	is	a	function.
ii) 	 f1	=	f[B]	and	f2	=	f[C].

iii) 	 If	x	∈	B	then	f(x)	=	f1(x),	and	if	x	∈	C	then	f(x)	=	f2(x).

Proof.	We	will	begin	by	proving	the	following	two	relations.

a) 	 (x,	y)	∈	f	and	x	∈	B	⇔	(x,	y)	∈	f1.
b) 	 (x,	y)	∈	f	and	x	∈	C	⇔	(x,	y)	∈	f2.

If	(x,	y)	∈	f1,	then	x	∈	B	because	dom	f1	=	B,	and	(x,	y)	∈	f	because	f	=	f1	∪	f2.	Conversely,	suppose	(x,
y)	∈	f	and	x	∈	B	:	(x,	y)	∈	f	implies	that	(x,	y)	∈	f1	or	(x,	y)	∈	f2;	if	(x,	y)	∈	f2,	then	x	∈	C	(because	dom
f2	=	C),	which	is	impossible	because	x	∈	B	and	B	∩	C	=	Ø;	thus,	(x,	y)	∈	f1.	This	proves	(a);	the	proof
of	(b)is	analogous.	Next,	we	will	prove	that

c) 	 dom	f	=	B	∪	C	and	ran	f	⊆	A.

Indeed,	by	1.43,

and

Our	next	step	will	be	to	prove	that

d) 	 f	satisfies	Condition	F2.

Suppose	(x,	y1)	∈	f	and	(x,	y2)	∈	f	;	now	x	∈	dom	f	,so	by(c),	x	∈	B	or	x	∈	C.	If	x	∈	B,	then,	by	(a),	(x,
y1)	∈	f1	and	(x,	y2)	∈	f1,	so	by	2.1,	y1	=	y2;	if	x	∈	C,	then,	by	(b),	(x,	y1)	∈	f2	and	(x,	y2)	∈	f2,	so	by	2.1,
y1	=	y2;	this	proves	(d).	From	(c),	(d),	and	Theorem	2.3,	we	conclude	that	f	:	B	∪	C	→	A	is	a	function.
By	(a)	and	2.14,	(x,	y)	∈	f1	⇔	(x,	y)	∈	f[B],	that	is,	f1	=	f[B];	analogously,	f2	=	f[C].



Finally,	(a)	states	that

and	(b)	states	that

thus	(iii)	holds.	

EXERCISES	2.2

1. 	 Prove	that	the	functions	introduced	in	2.10	through	2.14	qualify	as	functions	under	Definition	2.1.
2. 	 Prove	that	if	f	:	A	→	B	is	an	injective	function	and	C	⊆	A,	then	f[C]	:	C	→	B	is	an	injective	function.
3. 	 Let	A	be	a	class	and	let	f	={(x,	(x,	x))	:	x	∈	A}.	Show	that	f	is	a	bijective	function	from	A	to	IA.
4. 	 Let	f	:	A	→	B	and	g	:	A	→	B	be	functions.	Prove	that	if	f	⊆	g	then	f	=	g.
5. 	 Let	f	:	A	→	B	and	g	:	C	→	D	be	functions.	The	product	of	f	and	g	is	the	function	defined	as	follows:

Prove	that	f	•	g	is	a	function	from	A	×	C	to	B	×	D.	Prove	that	if	f	and	g	are	injective,	then	f	•	g	 is
injective,	and	if	f	and	g	are	surjective,	then	f	•	g	is	surjective.	Prove	that	ran[f	•	g]=	(ran	f)	×	(ran	g).

6. 	 If	f	:	B	∪	C	→	A	is	a	function,	prove	that	f	=	f[B]	∪	f[C].
7. 	 Let	f1	:	A	→	B	and	f2	:	C	→	D	be	bijective	function,	where	A	∩	C	=	Ø	and	B	∩	D	=	Ø.	Let	f	=	f1	∪

f2;	prove	that	f	:	A	∪	C	→	B	∪	D	is	a	bijective	function.
8. 	 Let	f	:	B	→	A	and	g	:	C	→	A	be	functions,	and	suppose	that	f[B∩C]	=	g[B∩C].	If	h	=	f	∪	g,	prove	that

h:	B	∪	C	→	A	is	a	function,	f	=	h[B]	and	g	=	h[C].
9. 	 Let	f	:	A	→	B	be	a	function;	prove	that	f	is	in	one-to-one	correspondence	with	A.

By	a	 functional	graph	we	mean	 a	 graph	which	 satisfies	Condition	F2.	Thus	G	 is	 a	 functional
graph	if	and	only	if

10. 	 If	G	is	a	functional	graph,	show	that	every	subclass	of	G	is	a	functional	graph.
11. 	 Let	G	be	a	graph.	Prove	that	G	is	a	functional	graph	if	and	only	if	for	arbitrary	graphs	H	and	J	.

12. 	 Let	G	be	a	functional	graph.	Prove	that	G	is	injective	if	and	only	if	for	arbitrary	graphs	J	and	H	.

3	PROPERTIES	OF	COMPOSITE	FUNCTIONS	AND	INVERSE	FUNCTIONS

The	following	theorems	express	a	few	basic	properties	of	functions.



2.17	Theorem	If	f	:	A	→	B	and	g	:	B	→	C	are	functions,	then	 :	A	→	C	is	a	function.

Proof
i) 	 By	1.38,	dom	 =	dom	f	=	A;	by	1.37(iv),	ran	 ⊆	ran	g	⊆	C.
ii) 	 Suppose	(x,	z1)	∈	 and	(x,	z2)	∈	 ;	by	1.34,	∃y1	(x,	y1)	∈	f	and	(y1,z1)	∈	g	and	∃y2	(x,	y2)	∈	f

and	(y2,z2)	∈	g.	From	(x,	y1)	∈	f	and	(x,	y2)	∈	f	we	conclude,	by	2.1,	that	y1	=	y2;	thus	(y1,z1)	∈	g	and
(y1,z2)	∈	g.	It	follows	by	F2	(applied	to	g)	that	z1	=	z2;	thus,	 satisfies	F2.

From	(i),	(ii),	and	2.3,	we	conclude	that	 :	A	→	C	is	a	function.	

By	1.34	(x,	y)	∈	 if	and	only	if	for	some	element	z,	(x,	z)	∈	f	and	(z,	y)	∈	g.	Thus,	 	if	and
only	if	for	some	z,	 	and	 .	(The	reader	may,	if	he	wishes,	picture	this	statement	as	in	Fig.
5.)	This	is	the	same	as	saying	that	y	=[ ](x)	if	and	only	if	for	some	z,	z	=	f(x)	and	y	=	g(z).	Thus

Fig.5

2.19	Definition	A	function	f	:	A	→	B	is	said	to	be	invertible	if	f	−1	:	B	→	A	is	a	function.

Let	f	:	A	→	B	be	an	invertible	function;	by	1.33,	(x,	y)	∈	f	if	and	only	if	(y,	x)	∈	f	−1.	Thus	 	if
and	only	if	 .	(The	reader	may,	if	he	wishes,	picture	this	statement	as	in	Fig.	6.)	Thus

2.20	y	=	f(x)	if	and	only	if	x	=	f	−1(y).

Fig.6

The	next	two	theorems	give	a	necessary	and	sufficient	condition	for	a	function	to	be	invertible.

2.21	Theorem	If	f	:	A	→	B	is	a	bijective	function,	then	f	−1	:	B	→	A	is	a	bijective	function.



Proof.	By	2.3,	dom	f	=	A,	and	by	2.7,	ran	f	=	B;	thus,	by	1.37,	dom	f	−1	=	B	and	ran	f	−1	=	A.	Now	we
will	prove	that	f	−1	satisfies	F2:

Thus,	by	Theorem	2.3,	f	−1	:	B	→	A	is	a	function.
Next,	we	will	prove	that	f	−1	satisfies	INJ:

Finally,	f	−1	satisfies	SURJ	because	(see	above)	ran	f	−1	=	A.	

2.22	Theorem	If	f	:	A	→	B	is	invertible,	then	f	:	A	→	B	is	bijective.

Proof.	Let	f	:	A	→	B	be	invertible;	that	is,	let	f	−1	:	B	→	A	be	a	function.	By	2.3,	dom	f	−1	=	B,	 so	by
1.37(ii),	ran	f	=	B;	thus,	f	:	A	→	B	is	surjective.	Now

Thus,	f	:	A	→	B	is	injective.	

Theorem	2.21	and	2.22	may	be	summarized	as	follows:

f	:	A	→	B	is	invertible	if	and	only	if	it	is	bijective;	furthermore,	if	f	:	A	→	B	is	invertible,	then	f	−1	:
B	→	A	is	bijective.

The	next	two	theorems	give	another	useful	characterization	of	invertible	functions.

2.23	Theorem	Let	f	:	A	→	B	be	an	invertible	function.	Then

Proof

i) 	 Let	x	∈	A	and	let	y	=	f(x);	then	by	2.20,	x	=	f	−1(y).	Thus

this	holds	for	every	x	∈	A,	so	by	2.5,	f	−1	 	f	=	IA.
ii) 	 The	proof	is	analogous	to	(i),	and	is	left	as	an	exercise.	

2.24	Theorem	Let	f	:	A	→	B	and	g	:	B	→	A	be	functions.	If	 =	IA	and	 =	IB,	then	f	:	A	→	B	is



bijective	(hence	invertible),	and	g	=	f	−1.

Proof
i) 	 First,	we	will	prove	that	f	:	A	→	B	is	injective.

ii) 	 Next,	we	will	prove	that	f	:	A	→	B	is	surjective.	If	y	∈	B	then	y	=	IB(y)	=	[ ](y)	=	f(g(y));	in	other
words,	if	y	is	any	element	of	B,	then	y	=	f(x),	where	x	=	g(y)	∈	A.

iii) 	 Finally,	we	will	prove	that	g	=	f	−1.	To	begin	with,

conversely,

Thus,	∀y	∈	B,	x	=	f	−1(y)	iff	x	=	g(y);	that	is,	f	−1(y)	=	g(y);	it	follows	(by	2.5)	that	f	−1	=	g.	

Theorem	2.23	and	2.24	may	be	summarized	as	follows:

f	:	A	→	B	is	invertible	if	and	only	if	there	exists	a	function	g	:	B	→	A	such	that	 =	IA	and	 =
IB.	The	function	g,	if	it	exists,	is	the	inverse	of	f	.

Our	next	theorem	gives	an	important	characterization	of	injective	functions.

2.25	Theorem	Let	f	:	A	→	B	be	a	function;	f	:	A	→	B	is	injective	if	and	only	if	there	exists	a	function	g	:
B	→	A	such	that	 =	IA.

Proof
i) 	 Suppose	there	exists	a	function	g	:	B	→	A	such	that	 =	IA.	To	prove	that	f	:	A	→	B	is	injective,

we	repeat	part	(i)	of	the	proof	of	2.24.
ii) 	 Conversely,	suppose	that	f	:	A	→	B	is	injective;	let	C	=	ran	f	.	By	2.4,	f	:	A	→	C	is	a	function;	f	:	A

→	C	is	surjective	(because	C	=	ranf	),	hence	it	is	bijective;	thus	f	−1	:	C	→	A	 is	a	function.	If	a	 is
some	fixed	element	of	A,	let	Ka	:	(B	−	C)	→	A	be	the	constant	function	(see	2.11)	which	maps	every
element	of	B	−	C	onto	a.	 If	g	=	 f	−1	∪	Ka,	 then,	by	2.16(i),	g	 :	B	→	A	 is	a	 function	(see	Fig.	7).
Finally,	if	x	∈	A,	let	y	=	f(x);	then



Thus	∀x	∈	A,	[ ](x)	=	IA(x);	it	follows	by	2.5	that	 =	IA.	

Fig.7

In	Chapters	5	we	will	prove	a	companion	theorem	to	2.25,	which	will	state	the	following:	f	:	A	→	B	is
surjective	if	and	only	if	there	exists	a	function	g	:	B	→	A	such	that	[ ]=	 IB.	Theorem	2.25	and	 its
companion	are	often	paraphrased	as	follows.

Let	 f	 :	A	→	B	 be	 a	 function;	 f	 :	A	→	B	 is	 injective	 if	 and	 only	 if	 it	 has	 a	 “left	 inverse”	 and
surjective	if	and	only	if	it	has	a	“right	inverse”.

2.26	Theorem	Suppose	f	:	A	→	B,	g	:	B	→	C,	and	 :	A	→	C	are	functions.
i) 	 If	f	and	g	are	injective,	then	 is	injective.
ii) 	 If	f	and	g	are	surjective,	then	 is	surjective.
iii) 	 If	f	and	g	are	bijective,	then	 is	bijective.

Proof
i) 	 Suppose	that	f	and	g	both	satisfy	 :	then

thus	 satisfies	 .
ii) 	 Suppose	that	f	and	g	both	satisfy	SURJ:	if	z	∈	C,	then	∃y	∈	B	z	=	g(y);	since	y	∈	B,	∃x	∈	A	y	=	f(x);

thus	z	=	g(f	(x))	=[ ](x).	Consequently,	 satisfies	SURJ.
iii) 	 This	follows	immediately	from	(i)	and	(ii).	

It	follows	from	2.26(iii)	that

the	composite	of	two	invertible	functions	is	invertible.

Furthermore,	by	1.35(iii),

EXERCISES	2.3

1. 	 Let	f	:	A	→	B	be	a	function.	Prove	that	 	and	 .
2. 	 Suppose	f	:	A	→	B	and	g	:	B	→	C	are	functions.	Prove	that	if	 is	injective,	then	f	is	injective;

prove	 that	 if	 is	 surjective,	 then	 g	 is	 surjective.	 Conclude	 that	 if	 is	 bijective,	 then	 f	 is



injective	and	g	is	surjective.
3. 	 Give	an	example	to	show	that	the	converse	of	the	last	statement	of	Exercise	2	does	not	hold.
4. 	 Let	f	:	A	→	B	and	g	:	B	→	A	be	functions.	Suppose	that	y	=	f(x)	if	and	only	if	x	=	g(y).	Prove	that	f

is	invertible	and	g	=	f	−1.
5. 	 Let	g	:	B	→	C	and	h:	B	→	C	be	functions.	Suppose	that	 =	 	for	every	function	f	:	A	→	B.

Prove	that	g	=	h.
6. 	 Suppose	 g	 :	A	→	B	 and	h:	A	→	B	 are	 functions.	 Let	C	 be	 a	 set	with	more	 than	 one	 element;

suppose	that	 	=	 	for	every	function	f	:	B	→	C.	Prove	that	g	=	h.
7. 	 Let	f	:	B	→	C	be	a	function.	Prove	that	f	is	injective	if	and	only	if,	for	every	pair	of	functions	g	:	A

→	B	and	h:	A	→	B,	 =	 ⇒	g	=	h.
8. 	 Let	f	:	A	→	B	be	a	function.	Prove	that	f	is	surjective	if	and	only	if,	for	every	pair	of	functions	g	:	B

→	C	and	h:	B	→	C,	 =	 ⇒	g	=	h.
9. 	 Let	f	:	A	→	C	and	g	:	A	→	B	be	functions.	Prove	that	there	exists	a	function	h:	B	→	C	such	that	f	=	

	if	and	only	if	∀x,	y	∈	A,

Prove	that	h	is	unique.
10. 	 Let	f	:	C	→	A	and	g	:	B	→	A	be	functions,	and	suppose	that	g	is	bijective.	Prove	that	there	exists	h:

C	→	B	such	that	f	=	g	 	h	if	and	only	if	ran	f	⊆	ran	g.	Prove	that	h	is	unique.
11. 	 Let	 f	 :	A	→	B	 be	 a	 function,	 and	 let	C	⊆	A.	Prove	 that	 f[C]	 =	 	EC,	where	EC	 is	 the	 inclusion

function	of	C	in	A	(2.12).

4	DIRECT	IMAGES	AND	INVERSE	IMAGES	UNDER	FUNCTIONS

2.27	Definition	Let	f	:	A	→	B	be	a	function;	if	C	is	any	subclass	of	A,	 the	direct	image	of	C	under	f	 ,
which	we	write	 ,	is	the	following	subclass	of	B:

That	is,	 	is	the	class	of	all	the	images	of	elements	in	C.

2.28	Definition	Let	f	:	A	→	B	be	a	function;	if	D	is	any	subclass	of	B,	the	inverse	image	of	D	under	f	,
which	we	write	 (D),	is	the	following	subclass	of	A:

That	is,	 (D)	is	the	class	of	all	the	pre-images	of	elements	in	D.
If	{a}	and	{b}	are	singletons,	we	will	write	 (a)	for	 ({a})	and	 (b)	for	 ({b}).

2.29	Theorem	Let	f	:	A	→	B	be	a	function.
i) 	 if	C	⊆	A	and	D	⊆	A,	then	C	=	D	⇒	 =	 (D).
ii) 	 if	C	⊆	B	and	D	⊆	B,	then	C	=	D	⇒	 (C)	=	 (D).



Proof
i) 	 Suppose	C	=	D;	then

ii) 	 Suppose	C	=	D;	then

Caution.	 =	 (D)does	 not	 always	 imply	 that	 C	 =	 D;	 for	 a	 simple	 counterexample,	 see	 Fig.	 8.
Similarly,	 (C)	=	 (D)	does	not	always	imply	C	=	D;	for	a	counterexample,	the	reader	should	look	at
Fig.	9.	(However,	see	Exercise	3,	Exercise	Set	2.4.)

Fig.8

Fig.9

2.30	Theorem	Let	A	and	B	be	sets	and	let	f	:	A	→	B	be	a	function;	then

Proof
i) 	 By	2.27,	it	is	easy	to	see	that	dom	 =	 and	ran	 ⊆	 .	Theorem	2.29(i)	states	 that	 satisfies

Condition	F2;	thus	by	2.3,	 :	 →	 	is	a	function.



ii) 	 Analogously,	 :	 →	 is	a	function.	

2.31	Theorem	Let	f	:	A	→	B	be	a	function,	let	{Ci}i∈I	be	a	family	of	subclasses	of	A,	and	let	{Di}i∈I	be
a	family	of	subclasses	of	B.	Then

Proof

iii) 	 The	proof	is	left	as	an	exercise	for	the	reader.	

Caution.	It	is	important	to	note	that	there	is	no	counterpart	of	Theorem	2.31(iii)	for	 ;	more	precisely,
we	have

but	we	do	not	have	inclusion	the	other	way.	For	a	simple	counterexample,	see	Fig.	8,	where	 (C	∩	D)	=	
(b)	={2}	≠	{1,	2}=	 ∩	 (D).	For	this	reason,	a	variety	of	theorems	which	are	true	for	inverse	images
of	sets	fail	to	hold	for	direct	images	of	sets.

EXERCISES	2.4

1. 	 Suppose	that	f	:	A	→	B	is	a	function,	C	⊆	A	and	D	⊆	B.



2. 	 Suppose	that	f	:	A	→	B	is	a	function,	C	⊆	A	and	D	⊆	B.
a) 	 If	f	is	injective,	prove	that	C	=	 [	 ].
b) 	 If	f	is	surjective,	prove	that	D	=	 [	 (D)].

3. 	 Let	f	:	A	→	B	be	a	function.	Prove	the	following.
a) 	 Suppose	C	⊆	A	and	D	⊆	A;if	f	is	injective,	then	 =	 (D)	⇒	C	=	D.
b) 	 Suppose	C	⊆	B	and	D	⊆	B;	if	f	is	surjective,	then	 (C)	=	 (D)	⇒	C	=	D.
[Hint:	Use	the	result	of	Exercise	2.]

4. 	 Let	f	:	A	→	B	be	a	function.	Prove	the	following:
a) 	 If	f	is	injective,	then	 	 	 	is	bijective.	[Hint:	Use	the	result	of	Exercise	2(a).]
b) 	 If	f	is	surjective,	then	 	 	 	is	bijective.	[Hint:	Use	the	result	of	Exercise	2(b).]

5. 	 Suppose	that	f	:	A	→	B	is	a	function;	let	C	⊆	A.
a) 	 Prove	that	 {	 [	 ]}	=	 .
b) 	 Use	the	result	of	(a)	to	prove	that	 	 	 	 	 	=	 .

6. 	 Let	f	:	A	→	B	be	a	function.	Prove	the	following:
a) 	 If	f	is	injective,	then	 	is	injective.
b) 	 If	f	is	surjective,	then	 is	surjective.
c) 	 If	f	is	bijective,	then	 is	bijective.

7. 	 Let	f	:	A	→	B	be	a	function.	Prove	the	following:
a) 	 If	f	is	injective,	then	 	is	surjective.
b) 	 If	f	is	surjective,	then	 	is	injective.
c) 	 If	f	is	bijective,	then	 	is	bijective.

8. 	 Let	f	:	A	→	B	be	a	function.	Prove	that

for	every	pair	of	subclasses	C	⊆	A	and	D	⊆	A	if	and	only	if	f	is	injective.
9. 	 Suppose	that	f	:	A	→	B	is	a	function,	C	⊆	B	and	D	⊆	B.	Prove	that

10. 	 Let	f	:	A	→	B	be	a	function.	Prove	each	of	the	following:
a) 	 If	C	⊆	A	and	D	⊆	A,	then	 −	 (D)	⊆	 (C	−	D).
b) 	 −	 (D)	⊆	 (C	 −	D)	 for	 every	 pair	 of	 subclasses	C	⊆	A	 and	D	⊆	A	 if	 and	 only	 if	 f	 is

injective.

5	PRODUCT	OF	A	FAMILY	OF	CLASSES

In	the	beginning	of	Chapters	1	we	spoke	of	the	union	and	intersection	of	two	classes;	later,	we	extended
this	notion	by	defining	the	union	and	intersection	of	an	arbitrary	family	of	classes.	 In	much	the	same
manner,	we	will	now	extend	the	notion	of	the	Cartesian	product	of	two	classes	by	defining	the	product



of	a	family	of	classes.
The	product	of	two	classes	A	and	B	has	been	defined	to	be	the	class	A	×	B	of	all	ordered	pairs	(x,	y),

where	x	∈	A	and	y	∈	B.	This	definition	may	be	extended,	in	a	natural	way,	to	a	finite	number	of	classes
A1,A2,	…,	An;	we	may	 define	 the	 product	A1	 ×	A2	 ×…×	An	 to	 be	 the	 class	 of	 all	 “ordered	n-tuples”
(a1,a2,	…,	an),	where	ai	∈	Ai	for	each	index	i	=	1,	2,	…,	n.	Now,	we	wish	to	extend	this	concept	to	the
case	of	an	indexed	family	of	classes,	{Ai}i∈I	,	where	the	index	class	I	is	any	class	whatsoever.	Evidently
we	 cannot	 speak	 of	 “I	 -tuples”	 of	 elements,	 because	 I	 may	 be	 an	 infinite	 class	 and	 may	 fail	 to	 be
ordered;	therefore,	we	must	alter	our	approach	to	the	problem.
Let	us	take	another	look	at	the	product	A1	×	A2	×…×	An.	Clearly	{A1,A2,	…,	An}	is	a	family	whose

index	class	is	I	={1,	2,	…,	n}.	Now,	an	ordered	n-tuple	may	be	regarded	as	a	function	(whose	domain	is
I)	which	maps	 each	 element	 i	∈	 I	 onto	an	 element	 ai	 in	Ai.	 Indeed,	 if	 f	 is	 such	 a	 function,	 then	 f	 is
described	by	the	following	table.

Using	 the	 table,	we	may	 construct	 the	 ordered	n-tuple	 (a1,a2,	…,	 an);	 conversely,	 if	we	 are	 give	 the
ordered	n-tuple	(a1,a2,	…,	an),	 then	we	may	construct	the	table;	(in	fact,	 the	ordered	n-tuple	 is	simply
the	table	presented	as	a	horizontal	array).	Thus,	the	function	f	and	the	ordered	n-tuple	(a1,a2,	…,	an)	are,
essentially,	 one	 and	 the	 same	 thing.	 This	 simple	 observation	 leads	 to	 the	 following	 definition	 of	 the
product	of	a	family	of	classes.

2.32	Definition	Let	{Ai}i∈I	be	an	indexed	family	of	classes;	let

The	product	of	the	classes	Ai	is	defined	to	be	the	class

2.33	Example	Let	I	={1,	2},	A1	={a,	b},	and	A2	={c,	d}.	By	2.32,	 consists	of	all	the	functions	f	:{1,
2}→{a,	b,	c,	d}	such	that	f(1)	∈	A1	and	f(2)	∈	A2.	There	are	four	such	functions,	given	by	the	following
tables.



We	 may	 identify	 these	 four	 functions	 with	 the	 four	 ordered	 pairs	 (a,	 c),	 (a,	 d),	 (b,	 c),	 and	 (b,	 d),
respectively.	Thus	 	is	exactly	A1	x	A2.

We	adopt	the	following	notational	convention:	henceforth,	we	will	designate	elements	of	a	product	
	by	bold	face	letters	a,	b,	c,	etc.

If	a	is	an	element	of	 	and	j	∈	I	,	we	agree	that	aj	will	have	the	same	meaning	as	a(j);	we	will	call
aj	the	j-coordinate	of	a.
Let	{Ai}i∈I	be	an	indexed	family,	and,	for	each	i	∈	I	,	let	xi	∈	Ai.	We	will	use	the	symbol	{xi}i∈I	to

designate	the	element	in	 whose	i-coordinate,	for	each	i	∈	I	,is	xi.
Let	A	=	 ;	corresponding	to	each	index	i	∈	I	,	we	define	a	function	pi	from	A	to	Ai	by

The	function	pi	is	called	the	i-projection	of	A	to	Ai.

2.34	Definition	If	A	and	B	are	arbitrary	classes,	the	symbol	BA	refers	to	the	class	of	all	functions	from	A
to	B.
In	particular,	if	2	denotes	a	class	of	two	elements,	then	2A	denotes	the	class	of	all	functions	from	A	to

2.	The	following	is	an	important	result	which	will	be	used	in	a	later	chapter.

2.35	Theorem	If	A	is	a	set,	then	2A	and	 	are	in	one-to-one	correspondence.

Proof.	We	will	show	that	there	exists	a	bijective	function	γ	:	 	→	2A.	If	B	∈	 ,	let	CB	denote	the
characteristic	function	of	B	in	A	(see	2.13);	CB	is	an	element	of	2A.	We	define	γ	by

By	the	way	γ	is	defined,	it	is	clear	that	γ	maps	every	B	∈	 onto	a	uniquely	determined	element	of	2A;
hence	γ	:	 →	2A	is	a	function;	it	remains	to	show	that	γ	is	injective	and	surjective.
i) 	 Let	B,	D	∈	 ;if	γ(B)	=	γ(D),	then	CB	=	CD;	hence

that	B	=	D.	Thus	γ	satisfies	 .

ii) 	 If	f	∈	2A,	and	if	we	let	B	=	 (0),	then	f	=	CB	=	γ(B).	Thus	γ	satisfies	condition	SURJ.	

It	is	easy	to	show	that	if	A	and	B	are	sets,	then	AB	is	a	set	(see	Exercise	12,	Exercise	Set	2.5).	Using
this	fact,	it	can	easily	be	shown	that	if	{Ai}i∈I	is	an	indexed	family	of	sets	such	that	the	index	class	I	is	a
set,	then	 is	a	set	(see	Exercise	13,Exercise	Set	2.5,	and	Remark	2.38).

EXERCISES	2.5



1. 	 Let	A	={1,	2,	3},	B	={a,	b}.	Find	AB,BA,	2A,	and	 .
2. 	 Suppose	that	{Bi}i∈I	is	a	family	of	subclasses	of	A.	Prove	that

3. 	 Suppose	that	{Ai}i∈I	and	{Bi}i∈I	are	families	of	classes	with	the	same	index	class	I	.	Show	that	if	Ai
⊆	Bi,	∀i	∈	I	,	then

In	the	next	three	exercises	(Exercises	4,	5	and	6),	assume	the	following:

4. 	 Suppose	 that	 {Ai}i∈I	 and	{Bi}i∈I	 are	 families	 of	 nonempty	 classes	with	 the	 same	 index	 class	 I	 .
Prove	that	if

then	Ai	⊆	Bi	for	each	index	i.
5. 	 Suppose	that	{Ai}i∈I	and	{Bi}i∈I	are	families	of	classes	with	the	same	index	class	I	.	Prove	that

6. 	 Let	{Ai}i∈I	and	{Bj	}j∈J	be	families	of	classes.	Prove	the	following:

7. 	 Let	{Ai}i∈I	be	a	family	of	classes,	and	for	each	i	∈	I	,	let	Bi	be	a	subclass	of	Ai.	Prove	that

8. 	 Let	{Ai}i∈I	be	an	indexed	family,	and	let



If	B	⊆	A,	let	Bi	=	¯pi(B)	for	each	i	∈	I	.	Prove	that	B	⊆
9. 	 Prove	that	AC	∪	BC	⊆	(A	∪	B)C.
10. 	 Prove	that	(A	∩	B)C	=	AC	∩	BC.

11. 	 Prove	that	(A	−	B)C	=	AC	−	BC.

12. 	 Prove	that	if	A	and	B	are	sets,	then	AB	is	a	set.	[Hint:	Each	element	of	AB	is	a	subset	of	B	×	A.	Use
the	axioms	of	the	last	two	chapters	as	needed.]

13. 	 Let	{Ai}i∈I	be	an	indexed	family;	suppose	that	I	is	a	set,	that	each	Ai	is	a	set,	and	that	{Ai	:	i	∈	I	}	is
a	set.	Prove	that	is	a	set.	[Hint:	Use	the	results	of	Exercises	2	and	12.]

6	THE	AXIOM	OF	REPLACEMENT

Axioms	A3	through	A7	are	“set”	axioms,	that	is,	they	are	designed	for	the	purpose	of	establishing	the
properties	of	sets.	We	are	now	in	a	position	to	introduce	our	last	“set”	axiom.	This	axiom	is	motivated
by	the	following	considerations.
We	noted	earlier	that	we	are	to	think	of	a	set	as	a	class	which	is	“not	too	large.”	Now,	if	A	and	B	are

classes	and	f	:	A	→	B	 is	a	surjective	function,	 then,	 in	an	obvious	 intuitive	sense,	B	has	“as	many,	or
fewer	elements	than	A“	(see	Fig.	3).	Thus	if	A	is	“not	too	large”	and	f	:	A	→	B	is	a	surjective	function,	it
stands	to	reason	that	B	is	“not	too	large”.	These	remarks	lead	us	to	state	the	following	as	an	axiom.

A9.	If	A	is	a	set	and	f	:	A	→	B	is	a	surjective	function,	than	B	is	a	set.

Statement	A9	is	traditionally	called	the	axiom	of	replacement;	it	has	the	following	consequences.

2.36	If	A	is	a	set	and	A	is	in	one-to-one	correspondence	with	B,	then	B	is	a	set.

We	noted	on	page	47	that	Ø	is	a	set,	hence	by	Axiom	A5	{Ø,	Ø}	is	a	set,	that	is,	{Ø}	is	a	set.	Thus,	by
2.36,

2.37	every	singleton	is	a	set.

Since	the	union	of	two	sets	is	a	set,	it	follows	that	every	doubleton	is	a	set;	similarly,	every	class	of	three
elements	is	a	set,	every	class	of	four	elements	is	a	set,	and	so	on,	through	all	the	positive	integers.	Thus,
in	an	intuitive	sense,	every	finite	class	is	a	set.

2.38	Remark.	Let	{Ai}i∈I	be	an	indexed	family	of	sets,	where	the	index	class	I	is	a	set.	It	is	clear	that	the
function	φ	defined	by	φ(i)	=	Ai	is	a	surjective	function	from	I	to	{Ai	:	i	∈	I	};	thus	we	have

If	{Ai}i∈I	is	an	indexed	family	of	sets	and	I	is	a	set,	then	{Ai	:	i	∈	I	}	is	a	set.



3
Relations

1	INTRODUCTION

Intuitively,	 a	 binary	 relation	 in	 a	 class	A	 is	 a	 statement	R(x,	y)	which	 is	 either	 true	 or	 false	 for	 each
ordered	pair	(x,	y)	of	elements	of	A.	For	instance,	the	relation	“x	divides	y,”	which	we	may	write	D(x,	y),
is	a	relation	in	the	class	 	of	the	integers:	D(x,	y)	is	true	for	every	pair	(x,	y)	of	integers	such	that	y	is	a
multiple	of	x;	it	is	false	for	every	other	pair	of	integers.
The	representing	graph	of	a	relation	in	A	is	a	graph	G	⊆	A	×	A	which	consists	of	all	the	pairs	(x,	y)

such	that	R(x,	y)	 is	 true.	Conversely,	 if	we	are	given	an	arbitrary	graph	G	⊆	A	×	A,	 then	G	defines	a
relation	in	A,	namely	the	relation	R	such	that	R(x,	y)	is	true	if	and	only	if	(x,	y)	∈	G.
Thus,	 as	we	 did	 in	 the	 case	 of	 functions,	we	 are	 able	 to	 identify	 relations	with	 their	 representing

graphs.	In	this	way	the	study	of	relations	is	part	of	elementary	set	theory.

2	FUNDAMENTAL	CONCEPTS	AND	DEFINITIONS

3.1	Definition	Let	A	be	a	class;	by	a	relation	in	A	we	mean	an	arbitrary	subclass	of	A	×	A.

3.2	Definition	Let	G	be	a	relation	in	A;	then

G	is	called	reflexive	if

G	is	called	symmetric	if

G	is	called	anti-symmetric	if

G	is	called	transitive	if

3.3	Definition	The	diagonal	graph	IA	is	defined	to	be	the	class	{(x,	x)	:	x	∈	A}.
It	is	easy	to	see	that	G	is	reflexive	if	and	only	if	IA	⊆	G.

There	is	a	variety	of	interesting	and	useful	alternative	ways	of	defining	the	above	notions.	Some	are
given	in	the	next	theorem.



3.4	Theorem	Let	G	be	a	relation	in	A.

i) 	G	is	symmetric	if	and	only	if	G	=	G−1.

ii) 	G	is	antisymmetric	if	and	only	if	G	∩	G−1	⊆	IA.
iii) 	G	is	transitive	if	and	only	if	 ⊆	G.

Proof

i) 	 Suppose	G	is	symmetric.	Then

thus	G	=	G−1.	Conversely,	suppose	G	=	G−1.	Then

ii) 	 Suppose	G	is	antisymmetric.	Then

Conversely,	suppose	that	G	∩	G−1	⊆	IA.	Then

ii) 	 Suppose	G	is	transitive.	Then
(x,	y)	∈	 ⇒∃z	(x,	z)	∈	G	and	(z,	y)	∈	G	⇒	(x,	y)	∈	G.	Thus	 .
Conversely,	suppose	 :	Then	(x,	y)	∈	G	and	(y,	z)	∈	G	⇒	(x,	z)	∈	 ⊆	G.	

3.5	Definition	A	relation	is	called	an	equivalence	relation	if	it	is	reflexive,	symmetric,	and	transitive.

A	relation	is	called	an	order	relation	if	it	is	reflexive,	antisymmetric,	and	transitive.

3.6	Definition	Let	G	be	a	relation	in	A.

G	is	called	irreflexive	if

G	is	called	asymmetric	if



G	is	called	intransitive	if

Examples	Let	 	designate	the	set	of	the	integers;	the	equality	relation	in	 	is	reflexive,	symmetric,	and
transitive;	 hence,	 it	 is	 an	 equivalence	 relation.	 The	 relation	 	 (“less	 than	 or	 equal	 to”)	 is	 reflexive,
antisymmetric,	and	transitive;	hence	it	is	an	order	relation.	The	relation	<	(“strictly	less	than”)	is	not	an
order	 relation:	 it	 is	 irreflexive,	asymmetric,	and	 transitive;	such	a	 relation	 is	called	a	 relation	of	strict
order.

EXERCISES	3.2

1.	Each	of	the	following	describes	a	relation	in	the	set	Z	of	the	integers.	State,	for	each	one,	whether	it
has	 any	 of	 the	 following	 properties:	 reflexive,	 symmetric,	 antisymmetric,	 transitive,	 irreflexive,
asymmetric,	 intransitive.	 Determine	 whether	 it	 is	 an	 equivalence	 relation,	 an	 order	 relation,	 or
neither.	Prove	your	answer	in	each	case.
a) 	G	=	{(x,	y)	:	x	+	y	<	3}.
b) 	G	=	{(x,	y)	:	x	divides	y}.
c) 	G	=	{(x,	y)	:	x	and	y	are	relatively	prime}.
d) 	G	=	{(x,	y)	:	x	+	y	is	an	even	number}.
e) 	G	=	{(x,	y)	:	x	=	y	or	x	=−y}.
f) 	G	=	{(x,	y)	:	x	+	y	is	even	and	x	is	a	multiple	of	y}.
g) 	G	=	{(x,	y)	:	y	=	x	+	1}.

2. 	 Let	G	be	a	relation	in	A;	prove	each	of	the	following:
a)	G	is	irreflexive	if	and	only	if	G	∩	I	=	Ø.
b)	G	is	asymmetric	if	and	only	if	G	∩	G−1	=	Ø.
c)	G	is	intransitive	if	and	only	if	( )	∩	G	=	Ø.

3. 	 Show	that	if	is	an	equivalence	relation	in	A,	then	 =	G.
4. 	 Let	{Gi}i∈I	be	an	indexed	family	of	equivalence	relations	in	A.	Show	that	 is	an	equivalence

relation	in	A.
5. 	 Let	{Gi}i∈I	be	an	indexed	family	of	order	relations	in	A.	Show	that 	order	relation	in	A.
6. 	 Let	H	be	a	reflexive	relation	in	A.	Prove	that	for	any	relation	G	in	A,	G	⊆	 	and	G	⊆	 .
7. 	 Let	G	and	H	be	relations	in	A;	suppose	that	G	is	reflexive	and	H	is	reflexive	and	transitive.	Show

that	G	⊆	H	if	and	only	if	 =	H.	(In	particular,	this	holds	if	G	and	H	are	equivalence	relations.)
8. 	 Show	that	the	inverse	of	an	order	relation	in	A	is	an	order	relation	in	A.
9. 	 Let	G	be	a	relation	in	A.	Show	that	G	is	an	order	relation	if	and	only	if	G	∩	G−1	=	IA	and	 =	G.

10. 	 Let	G	and	H	be	equivalence	relations	in	A.	Show	that	 is	an	equivalence	relation	 in	A	 if	and
only	if	 =	 .

11. 	 Let	G	and	H	be	equivalence	relations	in	A.	Prove	that	G	∪	H	is	an	equivalence	relation	in	A	if	and
only	if	 ⊆	G	∪	H	and	 ⊆	G	∪	H.

12. 	 Let	G	be	an	equivalence	relation	in	A.	Prove	that	if	H	and	J	are	reflexive	relations	in	A,	then	G	⊆	H
and	G	⊆	J	⇒	G	⊆	 .



3	EQUIVALENCE	RELATIONS	AND	PARTITIONS

In	 the	 remainder	 of	 this	 chapter	 we	 will	 concern	 ourselves	 with	 equivalence	 relations	 in	 sets.	 The
concepts	we	are	about	 to	 introduce	arise	naturally	 in	 terms	of	 sets,	but	 cannot	be	extended	 to	proper
classes;	 to	 understand	 why	 not,	 the	 reader	 should	 review	 our	 discussion	 in	 Section	 7	 of	 Chapter	 1.
Briefly,	if	A	is	a	set	and	P(X)	is	a	property,	then	by	1.52	it	is	legitimate	to	form	the	set	of	all	the	subsets
X	⊆	A	which	satisfy	P(X).	However,	if	A	were	an	arbitrary	class,	it	would	not	be	permissible	to	form	the
“class	of	all	subclasses	of	A	which	satisfy	P(X).”	This	restriction	compels	us	 to	confine	 the	following
discussion	to	sets.	Intuitively,	this	should	not	disturb	the	reader	too	much,	for	a	set	is	almost	the	same
thing	as	a	class:	a	set	is	any	class	except	an	“excessively	large”	one.

3.7	Definition	Let	A	be	a	set;	by	a	partition	of	A	we	mean	a	family	{Ai}i∈I	of	nonempty	subsets	of	A
with	the	following	properties:

P1.	∀i,	j	∈	I,	Ai	∩	Aj	=	Ø	or	Ai	=	Aj	.

Intuitively,	 a	 partition	 is	 a	 family	 of	 subsets	 of	A	which	 are	 disjoint	 from	one	 another,	 and	whose
union	is	all	of	A	(Fig.	1).	The	subsets	are	called	the	members	of	the	partition.	It	is	customary	to	allow	a
given	member	of	the	partition	to	be	designated	by	more	than	one	index;	that	is,	we	may	have	Ai	=	Aj	 ,
where	i	≠	j.	Hence	the	condition	that	two	distinct	members	be	disjoint	is	correctly	expressed	by	P1.

Fig.1

Property	P1	states	that	any	two	members	Ai	and	Aj	are	either	disjoint	or	equal;	that	is,	they	have	either
no	elements	in	common	or	all	their	elements	in	common;	in	other	words,	if	they	have	so	much	as	one
element	in	common,	they	have	all	their	elements	in	common.	Thus,	P1	may	also	be	stated	as	follows:

. 	 If	∃x	∈	Ai	∩	Aj	,	then	Ai	=	Aj	.

P2 	 may	be	replaced	by	the	simpler	condition

P2′.	

For,	 independently	 of	 Condition	 P2,	 we	 are	 given	 that	 each	Ai	 is	 a	 subset	 of	A;	 hence,	 by	 1,40(i),



.	Consequently,	it	is	sufficient	to	state	P2′	in	order	to	have	 .	It	is	convenient	to	write
P2′	in	the	form.

. 	 If	x	∈	A,	then	x	∈	Ai	for	some	i	∈	I.

Briefly,	then,	a	partition	of	A	is	a	family	{Ai}i∈I	of	nonempty	subsets	of	A	such	that

. 	 If	∃x	∈	Ai	∩	Aj	then	Ai	=	Aj	and

. 	 If	x	∈	A,	then	x	∈	Ai	for	some	i	∈	I.

Examples	of	partitions	are	given	in	the	exercises	which	follow	this	section.
The	results	which	follow	state	the	connection	between	equivalence	relations	in	A	and	partitions	of	A.

They	are	of	great	importance	in	many	branches	of	mathematics.
Let	G	be	an	equivalence	relation	in	A;	we	will	sometimes	write	 	instead	of	(x,	y)	∈	G,	and	say

that	“x	is	equivalent	to	y	modulo	G;”	when	there	is	no	danger	of	ambiguity,	we	will	write	simply	x	∼	y
and	say	that	“x	is	equivalent	to	y.”	Note	that	since	G	is	an	equivalence	relation	in	A,we	have
i) 	 x	∼	x,	∀x	∈	A.
ii) 	 x	∼	y	⇒	y	∼	x.
iii) 	 x	∼	y	and	y	∼	z	⇒	x	∼	z.

3.8	Definition	Let	A	be	a	set	and	let	G	be	an	equivalence	relation	in	A.	If	x	∈	A,	then	the	equivalence
class	of	x	modulo	G	is	the	set	Gx	defined	as	follows:

In	 other	words,	Gx	 is	 the	 set	 of	 all	 the	 element	 of	A	which	 are	 equivalent	 to	 x.	 In	 the	mathematical
literature,	Gx	is	also	denoted	by	the	symbols	Ax,	[x],x/G.

3.9	Lemma	Let	G	be	an	equivalence	relation	in	A.	Then

Proof
i) 	 Suppose	x	∼	y;we	have

We	have	shown	that	Gx	⊆	Gy;	analogously,	Gy	⊆	Gx;	hence	Gx	=	Gy.
ii) 	 Suppose	Gx	=	Gy;	by	the	reflexive	property,	x	∼	x,so	x	∈	Gx;but	Gx	=	Gy;	hence	x	∈	Gy,	that	is,	x	∼

y.	



3.10	Theorem	Let	A	be	a	set,	let	G	be	an	equivalence	relation	in	A,	and	let	{Gx}x∈A	be	the	family	of	all
the	equivalence	classes	modulo	G.	Then

Proof.	By	definition,	each	Gx	is	a	subset	of	A;	it	is	nonempty	because	x	∼	x,	hence	x	∈	Gx.	It	remains	to
prove	that	 and	 	hold.

( ) 	 z	∈	Gx	∩	Gy	⇒	z	∈	Gx	and	z	∈	Gy	⇒	z	∼	x	and	z	∼	y	⇒	x	∼	z	and	z	∼	y	⇒	x	∼	y	⇒	Gx	=	Gy	(the
last	implication	follows	by	3.9).

( ) 	 If	x	∈	A,	then	by	the	reflexive	property	x	∼	x;	hence	x	∈	Gx.	

If	G	is	an	equivalence	relation	in	A,	and	{Gx}x∈A	is	the	family	of	all	the	equivalence	classes	modulo
G,	then	{Gx}x∈A	is	referred	to	as	the	partition	induced	by	G,	or	the	partition	corresponding	to	G.
Theorem	3.10	has	an	important	converse,	which	follows.

3.11	Theorem	Let	A	be	a	set,	 let	{Ai}i∈I	be	a	partition	of	A,	and	let	G	be	 the	set	of	all	pairs	(x,	y)	of
elements	of	A	such	that	x	and	y	are	in	the	same	member	of	the	partition;	that	is,

Then	G	 is	 an	 equivalence	 relation	 in	 A,	 and	 {Ai}i∈I	 is	 the	 partition	 induced	 by	G.	G	 is	 called	 the
equivalence	relation	corresponding	to	{Ai}i∈I	.

Proof

G	is	reflexive:	x	∈	A	⇒	x	∈	Ai	for	some	i	∈	I	⇒	x	∈	Ai	and	x	∈	Ai	⇒	(x,	x)	∈	G.
G	is	symmetric	:	(x,	y)	∈	G	⇒	x	∈	Ai	and	y	∈	Ai	⇒	y	∈	Ai	and	x	∈	Ai	⇒	(y,	x)	∈	G.
G	is	transitive:	(x,	y)	∈	G	and	(y,	z)	∈	G	⇒	x	∈	Ai	and	y	∈	Ai	and	y	∈	Aj	and	z	∈	Aj	⇒	Ai	=	Aj	(because	y
∈	Ai	∩	Aj	)	⇒	x	∈	Ai	and	z	∈	Ai	⇒	(x,	z)	∈	G.
Finally,	each	Ai	is	an	equivalence	class	modulo	G;	for	suppose	x	∈	Ai;	then	y	∈	Ai	⇔	(y,	x)	∈	G	⇔	y	∈
Gx;	thus	Ai	=	Gx.	

The	 last	 two	theorems	make	 it	clear	 that	every	equivalence	relation	 in	A	corresponds	uniquely	 to	a
partition	 of	 A,	 and	 conversely.	 Once	 again:	 if	 we	 are	 given	 a	 partition	 of	 A,	 the	 corresponding
equivalence	relation	 is	 the	 relation	which	calls	elements	x	and	y	 “equivalent”	 if	 they	are	 in	 the	 same
member	of	the	partition.	Looking	at	the	other	side	of	the	coin,	if	we	are	given	an	equivalence	relation	in
A,	 the	 corresponding	 partition	 is	 the	 one	 which	 puts	 elements	 x	 and	 y	 in	 the	 same	 member	 of	 the
partition	iff	they	are	equivalent.	The	reader	should	note	that	G	is	the	equivalence	relation	corresponding
to	{Ai}i∈I	if	and	only	if	{Ai}i∈I	is	the	partition	corresponding	to	G.

3.12	Example	Let	A	={a,	b,	c,	d,	e};	let	A1	={a,	b},	A2	={c,	d}	and	A3	={e}.	Let	G	={(a,	a),	(b,	b),	(c,
c),	(d,	d),	(e,	e),	(a,	b),	(b,	a),	(c,	d),	(d,	c)}.	It	is	easy	to	see	that	{A1,A2,A3}	is	a	partition	of	A	(see	Fig.
2),	and	that	G	is	an	equivalence	relation	in	A;	G	is	the	equivalence	relation	corresponding	to	{A1,A2,A3},



and	{A1,A2,A3}	is	the	partition	corresponding	to	G.	It	should	be	noted	that	A1	=	Ga	=	Gb,	A2	=	Gc	=	Gd,
and	A3	=	Ge.

Fig.2

If	G	 is	an	equivalence	relation	 in	set	A,	 then	 the	set	of	equivalence	classes	modulo	G	 is	called	 the
quotient	set	of	A	by	G,	and	is	customarily	denoted	by	A/G.	Thus,	in	the	preceding	example,	A/G	is	the
set	 of	 three	 elements	 {Ga,Gc,Ge}.	 The	 concept	 of	 a	 quotient	 set	 plays	 a	 vital	 role	 in	many	 parts	 of
advanced	mathematics.

EXERCISES	3.3

1. 	 Let	 	be	the	set	of	the	integers.	For	each	integer	n,	let	Bn	={m	∈	 	 :∃q	m	=	n	+	5q}.	Prove	 that
{Bn}n∈ 	is	a	partition	of	 .

2. 	 Let	 	be	the	set	of	the	real	numbers.	In	each	of	the	following,	prove	that	{Br}r∈ 	is	a	partition	of	
×	 .	 Describe	 geometrically	 the	 members	 of	 this	 partition.	 Find	 the	 equivalence	 relation
corresponding	to	each	partition.
a)	Br	={(x,	y)	:	y	=	x	+	r}	for	each	r	∈	 ,

b)	Br	={(x,	y)	:	x2	+	y2	=	r}	for	each	r	∈	 .

[Hint:	y	=	x	+	r	is	the	equation	of	a	line	and	x2	+	y2	=	r	is	the	equation	of	a	circle.]
3. 	 Let	 	be	the	set	of	the	real	numbers.	Prove	that	each	of	the	following	is	an	equivalence	relation	in	

×	 :
a)	G	={[(a,	b),	(c,	d)]:	a2	+	b2	=	c2	+	d2}.
b)	H	={[(a,	b),	(c,	d)]:	b	−	a	=	d	−	c}.
c)	J	={[(a,	b),	(c,	d)]:	a	+	b	=	c	+	d}.
Find	the	partition	corresponding	to	each	of	these	equivalence	relations,	and	describe	geometrically
the	members	of	this	partition.	[Hint	for	(b):	If	b	−	a	=	d	−	c	=	k,	note	that	[(a,	b),	(c,	d)]∈	H	if	and
only	if	(a,	b)	and	(c,	d)	both	satisfy	the	equation	y	=	x	+	k.	Hint	for	(c):	If	a	+	b	=	c	+	d	=	k,	note
that	[(a,	b),	(c,	d)]∈	J	if	and	only	if	(a,	b)	and	(c,	d)	both	satisfy	the	equation	y	=−x	+	k.]

4. 	 If	H	and	J	 are	 the	 equivalence	 relations	of	Exercise	 3,	 describe	 the	 equivalence	 relation	H	∩	J.
Describe	the	equivalence	classes	modulo	H	∩	J.

5. 	 Let	H	and	J	be	the	equivalence	relations	of	Exercise	3.	Prove	that	 =	 ;	conclude	that	
is	an	equivalence	relation,	and	describe	the	equivalence	classes	modulo	 .[Hint:	See	Exercise
10,	Exercise	Set	3.2.]

6. 	 Let	L	be	the	set	of	all	the	straight	lines	in	the	plane.	Let	G	and	H	be	the	following	relations	in	L:
G	={(ℓ1,ℓ2)	:ℓ	1	is	parallel	to	ℓ2},	H	={ℓ1,	ℓ2):	ℓ1	is	perpendicular	to	ℓ2}.
Prove	the	following	(argue	informally):



a)	G	is	an	equivalence	relation	in	L.
b)	 =	H	and	 =	H.
c)	G	∪	H	is	an	equivalence	relation;	describe	its	equivalence	classes.

7. 	 Let	A	 be	 an	 arbitrary	 set.	 Prove	 that	 IA	 and	A	 ×	A	 are	 equivalence	 relations	 in	A.	 Describe	 the
partitions	induced,	respectively,	by	IA	and	A	×	A.

8. 	 Let	{Ai}i∈I	be	a	partition	of	A	and	let	{Bj	}j∈J	be	a	partition	of	B.	Prove	that	{Ai	×	Bj	}(i,j)∈I×J	is	a
partition	of	A	×	B.

9. 	 Suppose	f	:	A	→	B	is	a	surjective	function,	and	{Bi}i∈I	is	a	partition	of	B.	Prove	that	{	 (Bi)}i∈I	is	a
partition	of	A.

10. 	 Suppose	f	:	A	→	B	is	an	injective	function,	and	{Ai}i∈I	is	a	partition	of	A.	Prove	that	{	 (Ai)}i∈I	is	a
partition	of	 (A).

11. 	 Let	G	and	H	be	equivalence	relations	in	A.	Prove	that	each	equivalence	class	modulo	G	∩	H	is	the
intersection	of	an	equivalence	class	modulo	G	with	an	equivalence	class	modulo	H.	More	exactly,

12. 	 Let	G	and	H	be	equivalence	relations	in	A,	and	assume	that	G	∪	H	is	an	equivalence	relation	in	A.
Prove	 that	each	equivalence	class	modulo	G	∪	H	 is	 the	union	of	an	equivalence	class	modulo	G
with	an	equivalence	class	modulo	H.	More	exactly,

4	PRE-IMAGE,	RESTRICTION	AND	QUOTIENT	OF	EQUIVALENCE
RELATIONS

3.13	Definition	Let	f	:	A	→	B	be	a	function,	and	let	G	be	an	equivalence	relation	in	B.	The	pre-image	of
G	under	f	is	a	relation	in	A	defined	as	follows:

It	is	simple	to	show	that	 (G)	is	an	equivalence	relation	in	A.

3.14	Definition	Let	G	 be	 an	 equivalence	 relation	 in	A	 and	 let	B	⊆	A.	The	 restriction	of	G	 to	B	 is	 a
relation	in	B	defined	as	follows:

It	is	simple	to	show	that	G[B]	is	an	equivalence	relation	in	B.

3.15	Definition	Let	G	and	H	be	equivalence	relations	in	A.	We	call	G	a	refinement	of	H	if	G	⊆	H	;	we
also	say	that	G	is	finer	than	H	,	and	that	H	is	coarser	than	G.

3.16	Theorem	Let	G	and	H	be	equivalence	relations	in	A;	suppose	G	⊆	H.	Then	z	∈	Hx	⇒	Gz	⊆	Hx.



Proof.	Suppose	z	∈	Hx	,	that	is	(z,x)∈	H;	then	we	have

Thus	Gz	⊆	Hx.	

3.17	Corollary	If	G	⊆	H	,	then	for	each	x	∈	A,	Gx	⊆	Hx.

This	follows	immediately	from	3.16	and	the	fact	that	x	∈	Hx.

It	follows	from	3.16	that	if	G	is	a	refinement	of	H	 ,	then	each	equivalence	class	modulo	H	 is	an
union	of	equivalence	classes	modulo	G.	Indeed,	if	Hx	 is	an	equivalence	class	modulo	H	and	z	∈	Hx,
then,	by	3.16,	Hx	contains	the	whole	class	Gz;	in	other	words,	Hx	contains	only	whole	classes	modulo	G.

3.18	Definition	Let	G	and	H	be	equivalence	relations	 in	a	set	A	and	 let	G	be	a	 refinement	of	H.	The
quotient	of	H	by	G,	which	is	usually	denoted	by	H/G,is	a	relation	in	A/G	defined	as	follows:

3.19	Theorem	H/G	is	an	equivalence	relation	in	A/G:

Proof

H/G	is	reflexive:	For	each	equivalence	class	Gx,	(x,	x)	∈	H	because	H	is	reflexive;	thus,	by	3.18,	(Gx,Gx)
∈	H/G.

H/G	is	symmetric:	(Gx,Gy)	∈	H/G	⇒	(x,	y)	∈	H	⇒	(y,	x)	∈	H	⇒	(Gy,Gx)	∈	H/G.

H/G	 is	 transitive:	 (Gx,Gy)	∈	H/G	 and	 (Gy,Gz)	∈	H/G	⇒	 (x,	y)	∈	H	 and	 (y,	z)	∈	H	⇒	 (x,	 z)	∈	H	⇒
(Gx,Gz)	∈	H/G.	

Since	H/G	is	an	equivalence	relation	in	A/G,	we	may	write	Gx	∼H/G	Gy	 instead	of	(Gx,Gy)	∈	H/G.
Thus	Definition	3.18	may	be	written	in	the	more	suggestive	form

The	reader	may	easily	verify	that	 	if	and	only	if	Gx	and	Gy	are	subsets	of	the	same	equivalence
class	modulo	H.

3.21	Example	Let	A	and	G	be	defined	as	in	Example	3.12;	let

It	is	obvious	that	G	is	a	refinement	of	H.	The	partition	of	A	induced	by	H	is	{Ha,Hc},	where	Ha	={a,	b}



and	Hc	={c,	 d,	 e}	 (see	Fig.	 3).	 The	 reader	will	 note	 that	 each	 class	modulo	H	 is	 a	 union	 of	 classes
modulo	G.	Now	A/G	={Ga,Gc,Ge};by	3.18,	H/G	is	the	following	relation	in	A/G:

Fig.3

Note,	for	instance,	that	 .	The	partition	of	A/G	induced	by	H/G	is	illustrated	in	Fig.	4.	In	particular,
(A/G)/(H/G)	is	the	set	{α,	β},	where	α	={Ga}	and	β	=	{Gc,Ge}.

Fig.4

EXERCISES	3.4

1. 	 Let	A	={a,	b,	c,	d,	e,	f	},	and	let	G	and	H	be	the	following	equivalence	relations	in	A:

Clearly	H	is	a	refinement	of	G.	Exhibit	the	sets	A/G,	A/H,	G/H,	(A/H	)/	(G/H	).
2. 	 Let	 	be	the	set	of	the	real	numbers,	and	let	G	be	the	following	relation	in	 	×	 :

Let	 f	 :	 	→	 	 ×	 	 be	 the	 function	 given	 by	 f(x)	 =	 (sin	 x,	 cos	 x).	 Describe	 	 (G);	what	 are	 its
equivalence	classes?

3. 	 Let	 f	 :	A	→	B	 be	 a	 function	 and	 let	G	 be	 an	 equivalence	 relation	 in	B.	 Prove	 that	 (G)	 is	 an
equivalence	relation	in	A.

4. 	 Let	f	:	A	→	B	be	a	function	and	let	G	be	an	equivalence	relation	in	B.	Prove	that	each	equivalence
class	modulo	 (G)	is	the	inverse	image	of	an	equivalence	class	modulo	G.	More	precisely,	if	H	=	
(G)	and	y	=	f(x),	prove	that	Hx	=	 (Gy).

5. 	 Let	G	be	an	equivalence	relation	in	A	and	suppose	that	B	⊆	A.	Prove	that	G[B]	 is	an	equivalence
relation	in	B.

6. 	 Let	G	be	an	equivalence	relation	in	A	and	suppose	B	⊆	A.	Prove	that	for	each	x	∈	B,	(G[B])x	=	Gx	∩
B.



7. 	 Let	G,	H	,	and	J	be	equivalence	relations	in	A,	and	suppose	that	G	⊆	H	and	H	⊆	J.	Prove	that	H/G
is	finer	than	J/G.

8. 	 Let	G,	H	,	and	J	be	equivalence	relations	in	A,	and	suppose	that	G	⊆	H	and	H	⊆	J.	Prove	each	of
the	following.
a)	G	⊆	 .
b)	If	 is	an	equivalence	relation	in	A,	then	(H/G)	 	(J	/G)	=	(H	 	J)/G.
c)	(H/G)	 	(J	/G)	is	an	equivalence	relation	in	A/G.

9. 	 Suppose	that	G	and	H	are	equivalence	relations	 in	A,	and	 that	G	⊆	H.	Prove	 that	 	 if	and
only	if	Gx	and	Gy	are	subsets	of	the	same	equivalence	class	modulo	H.

10. 	 Suppose	that	G	is	an	equivalence	relation	in	A,	and	H	is	an	equivalence	relation	in	B.
The	product	of	G	and	H	is	defined	to	be	the	following	in	A	×	B:

Prove	that	G	•	H	is	an	equivalence	relation	in	A	×	B.
11.	Prove	that	every	equivalence	relation	in	a	set	A	is	the	pre-image	of	an	equivalence	relation	in	A	×	A.

[Hint:	Let	f	:	A	→	A	×	A	be	the	function	given	by	f(x)	=	(x,	x);if	G	 is	a	relation	in	A,	consider	the
relation	G	•	G	(see	Exercise	10)	in	A	×	A.]

12.	Let	f	:	A	→	B	be	a	function	and	let	G	be	an	equivalence	relation	in	B.	Prove	that	 .

5	EQUIVALENCE	RELATIONS	AND	FUNCTIONS

If	f	:	A	→	B	is	a	function,	we	define	a	relation	G	in	A	as	follows:

It	is	easy	to	see	that	G	is	an	equivalence	relation	in	A,	G	is	called	the	equivalence	relation	determined	by
f.

Conversely,	if	G	is	an	equivalence	relation	in	a	set	A,	we	define	a	function	f	:	A	→	A/G	as	follows:

It	is	easy	to	see	that	f	is	a	function;	f	is	called	the	canonical	function	from	A	to	A/G.

3.22	Theorem	Let	G	be	an	equivalence	relation	in	a	set	A.	If	f	is	the	canonical	function	from	A	to	A/G,
then	G	is	the	equivalence	relation	determined	by	f.

Proof.	Let	f	be	the	canonical	function	from	A	to	A/G,	and	let	H	be	the	equivalence	relation	determined
by	f	;	we	will	prove	that	G	=	H	:

Let	A	and	B	be	sets	and	let	f	:	A	→	B	be	a	function;	we	will	define	 three	functions	r,	s,	 t,	obtained
from	 f	 ,	 which	 play	 an	 important	 role	 in	 many	 mathematical	 arguments.	 Let	G	 be	 the	 equivalence
relation	determined	by	f	:



r	:	A	→	A/G	is	the	canonical	function	from	A	to	A/G.
s	:	A/G	→	 (A)	is	the	function	given	by	s(Gx)	=	f(x),	∀x	∈	A.
t	:	 (A)	→	B	is	the	function	given	by	t(y)	=	y,	∀y	∈	 (A).

Note	that	t	is	the	inclusion	function	of	 (A)	in	B	(see	2.12).

3.23	Theorem	 Let	A	 and	B	 be	 sets,	 let	 f	 :	A	→	B	 be	 a	 function,	 let	G	 be	 the	 equivalence	 relation
determined	by	f	 ,	and	let	r,	s,	t	be	the	functions	defined	above.	Then	r	 is	surjective,	s	 is	bijective,	 t	 is
injective,	and	f	=	 .

Proof
i) 	 If	Gx	∈	A/G,	then	x	∈	A	and	r(x)	=	Gx;	thus	r	is	surjective.
ii) 	 If	f(x)	∈	 (A),	then	x	∈	A,	Gx	∈	A/G,	and	f(x)	=	s(Gx);	thus	s	is	surjective.
iii) 	 s(Gx)	=	s(Gy)	⇒	f(x)	=	f(y)	⇒	(x,	y)	∈	G	⇒	Gx	=	Gy;	thus	s	is	injective.
iv) 	 t(y1)	=	t(y2)	⇒	y1	=	y2;	thus	t	is	injective.
v) 	 Let	x	∈	A;	t{s[r(x)]}	=	t[s(Gx)]=	t(f	(x))	=	f(x);	thus

so	by	2.5,	 	=	f.	

We	may	sum	up	the	foregoing	results	by	saying	that	any	function	 f	:	A	→	B	can	be	expressed	as	a
composite	of	 three	functions	r,	s,	 t	which	are,	 respectively,	 surjective,	bijective,	 and	 injective.	This	 is
referred	to	as	the	canonical	decomposition	of	f	,	and	it	is	customarily	exhibited	in	a	diagram	such	as	the
following:

One	of	 the	results	of	3.23	 is	especially	useful;	namely,	 that	 if	 f	 :	A	→	B	 is	a	 function	and	G	 is	 the
equivalence	 relation	 determined	 by	 f	 ,	 then	A/G	 and	 (A)	 are	 in	 one-to-one	 correspondence.	 This	 is
customarily	expressed	by	writing	A/G	≈	 (A).	In	particular,

3.24	if	f	is	surjective,	then	A/G	≈	B.

Let	A	and	B	be	sets,	let	f	:	A	→	B	be	a	function,	and	let	H	be	the	equivalence	relation	determined	by	f.
Let	G	be	any	equivalence	relation	in	A	which	is	finer	 than	H.	We	define	a	function	from	A/G	 to	B	as
follows:

It	is	easy	to	see	that	f/G	is	a	function	from	A/G	to	B;	f/G	is	called	the	quotient	of	f	by	G.

3.26	Theorem	Let	f	:	A	→	B	be	a	function,	let	H	be	the	equivalence	relation	determined	by	f	,	and	let	G
be	a	refinement	of	H.	Then	H/G	is	the	equivalence	relation	determined	by	f/G.



Proof.	Let	J	be	the	equivalence	relation	determined	by	f/G;	we	will	prove	that	J	=	H/G.	Indeed,

As	an	example	of	the	use	of	Theorem	3.26,	consider	the	following	situation:	G	and	H	are	equivalence
relations	in	A,	G	⊆	H	,	f	is	the	canonical	function	from	A	to	A/H	(hence,	by	3.22,	H	is	the	equivalence
relation	determined	by	 f	 ).	Thus,	by	3.25,f/G	 is	a	function	from	A/G	to	A/H	 ,	and	by	3.26,	H/G	 is	 the
equivalence	relation	determined	by	 f/G.	 It	 is	easy	 to	see	 that	 f/G	 is	 surjective,	because	 f	 is	surjective.
Therefore,	by	3.24,

EXERCISES	3.5

1. 	 Let	f	:	A	→	B	be	a	surjective	function,	let	G	be	the	equivalence	relation	induced	by	f	,	and	let	H	be
an	equivalence	relation	in	A	which	is	coarser	than	G.	Define	the	image	of	H	as	follows:

Prove	that	 (H)	is	an	equivalence	relation	in	B.
2. 	 Let	f	:	A	→	B	be	a	surjective	function,	and	let	G	be	the	equivalence	relation	induced	by	f.	Let	J	be

any	equivalence	relation	in	B.	Prove	that
a)	 (J)	is	coarser	than	G.
b)	H	=	 (J)	if	and	only	if	J	=	 (H).	(See	Exercise	1	above.)
Conclude	that	there	exists	a	one-to-one	correspondence	between	the	equivalence	relations	in	B	and
the	equivalence	relations	in	A	which	are	coarser	than	G.

3. 	 Let	f	:	A	→	B	be	a	function,	and	let	G	be	the	equivalence	relation	determined	by	f.	Prove	that	G	=	f
−1	 	f.

4. 	 Let	f	:	A	→	B	and	g	:	B	→	C	be	functions,	and	let	G	be	the	equivalence	relation	determined	by	g.
Prove	that	 (G)	is	the	equivalence	relation	determined	by	g	 	f.

5. 	 Let	G	and	H	be	equivalence	relations	in	a	set	A,	and	suppose	that	G	⊆	H.	Let	f	be	 the	canonical
function	from	A	to	A/G.	Prove	that	H/G	=	 (H).	(See	Exercise	1.)

6. 	 Let	G	and	H	be	equivalence	relations	in	A,	and	suppose	that	G	⊆	H.	Let	f	be	the	canonical	function
from	A	to	A/G,	and	let	g	be	the	canonical	function	from	A	to	A/H.	Let	h	=	g/G.	Prove	that	g	=	 .

7. 	 Let	G	and	H	be	equivalence	relations	in	A,	and	suppose	that	G	⊆	H	.	If	f	is	the	canonical	function
from	A	to	A/G,	prove	that	H	=	 (H/G).

8. 	 Let	G,	H	,	and	J	be	equivalence	relations	in	A	and	suppose	that	G	⊆	H	⊆	J.	Let	f	:	A	→	A/G,	g	:	A
→	A/H	 ,	and	h:	A	→	A/J	 be	 the	 canonical	 functions	 associated,	 respectively,	with	G,	H	 ,	 and	 J.
Prove	that	h/G	=	h/ /G.

9. 	 Let	G	and	H	be	equivalence	relations	in	A,	and	suppose	that	G	⊆	H.	Let	f	be	the	canonical	function
from	A	to	A/H.	Prove	that	f/G	is	surjective.

10. 	 Let	G	and	H	be	arbitrary	equivalence	relations	in	A.	Prove	that
a)	A/( )	≈	(A/G)/( /G).	b)	A/G	≈	(A/G	∩	H	)/(G/G	∩	H).



11. 	 Let	f	:	A	→	A	be	a	function,	and	let	G	be	the	equivalence	relation	determined	by	f.	Prove	that	 =
f	if	and	only	if

for	every	z,	x	∈	A.



4
Partially	Ordered	Classes

1	FUNDAMENTAL	CONCEPTS	AND	DEFINITIONS

By	a	partially	ordered	class	we	mean	a	pair	of	objects	 A,	G 	 ,	where	A	 is	 a	class	and	G	 is	an	order
relation	in	A.	We	say	that	A	 is	ordered	by	G,	or	that	G	orders	A.	If	A	 is	a	set,	we	say	 that	 A,	G 	 is	a
partially	ordered	set.
In	 ordinary	 mathematical	 applications,	 every	 partially	 ordered	 class	 is	 a	 partially	 ordered	 set.

However,	the	intuitive	idea	of	an	“ordered	collection	of	elements”	is	meaningful	for	any	collection	A,
whether	A	be	a	set	or	a	proper	class;	hence	it	is	natural	to	give	the	definition	in	its	most	general	form,
letting	A	be	any	class.	Once	again,	since	very	set	is	a	class,	everything	we	have	to	say	about	partially
ordered	classes	applies,	in	particular,	to	partially	ordered	sets.
Let	 A,	G 	be	a	partially	ordered	class;	 if	 it	 is	well	understood,	 in	a	given	discussion,	 that	G	 is	 the

order	relation	in	A,	then	we	will	say	loosely	that	A	is	a	partially	ordered	class.	If	A	is	a	partially	ordered
class,	ordered	by	G,	it	is	customary	to	write	x	 	y	to	denote	the	fact	that	(x,	y)	∈	G.	We	further	agree	that
y	 	x	has	the	same	meaning	as	x	 	y,	and	that	x	 	y	means	that	(x,	y)	∉G.
If	x	∈	A	and	y	∈	A	and	x	 	y,	then	we	say	that	“x	is	less	than	or	equal	to	y.”	We	agree	that	x	<	y	is	an

abbreviation	for	“x	 	y	and	x	≠	y.”	If	x	<	y,	we	say	that	“x	is	strictly	less	than	y.”	Note	that	<	is	not	an
order	relation;	it	is	irreflexive,	asymmetric,	and	transitive.
If	A	is	a	partially	ordered	class	and	B	is	a	subclass	of	A,	we	may	consider	B	to	be	ordered	by	the	order

relation	in	A.	Specifically,	if	x	∈	B	and	y	∈	B,	then	we	let	x	 	y	in	B	if	and	only	if	x	 	y	in	A.

If	A	and	B	are	partially	ordered	classes,	there	are	several	possible	ways	of	ordering	the	class	A	×	B;
the	two	most	useful	ways	of	doing	so	are	given	in	the	following	definitions.

4.1	Definition	Let	A	and	B	be	partially	ordered	classes;	by	the	lexicographic	ordering	of	A	×	B	we	mean
the	 following	order	 relation	 in	A	×	B:	 If	 (a1,b1)	∈	A	 ×	B	 and	 (a2,b2)	∈	A	 ×	B,	 then	we	 let	 (a1,b1)	
(a2,b2)	if	and	only	if

i) 	 a1	<	a2	or

ii) 	 a1	=	a2	and	b1	 	b2.
The	lexicographic	ordering	is	so	called	because	it	imitates	the	way	we	order	words	in	the	dictionary

(for	example,	be	precedes	go	because	b	precedes	g,	and	be	precedes	by	because	e	precedes	y).

4.2	Definition	Let	A	and	B	be	partially	ordered	classes;	by	the	antilexicographic	ordering	of	A	×	B	we
mean	the	following	order	relation	in	A	×	B:	If	(a1,	b1)	∈	A	×	B	and	(a2,b2)	∈	A	×	B,	then	we	let	(a1,b1)	
(a2,b2)	if	and	only	if

i) 	 b1	<	b2	or

ii) 	 b1	=	b2	and	a1	 	a2.



4.3	Definition	Let	A	be	a	partially	ordered	class.	Two	elements	x	and	y	in	A	are	said	to	be	comparable	if
either	x	 	y	or	y	 	x;	otherwise,	they	are	said	to	be	incomparable.

4.4	Definition	Let	A	be	a	partially	ordered	class,	and	let	B	be	an	arbitrary	subclass	of	A.	If	every	two
elements	of	B	are	comparable,	then	we	call	B	a	fully	ordered	subclass	of	A,or	a	linearly	ordered	subclass
of	A,	or,	more	commonly,	a	chain	of	A.	If	every	two	elements	of	A	are	comparable,	then	A	 is	called	a
fully	ordered,or	linearly	ordered,	class.

4.5	Definition	Let	A	be	a	partially	ordered	class	and	suppose	a	∈	A.	The	initial	segment	of	A	determined
by	a	is	the	class	Sa,	defined	as	follows:

4.6	Theorem	 Let	A	 be	 a	 partially	 ordered	 class.	 If	P	 is	 an	 initial	 segment	 of	A,	 and	Q	 is	 an	 initial
segment	of	P	,	then	Q	is	an	initial	segment	of	A.

Proof.	By	hypothesis,	P	={x	∈	A	:	x	<	a}	for	some	a	∈	A,	Q	={x	∈	P	:	x	<	b}	for	some	b	∈	P.	Let	Q1	=
{x	∈	A	:	x	<	b};	Q1	is	obviously	an	initial	segment	of	A;	we	will	show	that	Q	=	Q1,	and	the	theorem	will
thus	be	proved.	Clearly,	Q	⊆	Q1;	conversely,	if	x	∈	Q1,	then	x	∈	A	and	x	<	b;	but	b	<	a	because	b	∈	P	;
hence	x	<	a,	and	it	follows	that	x	∈	P	;	thus	x	∈	Q.	

Theorem	4.6	may	be	paraphrased	as	follows:

An	initial	segment	of	an	initial	segment	of	A	is	an	initial	segment	of	A.

4.7	Definition	If	A	is	a	partially	ordered	class,	then	a	cut	of	A	is	pair	(L,	U)	of	nonempty	subclasses	of	A
with	the	following	properties:
i) 	 L	∩	U	=	Ø	and	L	∪	U	=	A.
ii) 	 If	x	∈	L	and	y	 	x,	then	y	∈	L.
iii) 	 If	x	∈	U	and	y	 	x,	then	y	∈	U.

It	 is	 convenient	 to	 use	 a	 graphic	 device	 called	 a	 line	 diagram	 to	 illustrate	 simple	 properties	 of
partially	 ordered	 classes.	The	 elements	 of	 the	 class	 are	 represented	 by	 points	 on	 the	 diagram;	 if	 two
points	x	and	y	are	connected	by	a	line,	and	the	line	rises	from	x	to	y,	this	means	that	x	 	y.

4.8	Example	Fig.	1	represents	a	partially	ordered	class	with	six	elements.	Note	that	{a,	b,	c}	and	{d,	e,
b,	c}	are	chains	of	A;	Se	=	{b,	c,	f	}	is	the	initial	segment	determined	by	e;	if	L	={a,	b,	c}	and	U	={d,	e,	f
},	then	{L,	U}	is	a	cut.



Fig.	1

4.9	Example	The	most	 important	order	relation	 in	mathematics	 is	 the	class	 inclusion	relation	⊆;	 it	 is
reflexive,	for	if	A	is	any	class,	then	A	⊆	A;	it	is	antisymmetric,	because	if	A	⊆	B	and	B	⊆	A,	then	A	=	B;
it	is	transitive,	for	A	⊆	B	and	B	⊆	C	imply	that	A	⊆	C.	If	 	is	a	class	(of	classes)	and	we	consider	A	to
be	ordered	by	the	inclusion	relation,	we	say	that	 	is	ordered	by	inclusion.	Note	that	if	 	is	a	chain	of	
	,	this	means	that	for	any	two	elements,	A,	B	∈	 	,	either	A	⊆	B	or	B	⊆	A.

EXERCISES	4.1

1. 	 Let	A	={a,	b,	c,	d};	if	 	is	ordered	by	inclusion,	draw	its	line	diagram.
2. 	 Let	A	be	the	partially	ordered	class	defined	by	the	following	diagram.

List	all	the	chains	of	A,	all	the	initial	segments	of	A,	and	all	the	cuts	of	A.
3. 	 Let	A	be	the	partially	ordered	class	of	Excercise	2.	Draw	the	line	diagram	for	the	following	classes:

the	 class	 of	 all	 the	 chains	 of	A	 (ordered	 by	 inclusion),	 the	 class	 of	 all	 the	 initial	 segments	 of	A
(ordered	by	inclusion),	the	class	of	all	the	cuts	of	A	(ordered	by	inclusion	on	the	“left	component”
L).

4. 	 Let	A	and	B	be	partially	ordered	classes,	let	C	be	a	chain	of	A,	and	let	D	be	a	chain	of	B.	If	A	×	B	is
ordered	lexicographically	(4.1),	prove	that	C	×	D	is	a	chain	of	A	×	B.

5. 	 Let	A	and	B	be	partially	ordered	classes,	and	let	A	×	B	be	ordered	antilexicographically	(4.2).	Prove
that	if	(L,	U)	is	a	cut	of	B,	then	(A	×	L,	A	×	U)	is	a	cut	of	A	×	B.

6. 	 Let	A	be	a	partially	ordered	class,	and	let	G	be	an	equivalence	relation	in	A.	Suppose	the	following
condition	holds:	If	 	and	x	 	y	 	z,	then	 .	Define	a	relation	H	in	A/G	by	H	={(Gx,	Gy)	:∀w	∈
Gx,	∃z	∈	Gy	∋	w	 	z}.	Prove	that	H	is	an	order	relation	in	A/G.

2	ORDER	PRESERVING	FUNCTIONS	AND	ISOMORPHISM

4.10	Definition	Let	A	and	B	be	partially	ordered	classes;	a	function	f	:	A	→	B	is	said	to	be	increasing,or
order-preserving,	if	it	satisfies	the	following	condition:	For	every	two	elements	x,	y	∈	A,

We	say	that	f	:	A	→	B	is	strictly	increasing	if	it	satisfies	the	following	condition:	For	every	two	elements
x	∈	A	and	y	∈	A,



4.11	Definition	Let	A	and	B	be	partially	ordered	classes;	a	function	f	:	A	→	B	is	called	an	isomorphism
if	it	is	bijective	and	satisfies	the	following	condition:	For	every	two	elements	x	∈	A	and	y	∈	A,

Figures	 2,	 3,	 and	 4	 provide	 simple	 illustrations	 of	 the	 concepts	 we	 have	 just	 defined.	 Figure	 5
describes	a	function	which	is	bijective	and	increasing,	but	is	not	an	isomorphism	[note	that	f(b)<f(a)	but
a	and	b	are	incomparable].	The	reader	should	compare	this	example	with	Definition	4.11.

4.12	Theorem	If	f	:	A	→	B	is	an	isomorphism,	then

Fig.	2

Fig.	3

Fig.	4



Fig.	5

Proof
i) 	 Let	us	assume	that	x	<	y;	then	x	 	y;	hence	f(x)	 	f(y).	If	f(x)	=	f(y),	then	x	=	y,	which	is	contrary	to

our	assumption;	thus	f(x)	<	f(y).
ii) 	 The	converse	is	proved	by	the	same	argument.	

4.13	Theorem	Let	A	and	B	be	partially	ordered	classes	and	let	f	:	A	→	B	be	a	bijective	function.	Then	f	:
A	→	B	is	an	isomorphism	if	and	only	if	f	:	A	→	B	and	f	−1	:	B	→	A	are	increasing	functions.

Proof.	Note,	 first,	 that	 if	 f	 is	 bijective,	 then	∀x	∈	A,	 f	−1(f	 (x))	=	x.	Now	 suppose	 that	 f	 and	 f	 −1	 are
increasing	functions:

from	this,	and	 the	fact	 that	 f	 is	 increasing,	we	deduce	 that	 f	 is	an	 isomorphism.	Conversely,	 if	 f	 is	 an
isomorphism,	then	certainly	f	is	increasing;	furthermore,	if	f(x)	and	f(y)	are	arbitrary	elements	of	B,	then

so	f	−1	is	increasing.	

4.14	Theorem	Let	A,	B,	and	C	be	partially	ordered	classes.
i) 	 The	identity	function	IA	:	A	→	A	is	an	isomorphism.

ii) 	 If	f	:	A	→	B	is	an	isomorphism,	then	f	−1	:	B	→	A	is	an	isomorphism.
iii) 	 If	f	:	A	→	B	and	g	:	B	→	C	are	isomorphisms,	then	g	 	f	:	A	→	C	is	an	isomorphism.

Proof
i) 	 By	2.10,	IA	:	A	→	A	is	bijective;	now	IA(x)	=	x	and	IA(y)	=	y;	hence

ii) 	 If	f	:	A	→	B	is	an	isomorphism,	then	it	is	bijective,	hence	f	−1	:	B	→	A	is	bijective;	by	4.13,	f	−1	:	B
→	A	is	increasing.	Finally,



so	f	−1	:	B	→	A	is	an	isomorphism.

The	proof	of	(iii)	is	left	as	an	exercise	for	the	reader.	

4.15	Definition	If	A	and	B	are	partially	ordered	classes	and	there	exists	an	isomorphism	from	A	to	B,	we
say	that	A	is	isomorphic	with	B.

Theorem	4.14	indicates	that	the	relation	“A	is	isomorphic	with	B”	is	an	equivalence	relation	among
partially	ordered	classes.	Indeed,	by	4.14(i),	A	is	isomorphic	with	A;	by	4.14(ii),	if	A	is	isomorphic	with
B,	then	B	is	isomorphic	with	A;	by	4.14(iii),	if	A	is	isomorphic	with	B	and	B	is	isomorphic	with	C,	then
A	is	isomorphic	with	C.
We	will	write	A	 	B	to	denote	the	fact	that	A	is	isomorphic	with	B.

The	concept	of	isomorphism	is	of	great	importance	in	the	study	of	partially	ordered	classes.	Suppose
that	A	 and	B	 are	 partially	 ordered	 classes	 and	 f	 :	A	→	B	 is	 an	 isomorphism;	 let	 us	 agree	 to	write	 x′
instead	of	f(x);	since	f	:	A	→	B	is	bijective,	every	element	x	in	A	corresponds	with	a	unique	element	x′	in
B:

Furthermore,	by	4.12,	if	x	and	y	are	any	two	elements	in	A,	then

This	means	that	the	ordering	of	A	is	exactly	the	same	as	the	ordering	of	B;	in	particular	(if	it	is	practical
to	draw	the	line	diagrams	of	A	and	B),	the	line	diagram	of	A	is	the	same	as	the	line	diagram	of	B.	Thus,
essentially,	there	is	no	difference	between	A	and	B	except	the	letters	we	use	to	designate	their	elements.

4.16	Example	If	B	={l,	m,	n,	o,	p,	q}	is	ordered	as	in	the	following	diagram,

then	B	 is	 isomorphic	with	 the	 class	A	 of	Example	4.8.	 The	 isomorphism	 f	 :	A	→	B	 is	 given	 by	 the
following	table.



In	conclusion,	if	A	is	isomorphic	with	B,	and	if	we	identify	corresponding	elements,	then	A	and	B	are
essentially	the	same	partially	ordered	class.

EXERCISES	4.2

1. 	 Prove	that	if	f	:	A	→	B	is	an	injective,	increasing	function,	then	it	is	strictly	increasing.
2. 	 Let	f	:	A	→	B	be	an	increasing	function.	If	C	is	a	chain	of	A,	prove	that	 	is	a	chain	of	B.
3. 	 Let	A	and	B	be	partially	ordered	classes.	Prove	that	if	A	×	B	is	ordered	lexicographically,	then	the

projection	function	p1	:	A	×	B	→	A	is	increasing;	if	A	×	B	is	ordered	antilexicographically,	then	the
projection	function	p2	:	A	×	B	→	B	is	increasing.	[Note	that	p1(x,	y)	=	x,	p2(x,	y)	=	y.]

4. 	 A	subclass	C	of	a	partially	ordered	class	is	called	convex	if	it	satisfies	the	following	condition:	If	a
∈	C	and	b	∈	C	and	a	 	x	 	b,	then	x	∈	C.	Let	A	and	B	be	partially	ordered	classes,	let	f	:	A	→	B	be
an	increasing	function,	and	let	C	be	a	convex	subclass	of	B.	Prove	that	 	is	a	convex	subclass	of
A.

5. 	 Let	A	and	B	be	partially	ordered	classes,	let	f	:	A	→	B	be	an	increasing	function,	and	let	H	be	the
equivalence	 relation	 determined	 by	 f.	 Prove	 that	 each	 equivalence	 class	 modulo	H	 is	 a	 convex
subclass	of	A.

6. 	 Let	A	and	B	be	partially	ordered	classes,	and	let	f	:	A	→	B	be	an	increasing	function;	assume	 	=
B.	Prove	that	if	(L,	U)	is	a	cut	of	B,	then	 	is	a	cut	of	A.

7. 	 Prove	that	the	composite	of	two	increasing	functions	is	increasing.	Use	this	result	to	prove	4.14(iii).
8. 	 Let	A	and	B	be	partially	ordered	classes,	and	let	f	:	A	→	B	be	an	isomorphism.	Prove	each	of	the

following:
a) 	 If	C	is	a	convex	subclass	of	A,	then	 	is	a	convex	subclass	of	B.

b) 	 If	(L,	U)	is	a	cut	of	A,	then	 	is	a	cut	of	B.
c) 	 If	[a,	b]	is	a	closed	interval	of	A,	then	 	is	a	closed	interval	of	B.	(If	a,	b	∈	A,	then	the	set

{x	∈	A	:	a	 	x	 	b}	is	called	a	closed	interval	of	A	and	is	denoted	by	the	symbol	[a,	b].)
9. 	 Let	E	 and	F	 be	 partially	 ordered	 classes,	 and	 let	g	 :	E	→	F	 be	 an	 isomorphism.	 Prove	 that	 for

arbitrary	x	∈	E,	 	conclude	that	Sx	 	Sg(x).

10. 	 Let	A	be	a	partially	ordered	set.	For	each	a	∈	A,	let	Ia	={x	∈	A	:	x	 	a}.	Let	 	={Ia}a∈A	and	let	
be	ordered	by	inclusion.	Prove	that	 	is	isomorphic	with	A.

11. 	 Let	A,	B,	and	C	be	mutually	disjoint,	partially	ordered	classes.	If	A	 	B,	prove	that	(A	∪	C)	 	(B	∪
C).[Hint:	Take	the	union	of	two	functions,	as	in	2.16.]

12. 	 Let	A	be	a	partially	ordered	set.	Define	Lx	={z	∈	A	:	z	 	x}	and	Ux	=	{z	∈	A	 :	z	 	x}.	Prove	 the
following:



a) 	 For	each	x	∈	A,	(Lx,Ux)	is	a	cut	of	A.
b) 	 The	function	ϕ	defined	by	ϕ(x)	=	(Lx,	Ux)	is	an	isomorphism	between	A	and	the	class	of	all	the

cuts	of	the	above-described	form.	The	set	of	cuts	(L,	U)	is	ordered	by	inclusion	on	L.

3	DISTINGUISHED	ELEMENTS.	DUALITY

Certain	distinguished	elements	play	an	important	part	in	the	study	of	partially	ordered	classes.	We	now
define	them;	in	each	of	the	following	definitions,	we	assume	that	A	is	a	partially	ordered	class.

4.18	Definition	An	element	m	∈	A	is	called	a	maximal	element	of	A	 if	none	of	 the	elements	of	A	are
strictly	greater	than	m;	in	symbols,	this	can	be	expressed	as	follows:

Similarly,	an	element	n	∈	A	is	called	a	minimal	element	of	A	if	none	of	the	elements	of	A	are	strictly	less
than	n;	in	symbols,

4.19	Definition	An	element	a	∈	A	 is	 called	 the	greatest	element	 of	A	 if	a	 	 x	 for	 every	 x	∈	A.	 An
element	b	∈	A	is	called	the	least	element	of	A	if	b	 	x	for	every	x	∈	A.
It	is	easy	to	see	that	if	A	has	a	greatest	element,	then	this	element	is	unique;	for	suppose	a	and	a′	are

both	greatest	elements	of	A.	Then	a	 	a′	and	a′	 	a;	hence	a	=	a′.	Analogously,	the	least	element	of	A	is
unique.

4.20	Definition	Let	B	be	a	subsets	of	A.	An	upper	bound	of	B	in	A	is	an	element	a	∈	A	such	that	a	 	x
for	every	x	∈	B.A	lower	bound	of	B	in	A	is	an	element	b	∈	A	such	that	b	 	x	for	every	x	∈	B.	When
there	is	no	risk	of	ambiguity,	we	will	refer	to	an	upper	bound	of	B	in	A	simply	as	an	“upper	bound	of	B,”
and	to	a	lower	bound	of	B	in	A	simply	as	a	“lower	bound	of	B.”	The	class	of	all	the	upper	bounds	of	B
will	be	denoted	by	υ(B)	and	the	class	of	all	the	lower	bounds	of	B	will	be	denoted	by	λ(B).

4.21	Definition	If	the	class	of	lower	bounds	of	B	in	A	has	a	greatest	element,	then	this	element	is	called
the	greatest	lower	bound	of	B	in	A.	If	the	class	of	upper	bounds	of	B	in	A	has	a	least	element,	then	this
element	is	called	the	 least	upper	bound	of	B	 in	A.	The	 least	upper	bound	of	B	 in	A	 is	also	called	 the
supremum	of	B	 in	A	 (abbreviated	 supA	B),	 and	 the	greatest	 lower	bound	of	B	 in	A	 is	 also	 called	 the
infinum	of	B	in	A	(abbreviated	infA	B).	When	there	is	no	risk	of	ambiguity,	we	will	write	sup	B	for	supA
B,	and	inf	B	for	infA	B.
We	have	seen	that	the	greatest	element	and	the	least	element	of	any	class	are	unique;	hence	the	sup

and	the	inf,	if	they	exist,	are	unique.

Examples

4.22	Figure	6	is	the	line	diagram	of	a	class	that	has	maximal	elements	but	no	greatest	element	(a	and	d
are	maximal	elements).



4.23	In	Fig.	7,	let	A	={a,	b,	c,	d,	e,	f	}	and	let	B	={b,	c,	e,	f	}.	B	has	two	upper	bounds	in	A,	namely	a
and	d,	but	no	sup.

4.24	In	Fig.	7,	let	A	and	B	be	defined	as	above,	and	let	C	={a,	b,	c,	e,	f	}	and	D	={d,	b,	c,	e,	f	}.	Then	B
has	no	sup	in	A,	although	supC	B=	a	and	supD	B=	d.

Fig.	6

Fig.	7

4.25	The	class	N	of	all	the	positive	integers	has	a	least	element	but	no	greatest	element	and	no	maximal
elements.	The	class	 	of	all	the	integers	has	neither	a	greatest	nor	a	least	element.

4.26	Let	 	be	a	class	(of	classes)	which	is	ordered	by	inclusion;	let	 	={Bi}i∈I	be	a	subclass	of	 	,	and

let	us	assume	that	 	and	 	are	elements	of	 .	Then	sup	 = :	indead,each	Bi	is	 ,	hence	

	is	an	upper	bound	of	 ;	furthermore,	if	C	is	any	other	upper	bound	of	 ,	this	means	that	Bi	 	C	for

every	i	∈	I	;	hence,	by	1.40(i), ;	this	proves	that	 	is	the	least	upper	bound	of	 .	Similarly,	inf	

= ,	for	clearly	 	is	 	each	Bi,	hence	 	is	a	lower	bound	of	 ;	furthermore,	if	D	is	any	other

lower	bound	of	 ,	this	means	that	D	 	Bi	for	every	i	∈	I	,	hence,	by	1.40(ii),	D	 	 ;	this	proves	that	

	is	the	greatest	lower	bound	of	 .

4.27	It	is	important	to	note	that	λ(Ø)	=	A.	Indeed,	if	x	∈	A,	then	the	statement	“x	 	y	for	every	y	∈	Ø”	is
not	false	(for	to	deny	it	would	be	to	assert	that	“∃y	∈	Ø	x	 	y,”	which	is	absurd);	hence	it	is	true.	This
holds	for	each	element	x	∈	A,	 so	we	conclude	 that	λ(Ø)	=	A.	Next,	we	note	 that	 inf	Ø	 is	 the	greatest
element	of	λ(Ø);	thus	if	A	has	a	greatest	element	a,	then	a	=	inf	Ø.	Analogously,	if	b	is	the	least	element
of	A,	then	b	=	sup	Ø.

When	 we	 reason	 about	 partially	 ordered	 classes,	 we	 are	 led	 to	 the	 interesting	 notion	 of	 duality.
Briefly,	duality	can	be	explained	as	follows.



If	G	is	an	order	relation	in	A,	then	G−1is	also	an	order	relation	in	A	(see	Exercise	8,	Exercise	Set	3.2).
Let	 	refer	to	the	class	A	ordered	by	G,	and	let	 	refer	to	A	ordered	by	G−1.	Then	x	 	y	 in	

	if	and	only	if	x	 	y	in	 ;	it	follows	that	a	is	a	maximal	element	of	 	if	and	only	if	a	is	a
minimal	element	of	 ;	a	is	the	greatest	element	of	 	if	and	only	if	a	 is	the	least	element	of	

;	if	B	 	A,	then	b	is	an	upper	bound	of	B	in	 	if	and	only	if	b	is	a	lower	bound	of	B	in	
;	and	b	=	sup	B	in	 	if	and	only	if	b	=	inf	B	in	 	.
Let	 	be	a	statement	about	partially	ordered	classes.	In	 ,	suppose	that	we	replace	each	occurrence

of	 	by	 	and	vice	versa;	suppose	furthermore	that	we	replace	the	words	“maximal”	by	“minimal”	and
vice	versa,	“greatest”	by	“least”	and	vice	versa,	“upper	bound”	by	“lower	bound”	and	vice	versa,	“sup”
by	“inf”	and	vice	versa.	The	resulting	statement	 	′is	called	the	dual	of	 	.
In	view	of	what	we	have	said	above,	it	is	easy	to	see	that	if	 	is	a	true	statement	in	A,	G−1	,	then	the

dual	of	 	is	true	in	A,	G.	In	particular,	suppose	that	 	is	a	theorem	for	all	partially	ordered	classes.	If	A
is	any	partially	ordered	class	and	G	is	the	order	relation	in	A,	then	 	is	true	in	A,	G−1	,	hence	the	dual	of
	is	true	in	A,	G.	Thus	if 	is	a	theorem	for	all	partially	ordered	classes,	the	dual	of 	is	also	a	theorem.
The	 concept	 of	 duality	 permits	 a	 considerable	 economy	 in	 the	 presentation	 of	 theorems	 about

partially	ordered	classes,	for	every	time	we	prove	a	theorem,	we	know	that	the	dual	of	the	theorem	is
also	true.

The	following	are	a	few	properties	of	the	distinguished	elements	in	a	partially	ordered	class.

4.28	Theorem	If	A	has	a	greatest	element	a,	and	B	has	a	greatest	element	b,	and	A	⊆	B,	then	a	 	b.

Proof.	By	definition,	b	 	x	for	every	x	∈	B;but	a	∈	A	⊆	B;	hence	b	 	a.	

Dual	If	A	has	a	least	element	a,	and	B	has	a	least	element	b,	and	A	⊆	B,	then	a	 	b.

4.29	Theorem	Let	B	and	C	be	subclasses	of	A.	If	B	⊆	C,	then	v(C)	⊆	v(B).

Proof.	x	∈	v(C)	⇒	x	 	y,	∀y	∈	C	⇒	x	 	y,	∀y	∈	B	⇒	x	∈	v(B).	

Dual	If	B	⊆	C,	then	λ(C)	⊆	λ(B).

4.30	Theorem	Let	B	and	C	be	subclasses	of	A,	and	suppose	that	B	and	C	each	has	a	sup	in	A.	If	B	⊆	C
the	sup	B	 	sup	C.

Proof.	By	4.29,	v(C)	⊆	v(B);	hence	by	4.28	(dual),	sup	B	 	sup	C.	

Dual	If	B	and	C	each	has	a	inf	in	A,	and	if	B	⊆	C,	then	inf	B	 	inf	C.

4.31	Theorem	Let	B	be	a	subclass	of	A.	Then	B	⊆	v(λ(B)).

Proof.	Suppose	x	∈	B;	for	each	y	∈	λ(B),	y	 	x,	that	is,	x	 	y;	hence	x	∈	v(λ(B)).	

Dual	B	⊆	λ(v(B)).



4.32	Lemma	Let	B	be	a	subclass	of	A	and	suppose	that	λ(B)	has	a	sup	in	A.	Then	B	has	an	inf	in	A,	and
inf	B	=	sup	λ(B).

Proof.	Let	a	=	sup	λ(B).	Suppose	b	∈	B;	for	every	c	∈	λ(B),	c	 	b;	hence	b	is	an	upper	bound	of	λ(B);
thus	a	 	b.	This	is	true	for	each	b	∈	B,	so	we	conclude	that	a	is	a	lower	bound	of	B.	Now	if	d	is	any
lower	bound	of	B,	then	d	∈	λ(B),so	a	 	d	because	a	is	an	upper	bound	of	λ(B).	We	have	proved	that	a	is
the	greatest	lower	bound	of	B.	

Dual	If	v(B)	has	an	inf	in	A,	then	B	has	a	sup	in	A	and	sup	B	=	inf	v(B).

4.33	Definition	Let	A	 be	 a	 partially	 ordered	 class.	 If	 every	 nonempty	 subclass	 of	A	 that	 is	 bounded
above	has	a	sup,	then	A	is	said	to	be	conditionally	complete.

We	 have	 the	 following	 alternative	 definition	 of	 conditionally	 complete:	 A	 is	 called	 conditionally
complete	 if	 every	 nonempty	 subclass	 of	 A	 that	 is	 bounded	 below	 has	 an	 inf.	 Our	 next	 theorem
establishes	the	equivalence	of	the	two	definitions.

4.34	Theorem	The	following	two	conditions	are	equivalent:
i) 	 Every	nonempty	subclass	of	A	that	is	bounded	above	has	a	sup.
ii) 	 Every	nonempty	subclass	of	A	that	is	bounded	below	has	an	inf.

Proof
a) 	 Suppose	that	(i)	holds;	let	B	be	a	nonempty	subclass	of	A	which	is	bounded	below,	that	is,	λ(B)	≠	Ø.

Each	element	of	B	is	an	upper	bound	of	λ(B),	hence	λ(B)	is	bounded	above;	thus	λ(B)	has	a	sup.	But,
by	4.32,	it	follows	that	B	has	an	inf.

b) 	 The	converse	is	the	dual	of	the	result	we	have	just	proven.	

EXERCISES	4.3

1. 	 Suppose	B	⊆	A;	prove	that	if	B	has	a	greatest	element	b,	then	b	=	sup	B.
2. 	 Suppose	B	⊆	A;	prove	that	v(B)	=	v(λ(v(B))).[Hint:	Use	4.29	and	4.31.]
3. 	 Suppose	B	⊆	A	and	C	⊆	A;	prove	that	λ(B	∪	C)	=	λ(B)	∩	λ(C).
4. 	 Suppose	B	⊆	A;	prove	that	if	B	has	a	sup	b,	then	λ(v(B))	∩	v(B)	={b}.
5. 	 Suppose	C	⊆	B	and	B	⊆	A;	prove	that	supA	C	 	sup	B	C.
6. 	 Let	B	and	C	be	subclasses	of	a	partially	ordered	class	A.	Prove	that	if	sup	B	=	sup	C,	then	v(B)	=

v(C).
7. 	 Let	A	and	B	be	partially	ordered	classes	and	let	f	:	A	→	B	be	a	strictly	increasing	function.	Prove

that	if	b	is	a	maximal	element	of	B,	then	each	element	of	 	is	a	maximal	element	of	A.
8. 	 Let	A	and	B	be	partially	ordered	classes,	and	let	f	:	A	→	B	be	an	increasing	function.	Prove	that	if	a

is	the	greatest	element	of	A,	then	f(a)	is	the	greatest	element	of	 .
9. 	 Let	A	and	B	be	partially	ordered	classes,	and	let	f	:	A	→	B	be	an	increasing	function;	suppose	C	⊆

A.	Prove	that	if	c	is	an	upper	bound	of	C,	then	f(c)	is	an	upper	bound	of	 .
10. 	 Let	A	and	B	be	partially	ordered	classes,	and	let	f	:	A	→	B	be	an	isomorphism.	Prove	each	of	the



following:
a) 	 a	is	a	maximal	element	of	A	iff	f(a)	is	a	maximal	element	of	B.
b) 	 a	is	the	greatest	element	of	A	iff	f(a)	is	the	greatest	element	of	B.
c) 	 Suppose	C	⊆	A;	x	is	an	upper	bound	of	C	iff	f(x)	is	an	upper	bound	of	 .
d) 	 b	=	sup	C	iff	f(b)	=	sup	 .

11. 	 Let	A	be	a	partially	ordered	class.	Prove	the	following:
a) 	 If	 every	 subclass	 of	A	 has	 a	 sup	 and	 an	 inf,	 in	A,	 then	A	 has	 a	 least	 element	 and	 a	 greatest

element.	[Hint:	Use	4.27.]
b) 	 The	following	two	statements	are	equivalent:	Every	subclass	of	A	has	a	sup;	every	subclass	of	A

has	an	inf.
12. 	 Let	A	and	B	be	partially	ordered	classes.	Prove	the	following:

a) 	 Suppose	A	×	B	is	ordered	lexicographically:	if	(a,	b)	is	a	maximal	element	of	A	×	B,	then	a	is	a
maximal	element	of	A.

b) 	 Suppose	A	×	B	is	ordered	antilexicographically.	If	(a,	b)	is	a	maximal	element	of	A	×	B,	then	b
is	a	maximal	element	of	B.

4	LATTICES

4.35	Definition	Let	A	be	a	partially	ordered	class.	If	every	doubleton	{x,	y}	in	A	has	a	sup	and	an	inf,
then	A	is	called	a	lattice.

When	dealing	with	lattices	it	is	customary	to	denote	sup{x,	y}	by	x	∨	y	and	inf{x,	y}	by	x	∧	y.	If	A	is
a	 lattice,	x	∨	y	 is	often	called	 the	 join	of	x	and	y,	and	x	∧	y	 is	 often	 called	 the	meet	 of	x	 and	y;	 the
expression	x	∨	y	is	read	“x	join	y“	and	the	expression	x	∧	y	is	read	“x	meet	y.”
Note	 the	 following	 simple	 consequences	 of	 our	 definition.	 If	 a	 and	 b	 are	 arbitrary	 elements	 of	 a

lattice	A,	then

4.36	a	 	a	∨	b	and	b	 	a	∨	b
because	a	∨	b	is	an	upper	bound	of	a	and	b.	Furthermore,	if	c	∈	A,	then

4.37	a	 	c	and	b	 	c	⇒	a	∨	b	 	c;
in	other	words,	if	c	is	an	upper	bound	of	a	and	b,	then	a	∨	b	 	c	because	a	∨	b	is	the	least	upper	bound
of	a	and	b.
For	analogous	reasons,	we	have

4.38	a	∧	b	 	a	and	a	∧	b	 	b

4.39	c	 	a	and	c	 	b	⇒	c	 	a	∧	b;

4.40	Theorem	Let	A	be	a	lattice;	the	join	and	the	meet	have	the	following	properties:



L1. 	 x	∨	x	=	x	and	x	∧	x	=	x.
L2. 	 x	∨	y	=	y	∨	x	and	x	∧	y	=	y	∧	x.
L3. 	 (x	∨	y)	∨	z	=	x	∨	(y	∨	z)	and	(x	∧	y)	∧	z	=	x	∧	(y	∧	z).
L4. 	 (x	∨	y)	∧	x	=	x	and	(x	∧	y)	∨	x	=	x.

Proof.	L1	and	L2	are	immediate	consequences	of	the	definitions	of	sup	and	inf.

L3.	First,	we	will	prove	that

by	4.36,

hence,	by	4.37,	x	∨	y	 	x	∨	(y	∨	z)	furthermore,	by	4.36,

so	by	4.37,	(x	∨	y)	∨	z	 	x	∨	(y	∨	z).	The	inequality	x	∨	(y	∨	z)	 	(x	∨	y)	∨	z	is	proven	in	the	same	way,
hence

The	dual	of	this	result	is	(x	∧	y)	∧	z	=	x	∧	(y	∧	z).

L4.	To	prove	that	(x	∨	y)	∧	x	=	x	is	to	prove	that

Now	x	is	a	lower	bound	of	{x	∨	y,	x}	because	x	 	x	∨	y	by	4.36	and	obviously	x	 	x.	Furthermore,	if	z	is
any	lower	bound	of	{x	∨	y,	x},	then	z	 	x;	thus	x	is	the	greatest	lower	bound	of	{x	∨	y,	x}.	This	proves
that	(x	∨	y)	∧	x	=	x;	the	dual	of	this	result	is	(x	∧	y)	∨	x	=	x.	

A	 lattice	may	 alternatively	be	defined	 as	 an	 algebraic	 system	with	 two	operations	∨	 and	∧	which
have	 properties	 L1	 through	L4.	 This	 fact,	which	 is	 of	 great	 importance	 in	 the	 study	 of	 lattices,	 is	 a
consequence	of	the	following	theorem.

4.41	Theorem	Let	A	be	a	class	in	which	two	operations	denoted	∨	and	∧	are	given	and	have	properties
L1	through	L4.	We	define	a	relation	in	A,	to	be	denoted	by	the	symbol	 ,	as	follows:

4.42	x	 	y	if	and	only	if	x	∨	y	=	y.

Then	 	is	an	order	relation	in	A,	and	A	is	a	lattice.

Proof.	First,	let	us	prove	that	the	relation	 	defined	above	is	an	order	relation.



Reflexive.	By	L1,	x	∨	x	=	x;	hence,	by	4.42,	x	 	x.

Antisymmetric.	Suppose	that	x	 	y	and	y	 	x;	by	4.42,	x	∨	y	=	y	and	y	∨	x	=	x;	but	by	L2,	x	∨	y	=	y	∨	x,
hence,	x	=	y.

Transitive.	Suppose	that	x	 	y	and	y	 	z;	by	4.42,	x	∨	y	=	y	and	y	∨	z	=	z;	thus

so	by	4.42,	x	 	z.
Next,	we	will	prove	that	x	∨	y	is	the	least	upper	bound	of	x	and	y:

so	by	4.42,	x	 	x	∨	y;	analogously,	y	 	x	∨	y,	hence	x	∨	y	is	an	upper	bound	of	x	and	y.	Now	if	z	is	any
upper	bound	of	x	and	y,	that	is,	x	 	z	and	y	 	z,	then	x	∨	z	=	z	and	y	∨	z	=	z;	thus

so	by	4.42,	x	∨	y	 	z.	This	proves	that	x	∨	y	=	sup{x,	y}.	The	proof	that	x	∧	y	=	inf{x,	y}	is	left	as	an
exercise	for	the	reader.	We	conclude	that	A	is	a	lattice.	

It	follows	from	4.40	and	4.41	that	a	lattice	may	be	defined	in	two	distinct	ways:	as	a	partially	ordered
class	in	which	every	pair	of	elements	has	a	sup	and	an	inf	or,	alternatively,	as	an	algebraic	system	with
two	operations	satisfying	rules	L1	through	L4.

4.43	Definition	Let	A	be	a	lattice,	and	let	B	be	a	subclass	of	A.	If

then	B	is	called	a	sublattice	of	A.

4.44	Definition	A	Boolean	algebra	is	defined	to	be	a	lattice	A	with	the	following	additional	properties:

L5.	There	is	an	element	0	∈	A	and	an	element	1	∈	A	such	that	for	each	x	∈	A,	x	∨	0	=	x	and	x	∧	1	=	x.

L6.	For	each	x	∈	A	there	is	an	element	x′∈	A	such	that

L7.	x	∨	(y	∧	z)	=	(x	∨	y)	∧	(x	∨	z)	and	x	∧	(y	∨	z)	=	(x	∧	y)	∨	(x	∧	z).

The	 algebra	 of	 classes	 is	 an	 example	 of	 a	 Boolean	 algebra;	 indeed,	 by	 1.22,	 1.25,	 and	 1.26,	 the
operations	 ,	∩	and	′	satisfy	L1	through	L7.	We	have	noted	independently	(4.26)	that	A	 	B	=	sup{A,	B}
and	A	∩	B	 =	 inf{A,	B}.	Another	 example	 of	 a	Boolean	 algebra	 is	 the	 algebra	 of	 sentences,	with	 the
operations	 of	 conjunction,	 disjunction,	 and	 negation.	 In	 addition,	 Boolean	 algebra	 has	 a	 variety	 of
applications	in	many	areas	of	science	and	technology.



4.45	Definition	Let	A	be	a	partially	ordered	class;	A	is	called	a	complete	lattice	 if	every	subclass	of	A
has	a	sup.	Alternatively,	A	is	called	a	complete	lattice	if	every	subclass	of	A	has	an	inf.

The	purpose	of	our	next	 theorem	is	 to	show	that	 these	 two	alternative	definitions	are	equivalent.	 It
will	follow	that	if	A	is	a	complete	lattice	(in	the	sense	of	either	definition),	then	every	subclass	of	A	has
a	 sup	 and	 an	 inf;	 in	 particular,	 every	 doubleton	 in	A	 has	 a	 sup	 and	 an	 inf,	 hence	we	 are	 justified	 in
calling	A	a	lattice.

4.46	Theorem	Let	A	be	a	partially	ordered	class;	the	following	two	conditions	are	equivalent:
i) 	 every	subclass	of	A	has	a	sup;

ii) 	 every	subclass	of	A	has	an	inf.

Proof.	Let	us	assume	that	(i)	holds;	it	follows	that	A	has	a	sup,	which	is	necessarily	the	greatest	element
of	A,	and	Ø	has	a	sup,	which	is	the	least	element	of	A	(see	4.27).	Let	M	designate	the	greatest	element	of
A,	and	let	m	designate	the	least	element	of	A.	Let	B	be	an	arbitrary	subclass	of	A.	If	B	=	Ø,	then	inf	B	=
M	(see	4.27);

if	B	≠	Ø,	 then	B	 is	bounded	below	by	m,	hence	by	Theorem	4.34,	B	 has	an	 inf.	Thus,	 (ii)	holds;	 the
converse	is	the	dual	of	what	we	have	just	proven.	

4.47	Example	Let	A	be	an	arbitrary	set	and	let	 	be	the	set	of	all	the	equivalence	relations	in	A,	ordered
by	inclusion.	 	has	a	least	element,	namely	the	relation	IA,	and	a	greatest	element,	namely	the	relation	A
×	A.	Furthermore,	if	{Gi}i∈I	is	any	subset	of	 ,	then	 	is	an	element	of	 	(see	Exercise	4,	Exercise

Set	3.2);	as	we	have	seen	(4.26),	 	 is	 the	greatest	 lower	bound	of	{Gi}i∈I.	Thus,	 	 is	a	complete
lattice	by	4.46(ii).

EXERCISES	4.4

1. 	 Let	A	be	a	class	with	two	operations	∨	and	∧	which	satisfy	L1	through	L4.	Prove	that	x	∨	y	=	y	if
and	only	if	x	∧	y	=	x.

2. 	 In	Theorem	4.41,	prove	that	x	∧	y	=	inf{x,	y}.	[Hint:	Use	the	result	of	Exercise	1.]
3. 	 Let	A	be	a	lattice.	Prove	that	the	following	statements	are	true.

a) 	 If	a	 	b,	then	∀x	∈	A,	a	∨	x	 	b	∨	x	and	a	∧	x	 	b	∧	x.
b) 	 If	a	 	b	and	c	 	d,	then	a	∨	c	 	b	∨	d	and	a	∧	c	 	b	∧	d.

4. 	 Let	A	be	a	lattice.	If	[a,	b]	and	[c,	d]	are	closed	intervals	of	A,	prove	that

(See	Exercise	8,	Exercise	Set	4.2,	for	a	definition	of	closed	interval.)
5. 	 Let	A	be	a	lattice;	prove	that	every	closed	interval	[a,	b]	of	A	is	a	sublattice	of	A.
6. 	 Let	A	be	a	lattice;	if	a	∈	A,	let	Ia	=	{x	∈	A	:	x	 	a}.	Prove	that	Ia	is	a	sublattice	of	A.
7. 	 By	a	distributive	lattice	we	mean	a	class	with	two	operations	satisfying	L1	through	L4	and	L7.	If	A

is	a	distribute	lattice,	prove	that



8. 	 In	an	arbitrary	lattice	A,	prove	the	so-called	“distributive	inequalities”

9. 	 Let	A	be	a	lattice	and	let	x,	y,	z	∈	A.	Prove	that	if	x	 	z,	then

10. 	 Draw	the	line	diagram	of	a	lattice	A	and	a	subclass	B	⊆	A	such	that	B	is	not	a	sublattice	of	A.
11. 	 Draw	the	line	diagram	of	two	lattices	whose	intersection	is	not	a	lattice.
12. 	 Draw	the	line	diagram	of	a	lattice	which	is	not	a	Boolean	algebra.
13. 	 Let	A	be	a	partially	ordered	set;	prove	that	the	class	of	all	the	cuts	of	A	(ordered	by	inclusion	on	the

“left	components”	L)	is	a	complete	lattice.
14. 	 Let	A	be	a	partially	ordered	set;	prove	that	 the	class	of	all	 the	convex	subsets	of	A	 is	a	complete

lattice.
15. 	 Draw	 the	 line	diagram	of	 a	 partially	 ordered	 class	which	 is	 conditionally	 complete,	 but	 is	 not	 a

complete	lattice.

5	FULLY	ORDERED	CLASSES.	WELL-ORDERED	CLASSES

Let	A	 be	 a	 partially	 ordered	 class.	 As	 previously	 stated,	A	 is	 said	 to	 be	 fully	 ordered	 if	 every	 two
elements	of	A	are	comparable.
Examples	of	fully	ordered	classes	are:	the	class	 	of	the	integers,	the	class	 	of	the	rational	numbers,

and	the	class	 	of	the	real	numbers.	One	can	easily	see	that	every	subclass	of	a	fully	ordered	class	is
fully	ordered.	It	is	evident,	too,	that	every	fully	ordered	class	is	a	lattice.

4.48	Theorem	Let	f	:	A	→	B	be	a	function,	where	A	is	a	fully	ordered	class	and	B	is	a	partially	ordered
class.	If	f	:	A	→	B	is	bijective	and	increasing,	it	is	an	isomorphism.

Proof.	Suppose	f(x)	 	f(y);	since	x	and	y	are	comparable,	either	x	 	y	or	y	<	x.	If	y	<	x,	then	f(y)	 	f(x);
but	f(y)	=	f(x)	would	imply	y	=	x,	so	we	must	have	f(y)	<	f(x).	This	is	contrary	to	our	assumption,	hence
x	 	y.	

4.49	Definition	 Let	A	 be	 a	 partially	 ordered	 class.	A	 is	 said	 to	 be	well	 ordered	 if	 every	 nonempty
subclass	of	A	has	a	least	element.

If	A	is	well	ordered,	then	A	is	fully	ordered;	for	if	x	∈	A	and	y	∈	A,	then	the	doubleton	{x,	y}	has	a
least	element,	which	is	either	x	or	y;	hence	x	 	y	or	y	 	x.
If	A	is	well	ordered,	then	A	is	conditionally	complete;	for	if	B	is	a	subclass	of	A	and	v(B)	≠	Ø,	then

υ(B)	has	a	least	element	which	is	by	definition	the	sup	of	B.

4.50	Definition	Let	A	be	a	partially	ordered	class,	and	suppose	a	∈	A.	An	element	b	∈	A	is	called	the
immediate	successor	of	a	if	a	<	b	and	there	is	no	element	c	in	A	such	that	a	<	c	<	b.



4.51	Remark.	If	A	 is	a	well-ordered	class,	 then	every	element	of	A	 (with	the	exception	of	 the	greatest
element	of	A,	if	it	exists)	has	an	immediate	successor.	Indeed,	if	x	∈	A	and	x	is	not	the	greatest	element
of	A,	then	the	class	T	=	{y	∈	A	:	y	>	x}	is	nonempty,	hence	T	has	a	least	element	which	is	obviously	the
immediate	successor	of	x.
Let	A	be	a	nonempty	well-ordered	class.	By	4.49,	A	has	a	least	element,	which	may	be	denoted	by	x1;

if	x1	 is	 not	 the	 greatest	 element	 (that	 is,	 the	 only	 element)	 of	A,	 then	 by	 4.51,	 x1	 has	 an	 immediate
successor,	which	may	be	denoted	by	x2;	again,	if	x2	is	not	the	greatest	element	of	A,	then	by	4.51,	x2	has
an	immediate	successor,	which	may	be	denoted	by	x3;	and	so	on.

Examples

4.52	The	class	of	numbers	{1,	2,	3,	4,	5},	ordered	in	the	usual	way,	is	a	well-ordered	class.

4.53	The	class	N	={1,	2,	3,	4,	…}	of	all	the	positive	integers,	ordered	in	the	usual	way,	is	a	well-ordered
class.

4.54	 ,	 ordered	 in	 the	 usual
way,	is	a	well-ordered	subclass	of	the	real	numbers.

We	may	define	y	to	be	an	immediate	predecessor	of	x	if	and	only	if	x	is	an	immediate	successor	of	y;
note	that	 in	Examples	4.52	and	4.53,	only	 the	 least	element	of	 the	class	 (namely	1)	does	not	have	an
immediate	predecessor;	however,	in	Example	4.54,	there	are	three	elements	(namely	0,	1	and	2)	which
do	not	have	an	immediate	predecessor.
Note	that	the	class	 	of	all	the	integers,	the	class	 	of	the	rational	numbers,	and	the	class	 	of	 the

real	numbers	are	not	well	ordered.	Indeed,

is	a	subclass	of	each	of	these	classes,	and	V	does	not	have	a	least	element.

4.55	Definition	Let	A	be	a	partially	ordered	class;	we	define	a	section	of	A	to	be	a	subclass	B	⊆	A	with
the	following	property:

4.56	Theorem	Let	A	be	a	well-ordered	class;	B	is	a	section	of	A	if	and	only	if	B	=	A	or	B	 is	an	initial
segment	of	A.

Proof

i) 	 If	B	=	A	or	B	is	an	initial	segment	of	A,	then	obviously	B	is	a	section	of	A.
ii) 	 Conversely,	suppose	B	is	a	section	of	A;	if	B	=	A,	we	are	done;	thus,	suppose	B	≠	A,	that	is,	A	−	B	≠

Ø.	Because	A	is	a	well-ordered	class,	A	−	B	has	a	least	element	which	we	denote	by	m;	we	will	show



that	B	=	Sm.	Well,

(because	m	is	the	least	element	of	A	−	B);	conversely,	suppose	x	∈	B	 :	 if	m	 	x,	 then	m	∈	B	by
4.55,	and	this	contradicts	our	choice	of	m;	thus	x	<	m,	so	x	∈	Sm.	

One	of	 the	most	 important	 features	of	well-ordering	 is	 the	fact	 that	 induction	can	be	used	 to	prove
theorems	about	all	the	elements	of	a	well-ordered	class.	This	fact	is	given	in	the	following	theorem.

4.57	Theorem	 (Principle	 of	 Transfinite	 Induction).	 Let	A	 be	 a	well-ordered	 class,	 and	 let	P(x)	 be	 a
statement	which	is	either	true	or	false	for	each	element	x	∈	A;	suppose	the	following	condition	holds:

Ind.	If	P(y)	is	true	for	every	y	<	x,	then	P(x)	is	true.

In	that	case,	P(x)	is	true	for	every	element	x	∈	A.

Proof.	Suppose	that	P(x)	is	not	true	for	every	x	∈	A;	then	the	class	{y	∈	A	:	P(y)	is	false}	is	nonempty;
hence,	by	4.49,	has	a	least	element	m.	Now	P(x)	is	true	for	every	x	<	m,	so	by	Ind,	P(m)	is	true;	but	we
chose	m	to	be	the	least	element	of	{y	∈	A	:	P(y)	is	false},	so	P(m)	is	false.	This	contradiction	proves	that
P(x)	must	be	true	for	every	x	∈	A.	

EXERCISES	4.5

1. 	 Let	A	be	a	fully	ordered	set.	Prove	that	the	set	of	all	sections	of	A	(ordered	by	inclusion)	is	fully
ordered.

2. 	 Let	A	be	a	fully	ordered	class,	let	B	be	a	partially	ordered	class,	and	let	f	:	A	→	B	be	an	increasing
function.	Prove	that	f	is	injective	if	and	only	if	f	is	strictly	increasing.

3. 	 Let	A	 be	 fully	ordered	class,	 let	B	 be	 a	partially	ordered	class,	 and	 let	 f	 :	A	→	B	 be	 a	 bijective
function.	Prove	that	if	f	is	increasing,	then	f	is	an	isomorphism.

4. 	 Let	A	be	a	fully	ordered	class	and	let	{L,	U}	be	a	partition	of	A.	Prove	that	(L,	U)	is	a	cut	of	A	if
and	only	if	∀x	∈	L	and	∀y	∈	U,	x	 	y.

5. 	 Let	A	be	a	fully	ordered	class.	Prove	that	if	B	and	C	are	convex	subclasses	of	A	and	B	∩	C	≠	Ø,
then	B	 	C	is	convex.

6. 	 Let	A	be	a	 fully	ordered	class.	Let	B	and	C	be	convex	subclasses	of	A	and	suppose	B	∩	C	≠	Ø.
Prove	that	every	upper	bound	of	B	∩	C	is	an	upper	bound	of	B	or	an	upper	bound	of	C.	Conclude
that

7. 	 Let	A	be	a	well-ordered	class.	If	x	∈	A,	prove	that	the	immediate	successor	of	x	and	the	immediate
predecessor	of	x	(if	it	exists)	are	unique.

8. 	 Let	A	be	a	partially	ordered	class;	prove	that	B	is	a	section	of	A	if	and	only	if	(B,	A	−	B)	is	a	cut	of



A.
9. 	 Let	A	be	a	well-ordered	class;	prove	the	following:

a)	The	intersection	of	any	family	of	sections	of	A	is	a	section	of	A.
b)	The	union	of	any	family	of	sections	of	A	is	a	section	of	A.

10. 	 Let	A	be	a	well-ordered	class	and	let	B	and	C	be	initial	segments	of	A.	Prove	that	if	B	⊂	C,	then	B
is	an	initial	segment	of	C.

11. 	 Let	A	be	a	fully	ordered	class.	Let	B	⊆	A	and	m	∈	B;	prove	that	B	has	a	least	element	if	and	only	if
Sm	∩	B	has	a	least	element.	(Assume	Sm	∩	B	≠	Ø).

12. 	 Let	A	be	a	fully	ordered	class.	Prove	that	A	is	well	ordered	if	and	only	if	every	initial	segment	of	A
is	well	ordered.	[Hint:	Use	the	result	of	Exercise	11,	above.]

13. 	 Let	A	be	a	well-ordered	class.	If	a	∈	A,	let	a′	designate	 the	 immediate	successor	of	a,	and	 let	a″
designate	the	immediate	predecessor	of	a	(if	it	exists).	Prove	the	following:

14. 	 Let	A	be	a	well-ordered	class;	if	a	∈	A,	let	a′	designate	the	immediate	successor	of	a.	An	element	q
in	A	will	be	called	a	 limit	element	of	A	 if	q	 is	not	 the	 least	element	of	A	and	q	does	not	have	an
immediate	predecessor.	Prove	the	following:
a) 	 q	is	a	limit	element	of	A	iff	[a	<q	⇒	a′<q].
b) 	 q	is	a	limit	element	of	A	iff	q	=	sup{x	∈	A	:	x	<	q}.

6	ISOMORPHISM	BETWEEN	WELL-ORDERED	CLASSES

The	purpose	of	this	section	is	to	prove	a	remarkable	property	of	well-ordered	classes:	if	A	and	B	are	any
two	well-ordered	classes,	either	A	 is	 isomorphic	with	B,	or	else	one	of	 the	 two	 is	 isomorphic	with	an
initial	 segment	 of	 the	 other.	What	 this	means,	 roughly	 speaking,	 is	 that	well-ordered	 classes	 do	 not
differ	from	one	another	except	in	their	size.	This	fact	has	many	important	applications	in	mathematics,
and	will	be	essential	to	our	later	discussion	of	infinite	sets	and	cardinal	and	ordinal	numbers.	We	begin
by	proving	three	preparatory	lemmas.

4.58	Lemma	Let	A	be	a	well-ordered	class,	and	let	f	be	an	isomorphism	from	A	to	a	subclass	of	A.	Then
x	 	f(x),	∀x	∈	A.

Proof.	Assume,	on	the	contrary,	that	the	class	P	=	{x	∈	A	:	x	>	f(x)}	is	nonempty,	and	let	a	be	the	least
element	of	P	;	hence,	in	particular,	f(a)	<	a.	We	now	have

so	f(a)	∈	P	 ,	which	 is	 impossible	because	a	 is	 the	 least	element	of	P.	Thus	P	=	Ø,	and	 the	 lemma	is
proved.	



4.59	Lemma	Let	A	be	a	well-ordered	class.	There	is	no	isomorphism	from	A	to	a	subclass	of	an	initial
segment	of	A.

Proof.	Assume,	on	the	contrary,	that	f	is	an	isomorphism	from	A	to	a	subclass	of	an	initial	segment	Sa	of
A.	By	Lemma	4.58,	a	 	 f(a),	 so	 f(a)	∉	Sa;	 this	 is	 impossible,	 for	 the	 range	 of	 f	 is	 assumed	 to	 be	 a
subclass	of	Sa.	Hence	a	function	f	of	the	kind	we	assumed	cannot	exist.	

4.60	Corollary	No	well-ordered	class	is	isomorphic	with	an	initial	segment	of	itself.

4.61	Lemma	Let	A	and	B	be	well-ordered	classes.	If	A	is	isomorphic	with	an	initial	segment	of	B,	then
B	is	not	isomorphic	with	any	subclass	of	A.

Proof.	Let	 f	 :	A	→	Sb	 be	 an	 isomorphism	 from	A	 to	 an	 initial	 segment	 of	B.	Assume	 there	 exists	 an
isomorphism	g	:	B	→	C	where	C	⊆	A.	Obviously	g	:	B	→	A	is	a	function;	g	:	B	→	A	and	f	:	A	→	Sb	are
both	injective	and	increasing,	hence	their	composite	f	o	g	:	B	→	Sb	is	injective	and	increasing;	that	is,	by
4.48,	f	o	g	is	an	isomorphism	from	B	to	its	range	which	is	a	subclass	of	Sb.	However,	by	Lemma	4.59,
this	is	impossible;	hence	the	isomorphism	g	that	was	assumed	cannot	exist.	

The	next	theorem	is	widely	used	in	mathematics.	It	will	play	a	significant	role	in	discussions	later	in
this	book,	and	has	important	applications.

4.62	Theorem	Let	A	and	B	be	well-ordered	classes;	exactly	one	of	the	following	three	cases	must	hold:
i) 	 A	is	isomorphic	with	B.
ii) 	 A	is	isomorphic	with	an	initial	segment	of	B.
iii) 	 B	is	isomorphic	with	an	initial	segment	of	A.

Proof.	We	begin	by	proving	that	the	following	holds	in	any	well-ordered	class	X.

I.	Let	Sx	and	Sy	be	initial	segments	of	X;	if	x	<	y,	then	Sx	is	an	initial	segment	of	Sy.

Indeed,	if	x	<	y,	then	clearly	Sx	⊂	Sy;	furthermore,	Sx	is	a	section	of	Sy,	for

thus	by	4.56	(note	that	Sx	≠	Sy	because	x	≠	y)	we	conclude	that	Sx	is	an	initial	segment	of	Sy.
Now	let	A	and	B	be	well-ordered	classes,	and	let	C	be	the	following	subclass	of	A:

If	x	∈	C,	there	is	no	more	than	one	r	∈	B	such	that	Sx	 	Sr;	for	suppose	Sx	 	Sr	and	Sx	 	St	,	where	r	≠	t,
say	r	<	t.	By	I,	Sr	is	an	initial	segment	of	St;	but	Sr	 	Sx	 	St	,	and	this	is	impossible	by	4.60;	thus	for
each	 x	∈	C,	 the	 element	 r	 ∈	 B	 such	 that	 Sx	 	 Sr	 is	 unique.	 Let	 us	 designate	 the	 unique	 r	 ∈	 B
corresponding	to	x	by	F(x);	thus	F	:	C	→	B	is	a	function.	In	particular,	if	D	=	ranF	,	then	F	:	C	→	D	is	a
function;	we	will	show	next	that	F	:	C	→	D	is	an	isomorphism.



F	is	injective.	Suppose	F	(u)	=	F(v)	=	r,	that	is,	Su	 	Sr	 	Sv.	If	u	≠	v,	say	u	<	v,	then	by	I,	Su	is	an	initial
segment	of	Sv,	and	this	is	impossible	by	4.60.	We	conclude	that	u	=	v.

F	is	increasing.	Suppose	u	 	v,	where	F	(u)	=	r	and	F(v)	=	t;	hence	Su	 	Sr	and	Sv	 	St.	Assume	that	t	<
r,	hence	by	I,	St	is	an	initial	segment	of	Sr;	now	Su	⊆	Sv,	so
a) 	 Sv	is	isomorphic	with	an	initial	segment	of	Sr,	and

b) 	 Sr	is	isomorphic	with	a	subclass	of	Sv.

This	is	impossible	by	4.61,	hence	we	conclude	that	r	 	t,	that	is,	F(u)	 	F(v).	It	follows,	by	4.48,	that	F	:
C	→	D	is	an	isomorphism.
Next,	we	will	show	that	C	is	a	section	of	A;	that	is,	given	c	∈	C	and	x	<	c,we	will	prove	that	x	∈	C.	If

F(c)	=	r,	then	Sc	 	Sr,	that	is,	there	exists	an	isomorphism	g	:	Sc	→	Sr.	It	is	a	simple	exercise	to	prove
that

is	an	isomorphism;	the	details	are	left	as	an	exercise	for	the	reader.	Thus	Sx	 	Sg(x),	so	x	∈	C.
An	analogous	argument	shows	that	D	is	a	section	of	B.	Thus	by	4.56,	our	theorem	will	be	proven	if

we	can	show	that	the	following	is	false:

C	is	an	initial	segment	of	A,	and	D	is	an	initial	segment	of	B.

Indeed,	 suppose	 the	above	 to	be	 true:	 say	C	=	Sx	and	D	=	Sr;	we	have	proven	 that	F	 :	C	→	D	 is	 an
isomorphism,	that	is,	C	 	D,so	Sx	 	Sr.	But	then	x	∈	C,	that	is,	x	∈	Sx,	which	is	absurd;	this	proves	that
one	of	 the	conditions	(i),	 (ii)	or	 (iii)	necessarily	holds.	The	fact	 that	no	 two	of	 these	conditions	holds
simultaneously	follows	from	4.60	and	4.61.	

4.63	Corollary	Let	A	 be	 a	well-ordered	class;	 every	 subclass	of	A	 is	 isomorphic	with	A	 or	 an	 initial
segment	of	A.

Proof.	If	B	is	a	subclass	of	A,	then	B	is	well	ordered;	hence	by	4.62,	B	 	A,	or	B	is	isomorphic	with	an
initial	segment	of	A,or	A	is	isomorphic	with	an	initial	segment	of	B.	In	order	to	prove	our	result	we	must
show	that	the	last	case	cannot	hold;	indeed,	suppose	it	does:	then	by	4.61,	B	is	not	isomorphic	with	any
subclass	of	A.	But	B	 	B	and	B	is	a	subclass	of	A,	so	we	have	a	contradiction;	thus	the	last	case	cannot
hold.	

EXERCISES	4.6

1. 	 In	the	proof	of	Theorem	4.62,	prove	that	g[Sx]	:	Sx	→	Sg(x)	is	an	isomorphism.

2. 	 In	the	proof	of	Theorem	4.62,	prove	that	D	is	a	section	of	B.
3. 	 Let	A	be	a	well-ordered	class.	Prove	that	the	identity	mapping	IA	is	the	only	isomorphism	from	A	to

A.
4. 	 Let	A	and	B	be	well-ordered	classes.	Prove	that	if	f	:	A	→	B	and	g	:	B	→	A	are	isomorphisms,	then	g

=	f	−1.



5. 	 Let	A	and	B	be	well-ordered	classes.	Prove	that	there	exists	at	most	one	isomorphism	f	:	A	→	B.
6. 	 Let	A	and	B	be	well-ordered	classes.	Prove	 that	 if	A	 is	 isomorphic	with	a	subclass	of	B,	and	B	 is

isomorphic	with	a	subclass	of	A,	then	A	is	isomorphic	with	B.
7. 	 Let	A	and	B	be	well-ordered	classes.	Prove	that	if	A	is	isomorphic	with	a	class	containing	B,	and	B	is

isomorphic	with	a	class	containing	A,	then	A	is	isomorphic	with	B.
8. 	 Let	A	and	B	 be	well-ordered	classes.	Suppose	 that	A	 has	 no	 greatest	 element;	 suppose	 that	 every

element	of	B	 (except	 the	 least	element)	has	an	 immediate	predecessor.	Prove	 that	B	 is	 isomorphic
with	a	section	of	A.



5
The	Axiom	of	Choice	and	Related	Principles

1	INTRODUCTION

From	here	on,	throughout	the	remainder	of	this	book,	we	will	be	concerned	mainly	with	sets.

In	this	chapter	we	will	discuss	a	concept	which	is	one	of	the	most	important,	and	at	the	same	time	one
of	 the	 most	 controversial,	 principles	 of	 mathematics.	 In	 1904,	 Zermelo	 brought	 attention	 to	 an
assumption	which	is	used	implicitly	in	a	variety	of	mathematical	arguments.	This	assumption	does	not
follow	from	any	previously	known	postulates	of	mathematics	or	logic,	hence	it	must	be	taken	as	a	new
axiom;	Zermelo	 called	 it	 the	Axiom	of	Choice.	 The	Axiom	 of	Choice	 has	 significant	 implications	 in
many	branches	of	mathematics,	and	consequences	so	powerful	as,	sometimes,	 to	defy	credibility.	The
controversy	over	this	principle	continues	in	our	day;	we	will	present	some	of	its	aspects	in	this	chapter.
In	order	to	illustrate	where	the	Axiom	of	Choice	intrudes	in	common	mathematical	arguments,	let	us

examine	the	following	statement.

5.1	Let	A	be	a	nonempty,	partially	ordered	set,	and	suppose	 that	 there	are	no	maximal	elements	 in	A;
then	there	exists	a	nonterminating,	increasing	sequence	x1	<	x2	<	x3	<	 	of	elements	of	A.

Proof.	A	 is	nonempty	by	hypothesis,	hence	we	may	select	an	arbitrary	element	of	A	and	call	 it	x1.	By
induction,	suppose	that	we	are	given	x1	<	x2	<	 	<	xn;	we	define	An	to	be	the	set	of	all	the	elements	x	∈
A	such	that	x	>	xn.	An	is	nonempty,	for	if	it	were	empty,	then	xn	would	be	maximal,	contradicting	one	of
our	assumptions.	We	select	an	arbitrary	element	of	An	and	call	it	xn+1;	thus	we	have	x1	<	 	<	xn	<xn+1.
This	inductive	process	defines	an	increasing	sequence	Sn	={x1,x2,…,	xn}	for	each	natural	number	n;

that	is,	it	give	us

and	 so	 on.	 Now	 if	 we	 let	 	 (where	 N	 is	 the	 set	 of	 all	 the	 positive	 integers),	 then	 S	 is	 the
nonterminating	sequence	x1	<	x2	<	x3	<	 	that	we	are	seeking.

A	careful	examination	of	the	above	argument	will	reveal	that	we	have	used	an	assumption	which	is
by	no	means	self-evident	or	undisputably	plausible.	What	we	have,	in	fact,	done	is	to	assume	that	we
can	make	an	infinite	succession	of	arbitrary	choices.	It	is	common	enough,	in	mathematics,	to	make	one
arbitrary	choice	(we	do	this	every	time	we	can	say	“let	x	be	an	arbitrary	element	of	A”),	and	experience
confirms	that	we	can	make	a	finite	succession	of	choices;	but	to	make	an	infinite	succession	of	choices
is	to	carry	an	argument	through	an	infinite	number	of	steps—	and	nothing	in	our	experience	or	in	the
logic	we	habitually	use	justifies	such	a	process.
In	 the	 proof	 of	 5.1,	 it	 was	 necessary	 to	 choose	 the	 elements	 x1,x2,x3,	 etc.,	 in	 succession,	 for	 each

choice	depended	on	the	preceding	ones.	The	fact	that	the	choices	are	successive	may	appear	to	be	the
most	disturbing	 element	 in	 the	whole	proof,	 for	 this	 involves	 a	 time	 factor	 (an	 infinite	 succession	 of



acts,	each	on	requiring	a	certain	amount	of	time,	would	take	infinitely	long).	However,	the	argument	can
be	altered	in	such	a	way	that	all	the	choices	are	made	simultaneously	and	independently	of	one	another;
we	proceed	as	follows.
Let	us	admit	that	from	each	nonempty	subset	B	⊆	A	it	is	possible	to	choose	an	arbitrary	element	rB,

to	be	called	the	“representative”	of	B.	Note	that	 in	 this	case	each	choice	is	 independent	of	 the	others;
hence,	in	a	manner	of	speaking,	all	the	choices	can	be	made	simultaneously.	Returning	to	the	proof	of
5.1,	if	xn	and	An	are	given,	we	may	define	xn+1	to	be	the	representative	of	An;	in	other	words,	instead	of
choosing	representatives	for	A1,	A2,	A3,	etc.,	 in	succession,	we	have	chosen	representatives	for	all	 the
nonempty	subsets	of	A	in	advance.	(Of	course,	this	requires	that	we	make	many	more	choices	than	are
needed	for	our	original	argument,	but	this	is	the	price	we	must	pay	to	substitute	simultaneous	choices
for	successive	ones.)
The	preceding	paragraph	makes	it	clear	that	the	successive	nature	of	the	choices	is	not	the	crux	of	the

problem;	the	problem	is:	Can	we	make	infinitely	many	choices—be	they	successive	or	simultaneous?
It	is	worth	noting	that	in	certain	particular	cases	the	answer	to	this	question	is	an	obvious	“yes.”	For

example,	if	A	is	a	well-ordered	set,	we	may	define	the	“representative”	of	each	nonempty	subset	B	⊆	A
to	be	the	least	element	of	B;	because	A	is	well	ordered,	we	have	a	law	at	our	disposal	which	provides	us
with	 a	 representative	 for	 each	 nonempty	 subset	 of	 A.	 The	 situation	 in	 5.1,	 however,	 is	 completely
different,	for	we	do	not	have	any	ready-made	rule	which	is	able	to	furnish	us	with	representatives.	It	is
only	the	latter	case—as	in	5.1—which	is	of	interest	to	us	here.
In	the	proof	of	5.1	we	speak	of	“selecting”	an	element	of	An;	clearly,	we	do	not	wish	to	introduce	the

notion	of	 “selecting”	 as	 a	new	undefined	 concept	of	 set	 theory,	 so	we	avoid	 the	use	of	 this	word	by
letting	an	appropriate	function	“select”	representatives.

5.2	Definition	Let	A	be	a	set;	 let	us	agree	 to	write	 .	By	a	choice	 function	 for	A	we
mean	a	function	r	:	 	such	that

We	will	sometimes	write	rB	for	r(B)	and	call	rB	the	representative	of	B.

5.3	Example	Let	A	={a,	 b,	 c};	 an	 example	of	 a	 choice	 function	 for	A	 is	 the	 function	r	 given	 in	 the
following	table.

In	the	light	of	Definition	5.2,	the	question	we	have	been	asking	can	be	expressed	as	follows:	if	A	is	a
set,	does	there	exist	a	choice	function	for	A?	A	crucial	comment	needs	to	be	made	at	this	point:	the



proof	 of	 5.1	 does	 not	 require	 that	 we	 construct	 a	 choice	 function,	 it	 requires	 merely	 that	 a	 choice
function	exist!	Indeed,	if	r	is	a	choice	function	for	A,	then—in	the	controversial	step	of	the	proof—we
let	xn+1	=	r(An);	if	we	are	assured	that	r	exists,	there	is	no	further	difficulty.
The	Axiom	of	Choice	asserts	that	every	set	has	a	choice	function;	its	intent	is	to	state	the	existence	of

a	choice	 function	 for	every	 set,	 even	where,	 admittedly,	none	can	be	actually	constructed.	 It	must	be
emphasized	here	that	to	state	the	existence	of	a	choice	function	is	quite	a	different	thing	from	producing
one,	or	even	claiming	 that	one	can	be	produced.	For	we	are	merely	asserting	 that	among	all	possible
functions	from	 	to	A,	there	is	one	at	least	which	maps	every	B	onto	an	element	x	∈	B.
The	essence	of	 the	Axiom	of	Choice	 is	 that	 it	 is	an	existential	 statement	 rather	 than	a	constructive

one.	Once	again,	it	states	that	among	all	possible	functions	from	 	to	A,	there	is	at	least	one	which
satisfies	the	condition	of	Definition	5.2;	this	does	not	seem	grossly	unreasonable.	The	Axiom	of	Choice
makes	no	claim	that	a	choice	function	can	be	constructed;	hence,	it	does	not	assert	that	the	sequence	of
choices	described	in	the	proof	of	5.1	can	be	effectively	carried	out—and	indeed	this	is	not	necessary	in
order	for	the	proof	to	work.
Before	 the	 reader	 decides	whether	 or	 not	 the	Axiom	of	Choice	 seems	 plausible	 to	 him,	 he	 should

examine	 some	 of	 the	 equivalent	 propositions	 which	 are	 developed	 in	 the	 next	 few	 sections	 of	 this
chapter.	 Some	 of	 them	 are	 very	 powerful	 indeed,	 and	 a	 rejection	 of	 any	 one	 of	 them	would	 entail	 a
rejection	of	all	of	them	(including,	of	course,	the	Axiom	of	Choice).	It	is	important	to	note	that	what	all
of	these	principles	have	in	common	is	the	fact	that	they	are	nonconstructive:	they	assert	the	existence	of
mathematical	objects	which	cannot	be	explicitly	produced.	 It	 is	precisely	 this	 aspect	of	 the	Axiom	of
Choice	and	related	principles	which	makes	them	unacceptable	to	the	intuitionists	(see	page	17,	Section
5,	Chapter	0),	who	claim	that	mathematical	existence	and	constructibility	are	one.
Without	 reentering	 into	 the	 arguments	 for	 and	 against	 admitting	 nonconstructive	 propositions	 into

mathematics,	we	can	say	this:	intuitively,	the	Axiom	of	Choice	cannot	be	rejected	outright,	nor	can	we
feel	 truly	certain	of	 its	validity.	A	more	 important	consideration,	however,	 is	 the	 fact	 that	 it	has	been
proven	 that	 the	 Axiom	 of	 Choice	 does	 not	 contradict	 the	 other	 axioms	 of	 set	 theory,	 nor	 is	 it	 a
consequence	 of	 them.	Thus	 it	 has	 the	 same	 status	 as	 another	 famous	 axiom	 in	mathematics,	 namely
Euclid’s	 “Fifth	Postulate.”	We	can	have	 a	 “standard”	 set	 theory	 in	which	we	postulate	 the	Axiom	of
Choice,	and	“nonstandard”	set	theories	in	which	we	postulate	alternatives	to	the	Axiom	of	Choice.
In	conclusion,	since	the	Axiom	of	Choice	is	neither	a	consequence	of	the	other	axioms	of	set	theory

nor	 in	 conflict	with	 them,	 it	 is	 impossible	 to	make	 a	 decision	pro	 or	con	 on	 purely	 logical	 grounds.
Since	the	Axiom	of	Choice	involves	an	area	of	mathematics	(namely,	infinite	sets)	which	is	outside	the
realm	of	our	experience,	it	will	never	be	possible	to	confirm	it	or	deny	it	by	“observation.”	In	the	final
analysis,	the	decision	must	be	a	purely	personal	one	for	each	individual	mathematician	to	make;	it	is	a
matter	of	personal	taste.

2	THE	AXIOM	OF	CHOICE

In	the	preceding	section,	we	have	given	the	background	for	our	next	axiom:

A10	(Axiom	of	Choice).	Every	set	has	a	choice	function.

In	the	literature	there	are	several	other	ways	of	stating	the	Axiom	of	Choice	which	are	equivalent	to
our	 Axiom	 A10.	 We	 shall	 present	 two	 of	 these	 statements	 here,	 and	 several	 more	 in	 the	 exercises
following	this	section.



Ch	1	Let	 	be	a	set	whose	elements	are	mutually	disjoint,	nonempty	sets.	There	exists	a	set	C	which
consists	of	exactly	one	element	from	each	A	∈	 .

If	 	is	a	family	of	disjoint,	nonempty	sets,	then	the	set	C	described	in	Ch	1	is	called	a	choice	set	for	
.	Thus,	Ch	1	asserts	that	every	set	of	disjoint,	nonempty	sets	has	a	choice	set.

Ch	2	Let	{Ai}i∈I	be	a	set	of	sets.	If	I	is	nonempty	and	each	Ai	is	nonempty,	then	 	is	nonempty.
Let	 us	 show,	 first,	 that	 A10	⇒	 Ch	 1.	 Suppose	 	 is	 a	 set	 whose	 elements	 are	 mutually	 disjoint,

nonempty	sets,	and	let

Clearly,	 ;	 by	 A10,	 there	 is	 a	 function	 r	 :	 	 such	 that	 r(B)	 ∈	 B	 for	 each	
,	it	follows	immediately	that	C	is	the	set	required	in	Ch.	1.

Next,	Ch	1	⇒	A10.	If	A	is	a	set	and	B	⊆	A,	let	QB	={(B,	x)	:	x	∈	B}.	If	B	and	D	are	distinct,	then	QB
and	QD	are	disjoint,	for	QB	consists	of	pairs	(B,	x),	whereas	QD	consists	of	pairs	(D,	x).	Thus	the	family	

	is	a	set	of	disjoint,	nonempty	sets*;	it	follows	by	Ch1	that	there	exists	a	set	C	which	consists
of	exactly	one	element	(B,	x)	from	each	QB;	it	is	easily	verified	that	C	is	choice	function	for	A.
The	fact	that	A10	⇒	Ch	2	follows	easily	from	the	definition	of	a	product	of	sets.	Indeed,	let	{Ai}i∈I	be

a	set	of	nonempty	sets,	and	let

by	A10,	there	exists	a	function	r	:	 	such	that	r(B)	∈	B	for	each	B	∈	 ;	hence,	in	particular,
r(Ai)	∈	Ai	for	each	i	∈	I.	If	we	define	a	by	a(i)	=	r(Ai),	then	a	is	a	function	from	I	to	A	such	that	a(i)	∈
Ai	for	each	i	∈	I;	that	is,	a	∈	 .	Thus	 	is	nonempty.
The	fact	that	Ch	2	⇒	A10	can	be	proven	by	an	argument	similar	to	the	above;	the	details	are	left	to

the	reader.
In	Chapter	2	we	promised	to	give	a	characterization	of	surjective	functions	whose	proof	depends	on

the	Axiom	of	Choice.

5.4	Theorem	Let	A	be	a	set	and	let	f	:	A	→	B	be	a	function;	f	:	A	→	B	is	surjective	if	and	only	if	there
exists	a	function	g	:	B	→	A	∋	f	 	g	=	IB.

Proof
i) 	 Suppose	there	exists	a	function	g	:	B	→	A	such	that	f	 	g	=	IB;	the	proof	that	f	:	A	→	B	is	surjective

is	given	in	part	(ii)	of	the	proof	of	2.24.
ii) 	 Conversely,	suppose	that	f	:	A	→	B	is	surjective;	for	each	y	∈	B,	 	is	a	nonempty	subset	of	A.	If	r

is	a	choice	function	for	A,	we	define	g	:	B	→	A	by	g(y)	=	r[ ],	∀y	∈	B.	In	simple	terms,	for	each	y
∈	B	we	let	g(y)	be	an	arbitrary	element	of	 .	It	is	obvious	that	if	x	=	g(y),	then	x	∈	 ,	hence	f(x)
=	y;	thus



For	the	sake	of	simplicity	we	have	proven	Theorem	5.4	in	the	case	where	A	is	a	set;	using	a	slightly
stronger	form	of	the	Axiom	of	Choice	we	can	prove	5.4	in	the	more	general	case	where	A	is	any	class;
we	omit	the	details.

EXERCISES	5.2

1. 	 Let	A	be	a	set	and	let	f	:	A	→	B	be	a	surjective	function.	Prove	that	there	exists	a	subset	C	⊆	A	such
that	C	is	in	one-to-one	correspondence	with	B.	[Hint:	Use	5.4.]

2. 	 Let	A	be	a	set,	let	f	:	B	→	C	and	g	:	A	→	C	be	functions,	and	suppose	that	ranf	⊆	rang.	Prove	that
there	exists	a	function	h:	B	→	A	such	that	g	 	h	=	f.	[Hint:	Use	the	Axiom	of	Choice.]

3. 	 Let	{Ai}i∈I	be	an	indexed	family	of	classes,	where	I	is	a	set.	Prove	that	there	exists	J	⊆	I	such	that

and,	in	{Aj	}j∈J,	each	Aj	is	indexed	only	once	(that	is,	Ai	=	Aj	⇒	i	=	j).	[Hint:	Use	Remark	2.38	and
the	Axiom	of	Choice.]

4. 	 Prove	that	the	statement	of	Theorem	5.4	implies	the	Axiom	of	Choice.

In	each	of	the	following	problems	a	proposition	is	stated.	Prove	that	this	proposition	is	equivalent	to	the
Axiom	of	Choice.
5. 	 Let	 	be	a	set	of	disjoint,	nonempty	sets.	There	exists	a	function	f,	whose	domain	in	 ,	such	that	for

all	A	∈	 ,	f(A)	∈	A.
6. 	 Let	E	be	a	set	and	suppose	G	⊆	E	×	E.	Let	A	=	dom	G	and	B	=	ran	G;	then	there	exists	a	function	f	:

A	→	B	such	that	f	⊆	G.
7. 	 Let	 	 be	 a	 set	whose	 elements	 are	 nonempty	 sets,	 and	 let	 .	 Then,	 corresponding	 to	 every

function	g:	 ,	there	exists	a	function	g*:	 	such	that	g*(B)	∈	g(B).
8. 	 Let	B	be	a	set	and	let	f	:	A	→	B	be	a	function;	then	there	exist	subsets	C	⊆	A	and	g	⊆	f	such	that	g	:

C	→	B	is	an	injective	function	and	rang	=	ranf.

3	AN	APPLICATION	OF	THE	AXIOM	OF	CHOICE

The	 purpose	 of	 this	 section	 is	 to	 develop	 a	 consequence	 of	 the	Axiom	of	Choice.	The	 result	we	 are
about	 to	 prove	 is	 valuable	 as	 a	 stepping	 stone	which	will	 enable	 us	 to	 prove	 the	 important	maximal
principles	that	follow	in	the	next	section.
Let	A	be	a	partially	ordered	set	such	that	every	chain	of	A	has	a	sup	in	A;	assume	that	A	has	a	least

element	p.	We	intend	to	show	that	there	exists	an	element	a	∈	A	such	that	a	has	no	immediate	successor.
In	order	 to	 show	 this,	we	will	 suppose	 that	 every	element	x	∈	A	 has	 an	 immediate	 successor;	 this

assumption	will	lead	to	a	contradiction.
If	every	element	of	A	has	an	immediate	successor,	then	we	can	define	a	function	f	:	A	→	A	such	that

for	 each	x	∈	A,	 f	 (x)	 is	 an	 immediate	 successor	 of	 x.	 Indeed,	 let	Tx	 be	 the	 set	 of	 all	 the	 immediate
successors	 of	x;	 by	 the	Axiom	of	Choice,	 there	 exists	 a	 choice	 function	g	 such	 that	g(Tx)	∈	Tx.	We



define	f	by	letting	f(x)	=	g(Tx);	clearly,	f(x)	is	an	immediate	successor	of	x.

5.5	Definition	A	subset	B	⊆	A	is	called	a	p-sequence	if	the	following	conditions	are	satisfied.
α) 	 p	∈	B,
β) 	 if	x	∈	B,	then	f(x)	∈	B,
γ) 	 if	C	is	a	chain	of	B,	then	sup	C	∈	B.

There	are	p-sequences;	for	example,	A	is	a	p-sequence.

5.6	Lemma	Any	intersection	of	p-sequences	is	a	p-sequence.
The	proof	is	left	as	an	exercise	for	the	reader.

Let	P	be	the	intersection	of	all	the	p-sequences.	(Note	that	P	≠	Ø	because	p	∈	P	).	By	5.6,	P	is	a	p-
sequence.

5.7	Definition	An	element	x	∈	P	is	called	select	if	it	is	comparable	with	every	element	y	∈	P.

5.8	Lemma	Suppose	x	is	select,	y	∈	P,	and	y	<	x.	Then	f(y)	 	x.

Proof.	y	∈	P,	P	is	a	p-sequence,	hence	by	(β),	f	(y)	∈	P.	Now,	x	is	select,	so	either	f(y)	 	x	or	x	<	f(y).	By
hypothesis	y	<	 x;so	 if	x	<	 f(y),we	have	y	<	 x	<	 f(y),	 which	 contradicts	 the	 assertion	 that	 f(y)	 is	 the
immediate	successor	of	y.	Hence	f(y)	 	x.	

5.9	Lemma	Suppose	x	is	select.	Let

Then	Bx	is	a	p-sequence.

Proof.	We	will	show	that	Bx	satisfies	the	three	conditions	which	define	a	p-sequence.

α) 	 Since	p	is	the	least	element	of	A,	p	 	x,	hence	p	∈	Bx.
β) 	 Suppose	y	∈	Bx;	then	y	 	x	or	y	≥	f(x).	Consider	three	cases:

1) 	 y	<	x.	Then	f(y)	 	x	by	5.8,	hence	f(y)	∈	Bx.
2) 	 y	=	x.	Then	f(y)	=	f(x),	thus	f(y)	≥	f(x);	hence	f(y)	∈	Bx.
3) 	 y	 	f(x).	But	f(y)>y,so	f(y)>f(x);	hence	f(y)	∈	Bx.
In	each	case	we	conclude	that	f(y)	∈	Bx.

γ) 	 If	C	is	a	chain	of	Bx,	let	m	=	sup	C.	For	each	y	∈	Bx,y	 	x	or	y	≥	f(x).	If	∃y	∈	C	y	≥	f(x),	then	(since	m
≥	y)	m	≥	f(x),so	m	∈	Bx.	Otherwise,	∀y	∈	C,	y	 	x;	 thus	x	 is	an	upper	bound	of	C,so	m	 	x.	Thus
again	m	∈	Bx.	



5.10	Corollary	If	x	is	select,	then	∀y	∈	P,	y	 	x	or	y	≥	f(x).

Proof.	Bx	 is	 a	 p-sequence;	P	 is	 the	 intersection	 of	 all	 p-sequences;	 hence	P	⊆	Bx.	 But	Bx	⊆	 P	 by
definition,	hence	P	=	Bx.	So	∀y	∈	P,	y	 	x	or	y	≥	f(x).	

5.11	Lemma	The	set	of	all	select	elements	is	a	p-sequence.

Proof
α) 	 p	is	select	because	it	is	less	than	(hence	comparable	to)	each	y	∈	P.
β) 	 Suppose	x	is	select,	by	5.10.	∀y	∈	P,	either	y	 	x	(in	which	case	y	 	f(x)	because	x	<	f(x))	or	y	≥	f(x).

Thus	f(x)	is	select.
γ) 	 Let	C	be	a	chain	of	select	elements	and	let	m	=	sup	C;	let	y	∈	P.	If	∃x	∈	C	y	 	x,	then	y	 	m	(because

x	 	m).	Otherwise,	∀x	∈	C,	x	 	y,	hence	y	is	an	upper	bound	of	C,so	m	 	y.	Thus	m	is	select.	

5.12	Corollary	P	is	fully	ordered.

Proof.	The	set	S	of	all	the	select	elements	is	a	p-sequence;	P	is	the	intersection	of	all	the	p-sequences;
hence	P	⊆	S.	But	S	⊆	P	(by	definition	a	select	element	is	in	P	),	so	P	=	S.	Thus	each	element	of	P	 is
select,	that	is,	is	comparable	to	each	element	of	P.	

Corollary	5.12	produces	a	contradiction.	Indeed,	let	m	=	sup	P;	by	condition	(γ	),	m	∈	P	because	P	is
a	chain	of	P.	But	by	condition	(β),	f	(m)	∈	P,	hence	f	(m)	 	m;	this	contradicts	the	assertion	that	f	(m)	is
an	immediate	successor	of	m.	We	conclude:

5.13	Theorem	Let	A	be	a	partially	ordered	set	such	that	(1)	A	has	a	least	element	p	and	(2)	every	chain
of	A	has	a	sup	in	A.	Then	there	is	an	element	x	∈	A	which	has	no	immediate	successor.

4	MAXIMAL	PRINCIPLES

The	 propositions	 we	 are	 about	 to	 develop	 are	 widely	 used	 in	 mathematics	 to	 prove	 theorems	 by
“nonconstructive”	 methods.	 They	 assert	 the	 existence	 of	 mathematical	 objects	 which	 cannot	 be
constructed.	For	example,	in	linear	algebra	a	maximal	principle	can	be	used	to	prove	that	every	vector
space	has	a	basis,	although,	in	general,	it	is	impossible	to	exhibit	such	a	basis.
The	maximal	principles	are	consequences	of	the	Axiom	of	Choice.	Furthermore,	as	we	shall	verify	in

Section	6,	they	are	equivalent	to	the	Axiom	of	Choice.

5.14	Theorem	(Hausdorff’s	Maximal	Principle).	Every	partially	ordered	set	has	a	maximal	chain.

Proof.	Let	A	be	a	partially	ordered	set,	and	let	 	be	the	set	of	all	the	chains	of	A,	ordered	by	inclusion.	
	has	a	least	element,	namely	the	empty	set.	Now	let	 	be	a	chain	of	 	and	let

we	will	show	that	K	∈	 .	Indeed,	if	x,	y	∈	K,	then	x	∈	D	and	y	∈	E	for	some	elements	D	∈	 	and	E	∈	



;	but	 	is	a	chain	of	 ,	hence	E	⊆	D	or	D	⊆	E,	say	E	⊆	D;	thus	x,	y	∈	D.	But	D	 is	a	chain	of	A
(remember	that	 	is	the	set	of	all	the	chains	of	A),	so	x	and	y	are	comparable;	this	proves	that	K	is	a
chain	of	A,	 that	 is,	K	∈	 .	By	 4.26	K	 =	 sup	 ;	 it	 follows	 that	 the	 conditions	 of	Theorem	5.13	 are
satisfied	by	 .	Thus,	by	5.13,	there	is	an	element	C	∈	 	which	has	no	immediate	successor;	 that	is,
there	exists	no	x	∈	A	−	C	such	that	C	∪{x}	is	a	chain	of	A.	Thus,	clearly,	C	is	a	maximal	chain.	

5.15	Definition	A	partially	ordered	set	A	is	said	to	be	inductive	if	every	chain	of	A	has	an	upper	bound
in	A.

5.16	Theorem	(Zorn’s	Lemma).	Every	inductive	set	has	at	least	one	maximal	element.

Proof.	Let	A	be	an	inductive	set;	by	5.14,	A	has	a	maximal	chain	C;	by	5.15,	C	has	an	upper	bound	m.
Now	suppose	there	exists	an	element	x	∈	A	x	>	m;	then	x	∉	C,	but	x	is	comparable	with	(to	be	exact,	x
is	 greater	 than)	 every	 element	 of	C.	Thus,	C	∪{x}	 is	 a	 chain,	 contradicting	 the	 assertion	 that	C	 is	 a
maximal	chain;	hence	there	exists	no	element	x	∈	A	such	that	x	>	m,so	m	is	a	maximal	element	of	A.	

Theorems	5.14	and	5.16	can	be	stated	in	a	somewhat	stronger	form	as	follows:

5.17	Theorem	Every	partially	ordered	set	has	a	maximal	well-ordered	subset.

5.18	Theorem	(Let	us	call	a	partially	ordered	set	A	weakly	inductive	if	every	well-ordered	subset	of	A
has	an	upper	bound	in	A.)	Every	weakly	inductive	set	has	at	least	one	maximal	element.

The	proofs	of	the	last	two	theorems	are	similar	to	those	of	Theorems	5.14	and	5.16;	they	are	left	as	an
exercise	for	the	reader.

EXERCISES	5.4

1. 	 Let	A	be	a	partially	ordered	set	and	let	 	be	the	set	of	all	the	well-ordered	subsets	of	A.	For	C	∈	
and	D	∈	 ,	define	 	if	and	only	if	 	is	a	section	of	D.
a) 	 Prove	that	 	is	a	partial	order	relation	in	 .
b) 	 Prove	that	 ,	ordered	by	 ,	is	inductive.
c) 	 Using	part	(b)	and	Zorn’s	Lemma,	prove	Theorem	5.17.

2. 	 Use	the	result	of	Exercise	1,	above,	to	prove	Theorem	5.18.
3. 	 Derive	Hausdorff’s	Maximal	Principle	from	Zorn’s	Lemma.
4. 	 Prove	that	Zorn’s	Lemma	is	equivalent	to	the	following:	Let	A	be	an	inductive	set	and	let	a	∈	A;

then	A	has	at	least	one	maximal	element	b	such	that	 .
5. 	 Prove	that	Hausdorff’s	Maximal	Principle	is	equivalent	to	the	following:	If	A	is	a	partially	ordered

set	and	B	is	a	chain	of	A,	then	A	has	a	maximal	chain	C	such	that	B	⊆	C.
6. 	 Let	A	be	any	set	with	more	than	one	element.	Prove	that	there	exists	a	bijective	function	f	:	A	→	A

such	that	f(x)	=x,	∀x	∈	A.
7. 	 A	set	of	sets	 	is	said	to	be	disjointed	if	∀C,	D	∈	 ,	C	∩	D	=	Ø.	Let	 	be	a	set	of	sets;	prove	that	

	has	a	maximal	disjointed	subset.
8. 	 Let	A	be	a	set	and	let	 	be	a	set	of	subsets	of	A;	let	 	have	the	following	property:	B	∈	 	iff	every



finite	 subset	 of	B	 belongs	 to	 ;	 then	 	 is	 said	 to	 be	 of	 finite	 character.	 Let	 	 be	 ordered	 by
inclusion	and	suppose	 	is	of	finite	character.
a) 	 Prove	that	 	is	an	inductive	set.
b) 	 Prove	that	 	has	a	maximal	element.

9. 	 Prove	 that	 every	 vector	 space	 V	 has	 a	 basis.	 [Hint:	 Consider	 the	 set	 	 of	 all	 the	 linearly
independent	 subsets	 of	 V.	 Use	 Zorn’s	 Lemma:	 it	 is	 easily	 verified	 that	 any	 maximal	 linearly
independent	subset	of	V	is	a	basis	of	V.]

10. 	 Let	G	be	a	group	and	let	A	be	an	arbitrary	subset	of	G	such	that	A	includes	the	identity	element	of
G.	Prove	that	among	the	subgroups	of	G	which	are	subsets	of	A,	there	is	a	maximal	one.

5	THE	WELL-ORDERING	THEOREM

The	 well-ordering	 theorem,	 which	 will	 be	 presented	 in	 this	 section,	 is	 one	 of	 the	 most	 important
consequences	of	the	Axiom	of	Choice	and	is	an	outstanding	example	of	a	nonconstructive	proposition.
It	asserts	that	any	set	can	be	well	ordered;	that	is,	if	A	is	any	set,	there	exists	an	order	relation	G	 such
that	A,	ordered	by	G,	is	a	well-ordered	set.	The	proof	of	the	well-ordering	theorem	gives	no	indication
how	 such	 a	well-ordering	 of	 the	 elements	 of	A	 is	 to	 be	 accomplished;	 it	 asserts	merely	 that	 a	well-
ordering	exists.
A	finite	set	A	can	obviously	be	well	ordered;	for	example,	if	A	=	{a,	b,	c},	then	a	<	b	<	c,	b	<	a	<	c,

c	<	b	<	a	are	different	well-orderings	of	A.	However,	no	method	has	yet	been	discovered	to	well-order
sets	 such	 as	 the	 set	 	 of	 the	 real	 numbers;	 in	 fact,	 in	 the	 opinion	 of	 most	 mathematicians,	 it	 is
impossible	 to	 construct	 a	 well-ordering	 of	 .	 (This	 would	 mean	 giving	 a	 rule	 for	 rearranging	 the
elements	of	 	in	such	a	way	that	 	would	thereby	become	a	well-ordered	set.)
Once	again,	the	well-ordering	theorem	does	not	assert	that	every	set	can	be	effectively	well	ordered;	it

merely	 states	 that,	 among	all	possible	graphs	G	⊆	A	×	A,	 there	 exists	 one	 at	 least	which	 is	 an	 order
relation	which	well-orders	A.
Let	 us	 now	 prove	 the	 well-ordering	 theorem;	 note	 that	 the	 proof	 relies	 heavily	 on	 the	 Axiom	 of

Choice.
Let	A	be	an	arbitrary	set.	We	will	consider	pairs	(B,	G),	where	B	is	a	subset	of	A,	and	G	is	an	order

relation	in	B	which	well-orders	B.
Let	 	be	the	family	of	all	such	pairs	(B,	G).	We	introduce	the	symbol	 	and	define	(B,	G)	 	(B′,G′)	if

and	only	if

(Note	that	the	last	condition	asserts,	roughly,	that	all	the	elements	of	B	precede	all	the	elements	of	B′	−
B.)	It	is	easy	to	verify	that	 	is	an	order	relation	 ;	the	details	are	left	as	an	exercise	for	the	reader.

5.20	Lemma	Let

be	a	chain	of	 ;	let



Then	(B,	G)	∈	 .

Proof.	By	1.40(i),	B	⊆	A;	thus,	our	result	will	be	established	if	we	can	show	that	G	well-orders	B.	First
we	verify	that	G	is	an	order	relation	in	B.

Reflexive.	x	∈	B	⇒	x	∈	Bi	for	some	i	∈	I	⇒	(x,	x)	∈	Gi	⊆	G;	thus	G	is	reflexive.

Antisymmetric.	(x,	y)	∈	G	and	(y,	x)	∈	G	⇒	(x,	y)	∈	Gi	and	(y,	x)	∈	Gj	for	some	i	∈	I	and	j	∈	I;	but	 	is
a	chain	of	 ,	so	Gi	⊆	Gj	or	Gj	⊆	Gi,	say	Gi	⊆	Gj	.	Thus	(x,	y)	∈	Gj	and	(y,	x)	∈	Gj	;but	Gj	is	an	order
relation,	so	x	=	y.	This	proves	that	G	is	antisymmetric.

Transitive.	(x,	y)	∈	G	and	(y,	z)	∈	G	⇒	(x,	y)	∈	Gi	and	(y,	z)	∈	Gj	for	some	i	∈	I	and	j	∈	I;	but	 	is	a
chain,	so	Gi	⊆	Gj	or	Gj	⊆	Gi,	say	Gi	⊆	Gj	.	Then	(x,	y)	∈	Gj	and	(y,	z)	∈	Gj	,so	(x,	z)	∈	Gj	⊆	G.	Thus	G
is	transitive.

Now	we	must	show	that	B	is	well-ordered	by	G.	Suppose	that	D	≠	Ø	and	D	⊆	B;	then	D	∩	Bi	≠	Ø	for
some	i	∈	I.	Now	D	∩	Bi	⊆	Bi,	hence	D	∩	Bi	has	a	least	element	b	in	(Bi,Gi);	that	is	∀y	∈	D	∩	Bi,	(b,	y)
∈	Gi.	We	will	proceed	to	show	that	b	is	the	least	element	of	D	in	(B,	G);	that	is,	∀x	∈	D,	(b,	x)	∈	G.
Indeed,	let	x	∈	D:	if	x	∈	Bi,	then	(b,	x)	∈	Gi	⊆	G.	Now	suppose	x	∉	Bi;	in	this	case,	x	∈	Bj	for	some	j

∈	I;	Bj	 	Bi	because	x	∈	Bj	and	x	∉	Bi,	hence	(Bj,	Gj	)	 	(Bi,Gi);	it	follows	that	(Bi,Gi)	 	(Bj,	Gj	).	Now
we	have	b	∈	Bi,	x	∈	(Bj	−	Bi),	and	(Bi,Gi)	 	(Bj,	Gj	);	thus,	by	5.19(c),	(b,	x)	∈	Gj	⊆	G.	This	proves	that
b	is	the	least	element	of	D	in	(B,	G).	

5.21	Lemma	If	 ,	B,	and	G	are	defined	as	above,	(B,	G)	is	an	upper	bound	of	 .

Proof.	Let	 (Bi,Gi)	∈	 ;	 clearly	Bi	⊆	B	 and	Gi	⊆	G.	Now	 suppose	 that	 x	∈	Bi,	 y	∈	B,	 and	 y	∉	Bi;
certainly	y	∈	Bj	for	some	 j	∈	 I.	Now	Bj	 	Bi	because	y	∈	Bj	and	y	∉	Bi,so	 (Bj,	Gj	 )	 	 (Bi,Gi),	hence
(Bi,Gi)	 	(Bj,	Gj	).	Now	x	∈	Bi	and	y	∈	(Bj	−	Bi),	so	by	5.19(c),	(x,	y)	∈	Gj	⊆	G.	Thus	(Bi,Gi)	 	(B,	G).	

5.22	Theorem	(Well-ordering	Theorem).	Any	set	A	can	be	well	ordered.

Proof.	By	lemma	5.20	and	5.21,	we	can	apply	Zorn’s	Lemma	to	 ;	thus	 	has	a	maximal	element	(B,
G).	We	will	show	that	B	=	A;	hence	A	can	be	well-ordered.	Otherwise,	∃x	∈	(A	−	B);	by	defining	x	to	be
greater	than	each	element	of	B,	we	get	an	extension	G∗	of	G	that	well-orders	B	∪{x}.	(More	explicitly,
G∗	=	G	∪{(a,	x)	:	a	∈	B}.)	This	is	a	contradiction,	since	(B,	G)	was	assumed	to	be	maximal.	

6	CONCLUSION

It	is	clear	that	the	Axiom	of	Choice	can	be	derived	from	the	well-ordering	theorem.	Indeed,	let	A	be	any
set;	by	the	well-ordering	theorem,	A	can	be	well	ordered;	if	B	is	a	nonempty	subset	of	A,	let	f(B)	be	the
least	element	of	B.	Then	f	is	a	choice	function	on	A.



We	have	now	proven	the	following	implications:

Axiom	of	Choice	⇒	Hausdorff’s	Maximal	Principle

⇒Zorn’s	Lemma	⇒	well-ordering	theorem	⇒	Axiom	of	Choice.

Thus	we	have	established	the	complete	equivalence	of	the	above	four	propositions.

In	the	remainder	of	this	book	we	will	accept	the	Axiom	of	Choice	as	one	of	the	axioms	of	set	theory.
Thus	we	will	feel	free	to	use	the	Axiom	of	Choice	in	all	of	our	arguments,	except	if	we	make	an	explicit
statement	to	the	contrary.

*	Note	that	for	each	 	thus

hence	by	A3,	and	A7,	 	is	a	set.



6
The	Natural	Numbers

1	INTRODUCTION

Probably	the	most	fundamental—and	the	most	primitive—of	all	mathematical	concepts	is	that	of	natural
number.	The	natural,	or	“counting,”	numbers	are	 the	first	mathematical	abstraction	which	we	learn	as
children;	every	human	society—even	the	most	backward	and	remote—possesses	a	system	of	some	kind
for	counting	objects.
We	all	have	a	clear	intuitive	understanding	of	what	the	natural	numbers	are:	they	are	0,	1,	2,	3,	and	so

forth.	But	his	intuitive	perception—no	matter	how	clear	and	immediate	it	may	be—is	not	sufficient	for
the	purposes	of	mathematics;	in	order	to	do	mathematics	with	numbers,	we	must	articulate	this	vague
perception	and	transform	it	into	a	precise	definition.	The	definition	must,	of	course,	faithfully	reflect	the
intuitive	notion	from	which	it	sprang.
It	 is	our	aim	in	 this	section	to	define	 the	natural	numbers;	 to	be	explicit,	we	will	construct	a	set	of

objects	to	be	called	“	natural	numbers,”	and	these	“	natural	numbers”	will	be	endowed	with	all	of	the
properties	which	are	associated	with	the	natural	numbers	in	our	mind.
We	should	carefully	note	two	important	requirements	of	our	definition.	In	the	first	place,	we	would

like	to	present	the	natural	numbers	without	introducing	any	new	undefined	notions.	We	were	faced	with
a	similar	problem	when	we	were	about	to	introduce	the	notion	of	function;	we	solved	it	by	defining	a
function	to	be	a	certain	kind	of	class	(specifically,	a	class	of	ordered	pairs).	Following	this	example,	it	is
clear	 that	we	ought	 to	define	natural	numbers	 to	be	classes	 (more	specifically,	sets)	of	 some	kind;	 in
fact,	for	each	n	we	will	define	“n”	to	be	a	set	which	(intuitively)	has	n	elements.	Secondly,	each	natural
number	must	be	uniquely	defined;	that	is,	for	each	n	there	must	be	just	one,	unique	object	which	can	be
recognized	as	the	“natural	number	n.”	Thus	we	must	devise	a	means	of	fixing	exactly	one	set,	among	all
the	sets	with	n	elements,	and	calling	this	set	“n.”
The	numbers	“0,”	“1,”	“2,”	etc.,	which	we	are	about	 to	define	will	 serve	as	standards	 in	much	 the

same	way	that	the	standard	yard	in	Washington,	D.C.,	serves	as	a	norm	for	measuring	length.	It	matters
little	whether	 the	standard	yard	 is	made	of	platinum	or	stainless	steel,	or	whether	 it	 is	decorated	with
figures	of	dancing	mermaids;	 its	only	use	 is	 as	 a	 standard	of	 reference,	 so	anything	having	 the	 same
length	is,	by	definition,	one	yard	long.	Analogously,	it	does	not	matter	too	much	which	specific	sets	we
define	“0,”	“1.”	“2,”	etc.,	to	be;	they	will	be	used	as	standards	of	reference,	so	a	set	will	be	said	to	“have
n	elements”	if	it	is	in	one-to-one	correspondence	with	the	natural	number	“n.”

We	will	proceed	as	follows:	we	define

In	order	to	define	“1,”	we	must	fix	a	set	with	exactly	one	element;	thus

Continuing	in	this	fashion,	we	define



The	reader	should	note	that	0	=	Ø,	1	={Ø	},	2	={Ø,	{Ø	}},	3	={Ø,	{Ø	},	{Ø,	{Ø	}}},	etc.	Our	natural
numbers	are	constructions	beginning	with	the	empty	set.
In	view	of	what	has	just	been	indicated,	the	following	also	are	true:

This	should	explain	the	following	definition:
The	preceding	definitions	can	be	restated,	a	little	more	precisely,	as	follows.	If	A	is	a	set,	we	define

the	successor	of	A	to	be	the	set	A+,	given	by

Thus,	A+	is	obtained	by	adjoining	to	A	exactly	one	new	element,	namely	the	element	A.	Now	we	define

It	is	clear	that	these	definitions	coincide	with	those	given	in	the	preceding	paragraph.
From	these	definitions,	it	is	worth	noting	that	0	⊂	1	⊂	2	⊂	3	⊂	...,	and	likewise	0	∈	1	∈	2	∈	3	∈	....
We	have	just	outlined	a	method	for	producing	sets	which	we	call	“natural	number;”	beginning	with

the	empty	set,	we	have	given	directions	 for	constructing,	successively,	0	=	Ø,	1	=	0+,	2	=	1+,	 and	 so
forth.	An	 important	 question	now	 is	 the	 following:	 Is	 there	 such	 a	 thing	 as	 the	 set	 of	 all	 the	natural
numbers	(or	even	the	class	of	all	the	natural	numbers)?	That	is,	is	there	a	set	(or	a	class)	which	contains
Ø,	and	which	contains	X+	whenever	it	contains	X?	Certainly,	our	method	does	not	enable	us	to	construct
it—we	are	merely	given	instructions	for	producing	numbers	0,	1,	2,	...,	n	up	to	any	n.	Thus	we	cannot
yet	speak	of	the	set	(or	class)	of	all	the	natural	numbers.
A	set	A	is	called	a	successor	set	if	it	has	the	following	properties:

i) 	 Ø	∈	A.
ii) 	 if	X	∈	A,	then	X+	∈	A.

It	is	clear	that	any	successor	set	necessarily	includes	all	the	natural	numbers.	Motivated	by	this
observation,	we	introduce	the	following	important	axiom.

A11	(Axiom	of	Infinity).	There	exists	a	successor	set.

As	we	have	noted,	every	successor	set	includes	all	the	natural	numbers;	thus	it	would	make	sense	to



define	the	“set	of	the	natural	numbers”	to	be	the	smallest	successor	set.	Now	it	is	easy	to	verify	that	any
intersection	of	successor	sets	is	a	successor	set;	in	particular,	the	intersection	of	all	the	successor	sets	is
a	successor	set	(it	is	obviously	the	smallest	successor	set).	Thus,	we	are	led	naturally	to	the	following
definition.

6.1	Definition	By	the	set	of	the	natural	numbers	we	mean	the	intersection	of	all	the	successor	sets.	The
set	 of	 the	 natural	 numbers	 is	 designated	 by	 the	 symbol	ω;	 every	 element	 of	ω	 is	 called	 a	 natural
number.

2	ELEMENTARY	PROPERTIES	OF	THE	NATURAL	NUMBERS

In	 this	 section	we	will	 show	 that	 the	natural	 numbers,	 as	we	have	 just	 defined	 them,	 satisfy	 the	 five
conditions	commonly	known	as	the	Peano	axioms.	This	set	of	conditions—it	is	well	known—is	another
way	of	defining	and	characterizing	the	natural	numbers.

6.2	Theorem	For	each	n	∈	ω,	n+	≠	0.

Proof.	By	definition,	n+	=	n	∪	{n};	thus	n	∈	n+	for	each	natural	number	n;	but	0	is	the	empty	set,	hence
0	cannot	be	n+	for	any	n.	

6.3	Theorem	(Mathematical	Induction).	Let	X	be	a	subset	of	ω;	suppose	X	has	the	following	properties:
i) 	 0	∈	X.
ii) 	 If	n	∈	X,	then	n+	∈	X.

Then	X	=	ω.

Proof.	Conditions	(i)	and	(ii)	imply	that	X	is	a	successor	set.	By	6.1,	ω	is	a	subset	of	every	successor	set;
thus	ω	⊆	X.	But	X	⊆	ω;	so	X	=	ω.	

6.4	Lemma	Let	m	and	n	be	natural	numbers;	if	m	∈	n+,	then	m	∈	n	or	m	=	n.

Proof.	By	definition,	n+	=	n	∪	{n};	thus,	if	m	∈	n+,	then	m	∈	n	or	m	∈	{n};	but	{n}	is	a	singleton,	so	m
∈	{n}	iff	m	=	n.	

6.5	Definition	A	set	A	is	called	transitive	if,	for	each	x	∈	A,	x	⊆	A.

For	example,	the	number	3	is	a	transitive	set;	indeed,	its	elements	are	0,	1,	2,	that	is,	Ø,	{Ø	},	{Ø,	{Ø
}}.	It	is	clear	that	each	of	these	elements	is	a	subset	of	3.	The	same	is	true	of	every	natural	number,	as
we	shall	prove	next.

6.6	Lemma	Every	natural	number	is	a	transitive	set.

Proof.	 Let	 X	 be	 the	 set	 of	 all	 the	 elements	 of	 ω	 which	 are	 transitive	 sets;	 we	 will	 prove,	 using
mathematical	 induction	 (Theorem	 6.3),	 that	 X	 =	 ω;	 it	 will	 follow	 that	 every	 natural	 number	 is	 a
transitive	set.



i) 	 0	∈	X,	for	if	0	were	not	a	transitive	set,	this	would	mean	that	∃	y	∈	0	such	that	y	is	not	a	subset	of	0;
but	this	is	absurd,	since	0	=	Ø	.

ii) 	 Now	suppose	that	n	∈	X;	we	will	show	that	n+	∈	X;	that	is,	assuming	that	n	is	a	transitive	set,	we
will	show	that	n+	is	a	transitive	set.	Let	m	∈	n+;	by	6.4,	m	∈	n	or	m	=	n.	If	m	∈	n,	then	(because	n	is
transitive)	m	⊆	n;	but	n	⊆	n+,	so	m	⊆	n+.	If	m	=	n,	then	(because	n	⊆	n+)	m	⊆	n+;	 thus	 in	either
case,	m	⊆	n+,	so	n+	∈	X.	It	follows	by	6.3	that	X	=	ω.	

6.7	Theorem	Let	n	and	m	be	natural	numbers.	If	n+	=	m+,	then	n	=	m.
Proof.	Suppose	n+	=	m+;	now	n	∈	n+,	hence	n	∈	m+;	thus,	by	6.4,	n	∈	m	or	n	=	m.	By	the	very	same
argument,	m	∈	n	or	m	=	n.	If	n	=	m,	the	theorem	is	proved.	Now	suppose	n	≠	m;	then	n	∈	m	and	m	∈	n.
Thus,	by	6.5	and	6.6,	n	⊆	m	and	m	⊆	n,	hence	n	=	m.	

The	Peano	axioms	for	the	natural	numbers	are:
P1 	 0	∈	ω.
P2 	 If	n	∈	ω,	then	n+	∈	ω.
P3 	 For	each	n	∈	ω,	n+	≠	0.
P4 	 If	X	is	a	subset	of	ω	such	that

i) 	 0	∈	X,	and
ii)	if	n	∈	X,	then	n+	∈	X,	then	X	=	ω.

P5	If	n,	m	∈	ω	and	n+	=	m+,	then	n	=	m.

P1	and	P2	follow	immediately	from	our	definition	of	ω.	P3	 is	given	by	Theorem	6.2,	P4	 is	given	by
Theorem	6.3,	and	P5	is	given	by	Theorem	6.7.	Thus	our	set	ω	satisfies	the	Peano	axioms.

EXERCISES	6.2

1. 	 Prove	that	A	is	a	transitive	set	if	and	only	if	the	following	holds:	If	B	∈	C	and	C	∈	A,	then	B	∈	A.
2. 	 Prove	that	if	A	and	B	are	transitive	sets,	then	A	∪	B	and	A	∩	B	are	transitive	sets.
3. 	 Let	A	and	B	be	sets.	Prove	that	if	A	=	B,	then	A+	=	B+.
4. 	 Use	6.3,	to	prove	that	for	every	natural	number	n,	n	∉	n.
5. 	 Prove	the	following,	where	m,	n,	p	∈	ω.

6. 	 a)	Prove	by	induction:	If	A	∈	n	and	n	∈	ω,	then	A	∈	ω.	Conclude	that	ω	is	a	transitive	set.

	 b)	Prove	that	if	A+	∈	ω,	then	A	∈	ω.

7. 	 Prove	that	no	natural	number	is	a	successor	set.
8. 	 Prove	that	no	natural	number	is	a	subset	of	any	of	its	elements.
9. 	 Prove	by	induction:	If	n	∈	ω,	then	either	n	=	0	or	n	=	m+	for	some	m	∈	ω.
10. 	 Let	n	∈	ω.	Prove	the	following.



a) 	∪	n+	=	n.
b) 	∪	ω	=	ω	(see	Remark	1.47).

11.	Let	A	be	a	nonempty	subset	of	ω.	Prove	that	if	∪	A	=	A	then	A	=	ω.

3	FINITE	RECURSION

Induction	 is	 commonly	 used	 not	 only	 as	 a	method	 of	 proof	 but	 also	 as	 a	method	 of	 definition.	 For
example,	a	familiar	way	of	introducing	exponents	in	arithmetic	is	by	means	of	the	“inductive	definition”
I. 	 a0	=	1,

II. 	 an+1	=	ana,	∀	n	∈	ω.

The	pair	of	Conditions	I	and	II	is	meant	to	be	interpreted	as	a	rule	which	specifies	the	meaning	of	an	for
each	natural	number	n.	Thus,	by	I,	a0	=	1;	by	I	and	II,

by	II	again,

continuing	in	this	fashion—using	Condition	II	repeatedly—the	numbers	a0,	a1,	a2,	…,	an	are	defined	in
succession	up	to	any	chosen	n.
Inductive	 definitions	 such	 as	 the	 one	we	 have	 just	 seen	 abound	 in	mathematics.	 The	 situation,	 in

almost	every	case,	is	the	following:	We	have	a	set	A,	a	function	f	:	A	→	A,	and	a	fixed	element	c	∈	A.
We	define	a	function	γ	:	ω	→	A	by	means	of	the	two	Conditions.
I. 	 γ	(0)	=	c,

II. 	 γ	(n+)	=	f	(γ	(n)),	∀n	∈	ω

The	 reader	 should	 recognize	 that	 exactly	 this	 situation	 prevails	 in	 our	 preceding	 example.	 In	 that
example,	A	is	the	set	of	the	real	numbers,	c	is	1,	γ	(n)	is	denoted	by	an,	and	f	is	the	function	defined	by	f
(x)	=	xa.
For	another	example,	let	 	be	the	set	of	the	real	numbers	and	let	f	:	 	→	 	be	the	function	defined	by

f	(x)	=	x2.	We	define	a	function	γ	:	ω	→	 	by
I. 	 γ	(0)	=	2,

II. 	 γ	(n	+	1)	=	f	(γ	(n))	=[γ	(n)]2.

The	reader	will	recognize	this	as	an	inductive	definition	of	the	function	γ	(n)	=	22n.
In	each	of	the	foregoing	examples,	it	is	reasonable	to	believe	that	if	γ	exists,	then	Conditions	I	and	II

determine	the	values	γ	(n)	for	every	n	∈	ω.	However,	Conditions	I	and	II	are	insufficient	in	themselves
to	guarantee	that	a	function	such	as	γ	exists.	If	we	are	to	accept	definition	by	induction	as	a	legitimate
way	 of	 constructing	mathematical	 objects,	 then	we	must	 first	 establish	 the	 fact	 that	 γ	—the	 function
which	 we	 purport	 to	 be	 defining—actually	 exists	 and	 is	 uniquely	 determined.	 The	 purpose	 of	 the
following	theorem	is	to	perform	this	important	task.



6.8	Recursion	Theorem	 	 	Let	A	be	a	set,	c	a	fixed	element	of	A,	and	f	a	function	from	A	 to	A.	Then
there	exists	a	unique	function	γ	:	ω	→	A	such	that
I. 	 γ	(0)	=	c,	and

II. 	 γ	(n+)	=	f	(γ	(n)),	∀	n	∈	ω.

Proof.	First,	we	will	establish	the	existence	of	γ.	It	should	be	carefully	noted	that	γ	 is	a	set	of	ordered
pairs	which	is	a	function	and	satisfies	Conditions	I	and	II.	More	specifically,	γ	is	a	subset	of	ω	×	A	with
the	following	four	properties:

Properties	(1)	and	(2)	express	the	fact	that	γ	is	a	function	from	ω	to	A,	while	properties	(3)	and	(4)	are
clearly	equivalent	to	I	and	II.	We	will	now	construct	a	graph	γ	with	these	four	properties.
Let

is	nonempty,	because	ω	×	A	∈	 .	It	is	easy	to	see	that	any	intersection	of	elements	of	 is	an	element
of	 ;	in	particular,

is	an	element	of	 .	We	proceed	to	show	that	γ	is	the	function	we	require.
By	construction,	γ	satisfies	(3)	and	(4),	so	it	remains	only	to	show	that	(1)	and	(2)	hold.

1) 	 It	will	be	shown	by	induction	that	dom	γ	=	ω,	which	clearly	implies	(1).	By	(3),	(0,	c)	∈	γ,	so	0	∈
dom	γ;	now	suppose	n	∈	dom	γ.	Then	∃	x	∈	A	(n,	x)	∈	γ;	by	(4),	then,	(n+,	f	(x))	∈	γ,	so	n+	∈	dom	γ.
Thus,	by	Theorem	6.3,	dom	γ	=	ω.

2) 	 Let

It	will	be	shown	by	induction	that	N	=	ω.	To	prove	that	0	∈	N,	we	first	assume	the	contrary;	that	is,
we	assume	that	(0,	c)	∈	γ	and	(0,	d)	∈	γ	where	c	≠	d.	Let	γ∗	=	γ	−	{(0,	d)};	certainly	γ∗	satisfies	(3);
to	show	that	γ∗	satisfies	(4),	suppose	that	(n,	x)	∈	γ∗.	Then	(n,	x)∈	γ,	so	(n+,	 f	 (x))∈	γ;	but	n+	≠	0
(Theorem	6.2),	so	(n+,	f	(x))	≠	(0,	d),	and	consequently	(n+,	f	(x))∈	γ∗.	We	conclude	that	γ∗	satisfies
(4),	so	γ∗	∈	 ;	but	γ	is	the	intersection	of	all	the	elements	of	 ,	so	γ	⊆	γ∗.	This	is	impossible,	hence
0	∈	N.
Next,	we	assume	that	n	∈	N	and	prove	that	n+	∈	N.	To	do	so,	we	first	assume	that	contrary—that	is,
we	suppose	that	(n,	x)	∈	γ,	(n+,	f	(x))	∈	γ,	and	(n+,	u)	∈	γ	where	u	≠	f	(x).	Let	γ 	=	γ	−	{(n+,	u)};	γ
satisfies	(3)	because	(n+,	u)	≠	(0,	c)	(indeed,	n+	≠	0	by	Theorem	6.2).	To	show	that	γ 	 satisfies	 (4),



suppose	(m,	ν)	∈	γ ;	then	(m,	ν)	∈	γ,	so	(m+,	f	(ν	))	∈	γ.	Now	we	consider	two	cases,	according	as	(a)
m+	≠	n+	or	(b)	m+	=	n+.

a) 	m+	≠	n+.	Then	(m+,	f	(ν	))	=(n+,	u),	so	(m+,	f	(ν	))	∈	γ .

b) 	m+	=	n+.	Then	m	=	n	by	6.7,	so	(m,	ν)	=	(n,	ν);	but	n	∈	N,	so	(n,	x)	∈	γ	for	no	more	than	one	x	∈	A;	it
follows	that	ν	=	x,	and	so

Thus,	in	either	case	(a)	or	(b),	(m+,	f	(ν))	∈	γ ;	thus	γ 	satisfies	Condition	(4),	so	γ 	∈	 .	But	γ	is	the
intersection	of	all	the	elements	of	 ,	so	γ	⊆	γ ;	this	is	impossible,	so	we	conclude	that	n+	∈	N.	Thus
N	=	ω.
Finally,	we	will	prove	that	γ	is	unique.	Let	γ	and	γ′	be	functions,	from	ω	to	A	which	satisfy	I	and	II.

We	will	prove	by	induction	that	γ	=	γ′.	Let

Now	γ	(0)	=	c	=	γ	(0),	so	0	∈	M;	next,	suppose	that	n	∈	M.	Then

hence	n+	∈	M.	

6.9	Corollary			Let	f,	c,	and	γ	be	as	in	Theorem	6.8.	If	f	is	injective	and	c	∉	ran	f,	then	γ	is	injective.

Proof.	We	wish	to	show	that	if	γ	(m)	=	γ	(n),	then	m	=	n;	the	proof	is	by	induction	on	m.

i) 	m	=	0.	If	n	=	0	we	are	done;	if	n	≠	0,	then	n	=	k+	for	some	k	∈	ω,	so

which	is	impossible	because	c	is	not	in	the	range	of	f.	Thus	n	=	0	=	m.

ii) 	 Suppose	the	corollary	is	true	for	m;	let	γ	(m+)	=	γ	(n).	If	n	=	0	then	we	have	γ	(0)	=	γ	(m+),	which,	as
we	have	just	shown,	is	impossible;	thus	n	≠	0,	so	n	=	k+	for	some	k	∈	ω.	Thus	γ	(m+)	=	γ	(k+),	that	is,
f	(γ	(m))	=	f	(γ	(k));	but	f	is	injective,	so	γ	(m)	=	γ	(k).	By	the	hypothesis	of	induction,	it	follows	that
m	=	k;	hence	m+	=	k+	=	n.	

EXERCISES	6.3

1. 	 Let	a	∈	 	where	 	is	the	set	of	the	real	numbers;	define	an	by	the	following	two	conditions.



Prove	that	for	each	n	∈	ω,	an	is	a	uniquely	defined	real	number.	(In	other	words,	prove	that	γ	(n)	=
an	is	a	uniquely	determined	function	ω	→	 ;	use	Theorem	6.8.)

2. 	 Let	A	be	a	set	and	let	f	:	A	→	A	be	a	function.	Define	f	n	by

Prove	that	for	each	n	∈	ω,	f	n	is	a	uniquely	determined	element	of	AA	.
3. 	 Let	A	be	a	set	and	let	 f	:	A	→	B	be	an	injective	function,	where	B	⊂	A.	Prove	that	A	has	a	subset

which	is	in	one-to-one	correspondence	with	ω.	[Hint:	Use	6.9	to	prove	that	there	is	an	injective	γ	:
ω	→	D	where	D	⊆	A.]

4. 	 If	A	 is	partially	ordered	set,	by	a	strictly	increasing	sequence	in	A	we	mean	a	 function	γ	 :	ω	→	A
such	that	γ	(0)	<	γ	(1)	<	γ	(2)	<	·	·	·	Let	A	be	a	partially	ordered	set	which	has	no	maximal	elements;
prove	that	there	is	a	strictly	increasing	sequence	in	A.

4	ARITHMETIC	OF	NATURAL	NUMBERS

One	 of	 the	most	 important	 applications	 of	 the	 recursion	 theorem	 is	 its	 use	 in	 defining	 addition	 and
multiplication	of	natural	numbers.

If	m	is	a	natural	number,	the	recursion	theorem	guarantees	the	existence	of	a	unique	function	γm	:	ω
→	ω	defined	by	the	two	Conditions
I. 	 γ	m(0)	=	m,

II. 	 γ	m(n+)	=	[γ	m(n)]+,	∀	n	∈	ω.

Addition	of	natural	numbers	is	now	defined	as	follows:

for	all	m,	n	∈	ω.	Conditions	I	and	II	immediately	above	can	be	rewritten	thus:

6.10

We	proceed	to	derive	a	few	simple	properties	of	addition.

6.11	Lemma			n+	=	1	+	n,	where	1	is	defied	to	be	0+.

Proof.	This	can	be	proven	by	induction	on	n.	If	n	=	0,	then	we	have

(this	 last	equality	follows	from	6.10),	hence	the	lemma	holds	for	n	=	0.	Now,	assuming	 the	 lemma	is



true	for	n,	let	us	show	that	it	holds	for	n+:

6.12	Lemma	0	+	n	=	n.

Proof.	Let	X	=	{n	∈	ω	:	0	+	n	=	n};	it	will	be	shown	by	induction	that	X	=	ω.	Indeed,	0	+	0	=	0	by	6.10,
hence	0	∈	X.	Now	suppose	that	n	∈	X,	that	is,	0	+	n	=	n.	Then

It	follows	by	Theorem	6.3	that	X	=	ω.	

6.13	Theorem			(m	+	n)+	k	=	m	+	(n	+	k).

Proof.	The	proof	is	by	induction.	For	arbitrary	elements	m,	n	∈	ω,	let

it	will	be	shown	that	Lmn	=	ω.	First,

hence	0	∈	Lmn.	Now	suppose	k	∈	Lmn,	that	is,

Then

so	k+	∈	Lmn.	

6.14	Theorem			m	+	n	=	n	+	m.

Proof.	For	an	arbitrary	natural	number	m,	let

It	will	be	proven	by	induction	that	Lm	=	ω.	Now	m	+	0	=	m	=	0	+	m	by	6.10	and	6.12,	hence	0	∈	Lm.



Next	suppose	n	∈	Lm,	that	is,	m	+	n	=	n	+	m.	Then

If	m	is	a	natural	number,	the	recursion	theorem	guarantees	the	existence	of	a	unique	function	β	m	:	ω
→	ω	defined	by	the	two	Conditions
I. 	 βm(0)	=	0,

II. 	 βm(n+)	=	β	m(n)+	m,	∀	n	∈	ω.

Multiplication	of	natural	numbers	is	now	defined	as	follows:

for	all	m,	n	∈	ω.	Conditions	I	and	II	immediately	above	can	be	rewritten	thus:

6.15

The	following	are	a	few	simple	properties	of	multiplication.

6.16	Lemma			0n	=	0.

Proof.	Let	N	={n	∈	ω	:	0n	=	0};	it	will	be	shown	by	induction	that	N	=	ω.	Indeed,	00	=	0	by	6.15,	hence
0	∈	N.	Now	suppose	that	n	∈	N,	that	is,	0n	=	0.	Then	by	6.15,	6.10,	and	the	hypothesis	of	induction,

hence	n+	∈	N.	It	follows	by	induction	that	N	=	ω.	

6.17	Lemma			1n	=	n.
The	proof	(by	induction)	is	left	as	an	exercise	for	the	reader.

6.18	Theorem			(Distributive	Law).
i) 	m(n	+	k)	=	mn	+	mk.
ii) 	 (n	+	k)m	=	nm	+	km.

Proof
i) 	 If	m	and	n	are	natural	numbers,	let



It	will	be	shown	by	induction	that	Lmn	=	ω.	Now

hence	0	∈	Lmn.	Next,	suppose	that	k	∈	Lmn,	that	is,	m(n	+	k)	=	mn	+	mk;	then,	by	6.10,	6.13	and	6.15,

hence	k+	∈	Lmn.
ii) 	 The	proof	is	left	as	an	exercise	for	the	reader.

6.19	Theorem	(Associative	Law	for	Multiplication).	(mn)k	=	m(nk).
Proof.	Let	Lmn	={k	∈	ω	:	(mn)k	=	m(nk)};	it	will	be	proved	by	induction	that	Lmn	=	ω.	First,	by	6.15,

hence	0	∈	Lmn.	Next,	assume	that	k	∈	Lmn,	that	is	(mn)k=	m(nk).	Then,	by	6.15	and	6.18,

hence	k+	∈	Lmn	.

6.20	Theorem	(Commutative	Law	for	Multiplication).	mn	=	nm.
The	proof	is	left	as	an	exercise	for	the	reader.

One	of	the	most	important	aspects	of	the	natural	numbers	is	their	ordering.	Before	proceeding	with	a
formal	definition	of	the	order	relation	in	ω,	the	reader	should	review	the	definition	of	ω.	Specifically,	it
should	be	noted	that	for	each	n,	the	natural	number	n	is	the	set	of	all	the	natural	numbers	preceding	n:

It	is	clear,	now,	how	we	are	to	define	order	in	ω	:	n	is	to	precede	m	if	and	only	if	n	is	an	element	of	m.
Motivated	by	this	observation,	we	make	the	following	formal	definition.

6.21	Definition	A	relation	 	is	defined	in	ω	as	follows:

First,	it	is	required	to	prove	that	this	is	indeed	an	order	relation	in	ω.



6.22	Theorem	Let	m	 	n	denote	the	fact	that	m	∈	n	or	m	=	n.	Then	the	relation	 	is	an	order	relation	in
ω.
Proof
i) 	 For	each	m	∈	ω,	m	=	m,	hence	m	 	m	(reflexive	law).
ii) 	 Suppose	m	 	n	and	n	 	m;	this	means	that	either	m	=	n,	or	m	∈	n	and	n	∈	m.	In	the	latter	case,	m	⊆

n	and	n	⊆	m	by	6.6,	hence	again	m	=	n	(antisymmetric	law).
iii) 	 Suppose	m	 	n	and	n	 	p;	we	have	four	possible	cases.

1. 	m	∈	n	and	n	∈	p:	thus	m	∈	n	and	n	⊆	p,	so	m	∈	p.
2. 	m	∈	n	and	n	=	p:	thus	m	∈	p.
3. 	m	=	n	and	n	∈	p:	thus	m	∈	p.
4. 	m	=	n	and	n	=	p:	thus	m	=	p.

In	each	case,	m	 	p	(transitive	law).	

We	will	show	next	that	ω	is	well	ordered;	this	will	require	the	following	two	lemmas.

6.23	Lemma					If	m	is	a	natural	number,	0	 	m.

Proof.	Let	L	={m	∈	ω	:	0	 	m};	by	the	reflexive	law	6.22(i),	0	 	0,	so	0	∈	L.	Now	suppose	m	∈	L,	that
is,	0	 	m.	From	m	∈	m+	it	follows	that	m	 	m+;	thus	by	the	transitive	law	6.22(iii),	0	 	m+,	so	m+	∈	L.
So	by	6.3,	L	=	ω.	

6.24	Lemma					If	n	<	m	then	n+	 	m.

Proof.	If	n	is	a	natural	number,	let

We	will	use	induction	(6.3)	to	prove	that	Ln	=	ω.	Note	that	m	∉	Ln	iff	n	<	m	and	n+	 	m,	that	is,	n	∈	m
and	n+	 	m.	 In	 particular,	 0	∉	 Ln	 iff	 n	∈	 0	 and	 n+	 0,	 which	 is	 impossible	 (specifically,	 n	∈	 0	 is
impossible);	thus	0	∈	Ln.	Now	assume	that	m	∈	Ln,	that	is,	nm	⇒	n+	 	m,	and	let	us	show	that	m+	∈	Ln,
that	is,

If	n	<	m+,	that	is,	n	∈	m+,	then	by	6.4,	n	∈	m	or	n	=	m.	If	n	=	m,	then	n+	=	m+,	and	we	are	done.	If	n	∈
m,	that	is,	n	<	m,	then	by	the	hypothesis	of	induction,	n+	 	m	<	m+,	so	we	are	done	again.	

6.25	Theorem							ω	is	well	ordered.

Proof.	Suppose,	on	the	contrary,	that	A	is	a	nonempty	subset	of	ω	without	a	least	element.	Let



By	6.23,	0	∈	L.	Now	suppose	that	n	∈	L,	that	is,	n	 	m	for	every	m	∈	A.	If	n	=	p	for	some	p	∈	A,	then	p
is	the	least	element	of	A,	contrary	to	our	hypothesis;	thus	nm	for	every	m	∈	A.	It	follows	by	6.24	that	n+	
	m	for	every	m	∈	A,	so	n+	∈	L.	Thus	by	6.3,	L	=	ω.	But	L	∩	A	=	Ø	because	A	has	no	least	element.
Thus	A	=	Ø.	

EXERCISES	6.4

1. 	 Prove	Theorem	6.18(ii).
2. 	 Prove	Theorem	6.20.
3. 	 Prove	each	of	the	following.

a) 	m	=	n	⇒	m	+	k	=	n	+	k	(see	Exercise	3,	Exercise	Set	6.2),
b) 	m	=	n	⇒	mk	=	nk.

4. 	 Prove	each	of	the	following.
a) 	m	<	1	⇒	m	=	0.
b) 	 There	is	no	natural	number	k	such	that	m	<	k	<	m+.

5. 	 Prove	each	of	the	following.
a) 	 n	<	k	⇒	m	+	n	<	m	+	k.
b) 	m	+	n	=	m	+	k	⇒	n	=	k.

6. 	 Prove	each	of	the	following.
a) 	 If	m	<	n	and	k	≠	0,	then	mk	<	nk.
b) 	 If	mk	=	nk	and	k	≠	0,	then	m	=	n.

7. 	 Prove	that	if	m	 	n,	then	there	exists	a	unique	p	∈	ω	such	that	m	+	p	=	n.
8. 	 Prove	each	of	the	following.

a) 	m	+	k	<	n	+	k	⇒	m	<	n.
b) 	mk	<	nk	⇒	m	<	n.

9. 	 Give	an	 inductive	definition	of	exponentiation	of	natural	numbers;	 that	 is,	define	mn	 in	 a	manner
similar	 to	6.10	and	6.15,	 justifying	your	definition	in	 terms	of	 the	recursion	theorem.	Then	prove
each	of	the	following.

a) 	mn	+k	=	mnmk,	b) 	 (mn)k	=	mknk,	c) 	 (mn	)k	=	mnk.

5	CONCLUDING	REMARKS

By	Axiom	A11,	there	exists	a	successor	set	X;	by	6.1,	ω	⊆	X,	hence	by	Axiom	A3,	ω	is	a	set.	It	follows,
by	Axiom	A3	again,	that	every	natural	number	is	a	set.
In	 the	 next	 chapter	we	will	 define	 a	 class	 to	 be	 finite	 if	 it	 is	 in	 one-to-one	 correspondence	with	 a

natural	 number;	 it	 follows	 by	 2.36	 that	 every	 finite	 class	 is	 a	 set.	 In	 view	 of	 this	 remark,	 we	 will
henceforth	speak	of	finite	sets	rather	than	finite	classes.



We	have	just	seen	that	ω	is	a	set;	thus,	by	1.53,	ω	×	ω	is	a	set.	Now,	if	we	identify	each	fraction	n/m
(where	n/m	 is	assumed	to	be	 in	“lowest	 terms”)	with	 the	ordered	pair	 (n,	m),	 then	 the	class	of	all	 the
positive	rational	numbers	is	a	subclass	of	ω	×	ω,	hence	by	A3,	it	is	a	set.	Analogously,	the	class	of	all
the	negative	rational	numbers	is	a	set,	hence	by	A6,	the	class	 	of	all	the	rational	numbers	is	a	set.	It	is
well	 known	 that	 every	 real	 number	 can	 be	 regarded	 as	 a	 sequence	 (called	 a	 Cauchy	 sequence)	 of
rational	numbers;	hence,	roughly	speaking,*	as	an	element	of	 .	In	other	words,	the	class	 	of	the
real	numbers	is	a	subclass	of	 ;	hence,	by	A7	and	A3,	it	is	a	set.	In	similar	fashion,	the	class	 	of
the	complex	numbers	is	a	set.
We	have	seen	in	preceding	sections	that	the	union	of	any	set	of	sets	is	a	set;	if	A	is	a	set,	then	 is	a

set;	if	{Ai	}i∈	I	is	a	family	of	sets,	where	I	is	a	set,	then	 is	a	set;	and	if	A	and	B	are	sets,	then	AB	is	a
set.	Thus	it	is	clear	that	every	object	we	can	produce	by	the	classical	construction	processes	is	a	set.
All	the	infinite	(that	is,	not	finite)	classes	which	occur	in	traditional	mathematics	are	sets;	thus,	in	the

next	chapter,	we	will	confine	our	attention	to	finite	and	infinite	sets.

*	To	be	more	precise,	every	Cauchy	sequence	is	an	element	of	Qω.



7
Finite	and	Infinite	Sets

1	INTRODUCTION

One	of	 the	most	 fundamental	distinctions	 in	mathematics	 is	 that	between	 finite	and	 infinite	 sets.	The
distinction	is	so	intuitively	compelling	that,	even	in	the	absence	of	a	precise	definition,	there	cannot	be
any	doubt	as	to	whether	a	given	set	is	finite	or	infinite.	In	simple	terms,	a	finite	set	is	one	which	“has	n
elements,”	where	n	is	a	natural	number,	and	an	infinite	set	is	one	which	is	not	finite.
Although	 the	 dichotomy	 between	 finite	 and	 infinite	 has	 always	 fascinated	mathematicians—it	 has

been	the	source	of	the	most	celebrated	riddles,	paradoxes,	and	classical	errors	of	mathematics—a	sound
theory	of	infinite	sets	did	not	appear	until	very	recent	times.	It	had	to	await	the	arrival	of	the	rigorous
concepts	 of	 set	 mapping,	 and	 one-to-one	 correspondence.	 Once	 the	 use	 of	 these	 new	 tools	 became
familiar	to	mathematicians,	toward	the	end	of	the	nineteenth	century,	the	modern	theory	of	infinite	sets
developed	rapidly;	it	was	largely	the	work	of	Georg	Cantor	and	his	successors.
Using	familiar	concepts,	and	arguments	which	are	remarkable	for	their	simplicity,	Cantor	was	able	to

draw	 conclusions	 which	 surprised	mathematicians	 and	 laymen	 alike.	 Cantor’s	 ideas	 are	 well	 known
today;	they	have	been	popularized	in	innumerable	expository	books	and	articles,	and	have	entered	the
lore	of	modern	mathematics.	We	proceed,	in	the	remainder	of	this	section,	to	give	the	bare	outlines	of
Cantor’s	 theory.	 In	 this	 discussion	 the	 words	 “finite”	 and	 “infinite”	 will	 be	 used	 informally;	 as	 we
remarked	earlier,	a	finite	set	can	be	described	as	one	which	“has	n	elements”	(n	 is	a	natural	number),
and	an	infinite	set	is,	simply,	one	which	is	not	finite.
Two	finite	sets	A	and	B	have	 the	“same	number	of	elements”	 if	and	only	 if	 they	are	 in	one-to-one

correspondence.	 Even	 though	 we	 cannot	 speak	 of	 two	 infinite	 sets	 as	 having	 the	 “same	 number	 of
elements,”	we	have	the	feeling,	nonetheless,	 that	 if	A	and	B	are	infinite	sets	and	there	is	a	one-to-one
correspondence	between	them,	then,	in	a	certain	sense,	they	are	of	the	“same	size.”	This	intuitive	notion
is	formalized	by	defining	two	sets	A	and	B	to	be	equipotent,	or	to	have	the	same	power,	if	there	is	a	one-
to-one	correspondence	from	A	to	B.	We	say	that	A	is	of	a	lesser	power	than	B	if	there	exists	a	one-to-one
correspondence	between	A	and	a	proper	subset	of	B,	but	none	between	A	and	B.	Here,	again,	we	have
taken	our	cue	from	the	finite	case:	for	if	A	and	B	are	finite	sets	and	A	has	fewer	elements	than	B,	 then
certainly	there	exists	a	one-to-one	correspondence	between	A	and	a	part	of	B,	but	none	between	A	and
all	of	B.	If	A	and	B	have	the	same	power,	we	write	A	≈	B;	if	the	power	of	A	is	less	than	that	of	B,	we
write	A	 	B;	 finally,	 if	 the	 power	 of	A	 is	 less	 than	 or	 equal	 to	 that	 of	B	 (that	 is,	A	 is	 in	 one-to-one
correspondence	with	a	subset	of	B),	then	we	write	A	 	B.
It	 is	a	curious	fact,	 first	proven	by	Cantor,	 that	many	sets	which	appear	 to	be	smaller—or	 larger—

than	ω	actually	have	the	same	power	as	ω.	For	example,	if	E	is	the	set	of	the	even	natural	numbers,	it	is
easy	to	see	that	the	function	f	(n)	=	2n	is	a	bijective	function	from	ω	to	E.	Thus,	although	E	is	a	proper
subset	of	ω	(in	fact,	E	appears	to	have	only	“half	as	many”	elements	as	ω),	actually	E	is	equipotent	with
ω.	A	more	surprising	example	involves	ω	and	the	set	 	of	the	rational	numbers;	our	intuition	suggests,
in	 the	most	compelling	way,	 that	 	 is	a	“larger”	set	 than	ω;	 for	 	not	only	 includes	ω,	 but	 is,	 in	 an
obvious	manner,	“infinitely	dense”	with	respect	 to	ω.	Yet	 it	can	easily	be	shown	that	ω	and	 	are	 in
one-to-one	correspondence;	the	proof	consists	in	“enumerating”	the	rational	numbers—that	is,	making	a
list	r1,	r2,	r3,	…	of	rational	numbers	which	includes	them	all;	the	correspondence	i	↔	ri	is	then	a	one-to-



one	correspondence	between	ω	and	 .	We	proceed	as	follows.
First,	we	group	all	 the	positive	 rational	numbers	 into	classes	A1,	A2,	…	 ,	where	Ai	 contains	 all	 the

fractions	n/m	such	that	n	+	m	=	i.	Within	each	class	Ai,	we	order	the	numbers	n/m	in	increasing	order	of
the	numerator	n.	Thus	the	first	few	fractions	in	this	ordering	would	be	as	follows:

Now	we	delete	all	fractions	which	are	not	in	“lowest	terms;”	this	leaves

This	 is	 clearly	 an	 enumeration	 r1,	 r2,	 …	 of	 the	 positive	 rational	 numbers.	 If	 t1,	 t2,	 …	 is	 a	 similar
enumeration	 of	 the	 negative	 rational	 numbers,	 then	 0,	 r1,	 t1,	 r2,	 t2,	…	 is	 an	 enumeration	 of	 all	 the
rational	numbers.
A	 set	 which	 is	 in	 one-to-one	 correspondence	 with	ω	 is	 said	 to	 be	 denumerable.	 Faced	 with	 the

unexpected	discovery	that	 	is	denumerable,	we	are	naturally	led	to	wonder	whether	every	infinite	set
is	denumerable.	This	question	was	answered	by	Cantor—in	the	negative:	the	set	of	all	the	real	numbers,
for	example,	is	not	denumerable.	To	prove	this,	we	use	the	so-called	diagonal	method.
First,	we	note	that	the	function	y	=	tan(πx	−	π/2)	is	a	one-to-one	correspondence	between	the	set	of	all

the	real	numbers	and	the	open	interval	(0,	1);	hence	it	will	be	sufficient	for	our	purposes	to	prove	that
the	set	of	all	the	real	numbers	r	such	that	0	<	r	<	1	cannot	be	enumerated.	We	argue	by	contradiction.
Suppose	that	r1,	r2,	…	is	an	enumeration	of	all	the	real	numbers	between	0	and	1.	Let	each	real	number
be	expressed	as	a	nonterminating	decimal;	thus	 ,	where	each	rij	is	a	digit	0,	1,	…	,	9.

Now	we	define	s	to	be	a	number	 ,	where	s1	≠	r11,	s2	≠	r22,	s3	≠	r33,	s4	≠	r44,	and	so	forth
(for	example,	we	might	dictate	that	si	=	1	if	rii	≠	1	and	si	=	2	if	rii	≠	1).	Now,	since	0	<	s	<	1,	it	follows
that	s	is	one	of	the	numbers	in	the	enumeration,	say	s	=	rk.	But	this	is	impossible,	because	the	kth	digit
of	s	is	sk	and	the	kth	digit	of	rk	is	rkk,	and	sk	≠	rkk.	Because	of	this	contradiction,	it	is	clear	that	there	is
no	way	of	enumerating	the	real	numbers.	Yet	ω	has	the	same	power	as	a	subset	of	the	real	numbers—
namely	those	real	numbers	which	happen	to	be	positive	integers.	Thus	ω	 	 .
We	have	just	revealed	one	of	the	most	significant	facts	in	Cantor’s	theory	of	the	infinite:	while	ω	and	
	are	both	 infinite	sets,	one	of	 them	is	strictly	 larger	 than	 the	other;	 in	other	words	 infinite	sets,	 like

finite	sets,	come	in	different	“sizes.”	Our	next	step,	naturally,	is	to	find	a	set	which	is	strictly	larger	than	
.	In	order	to	settle	this	question,	however,	we	introduce	a	result	of	far	greater	generality,	which	will

provide	us	at	once	with	a	strictly	increasing	sequence	 	of	infinite	sets.	Our	result	is
simply	this:	if	A	is	any	set,	then	the	power	set	of	A,	 ,	is	strictly	larger	than	A.	To	prove	this,	we	use	a
variant	of	the	diagonal	method	which	served	us	in	the	preceding	paragraph.
We	begin	by	assuming	that	there	is	a	one-to-one	correspondence	ϕ	:	A	→	 .	We	define	a	set	B	as



follows:

B	is	a	subset	of	A,	so	B	=	ϕ(y)	for	some	y	∈	A.	Now	if	y	∈	ϕ(y),	then	y	∉	B,	that	is,	y	∉	ϕ(y);	yet	if	y	∉
ϕ(y),	then	y	∈	B,	that	is,	y	∈	ϕ(y).	Quite	obviously	this	is	impossible;	hence	there	exists	no	one-to-one
correspondence	between	A	and	 .	However,	A	has	the	same	power	as	a	subset	of	 ,	namely	the
set	of	all	the	singletons	{x}.	We	conclude	that	A	 	 .
The	argument	of	the	preceding	paragraph	is	a	proof	for	the	following	theorem.

7.1	Theorem	If	A	is	a	set,	there	exists	no	surjective	function	A	→	 .

7.2	Corollary	No	subset	of	A	can	be	equipotent	with	 .

7.3	Corollary	A	cannot	be	equipotent	with	any	set	containing	 .
It	follows	from	7.2	and	7.3	that

7.4 	 if	B	⊆	A,	then	B	 	 ;

	 if	 	⊆	D,	then	A	 	D.

We	 have	 proved	 earlier	 (Theorem	 2.35)	 that	 if	 A	 is	 a	 set,	 	 and	 2A	 are	 in	 one-to-one
correspondence.	Thus	all	of	the	above	statements	hold	true	when	we	replace	 by	2A.
If	we	let	ω	=	K1,	P(K1)	=	K2,	P(K2)	=	K3,	and	so	forth,	then	we	have	the	strictly	increasing	sequence

of	infinite	sets

Now	consider	 	for	each	i,	Ki+1	⊆	L1,	that	is,	 (Ki)	=	L1.	It	follows	by	7.4	that	for	each	i,	Ki	
L1.	Now	we	let	L2	=	 (L1),	L3	=	 (L2),	and	so	forth;	hence	we	have	the	strictly	increasing	sequence	of
infinite	sets

Thus,	speaking	informally,	there	are	many	more	“sizes”	of	infinite	sets	than	there	are	different	“sizes”	of
finite	sets.
It	is	worth	nothing	that	the	set	 	of	the	real	numbers	is	equipotent	with	2ω.	Indeed,	we	have	already

noted	that	 	is	equipotent	with	the	open	interval	(0,	1)	of	 ,	hence	with	the	closed	interval	[0,	1].	(This
last	fact	follows	trivially	from	Exercise	2	in	Exercises	7.3.)	Now,	each	element	r	 in	 the	interval	[0,	1]
can	be	written	in	binary	notation

where	each	ri,	is	either	0	or	1.	This	expression	for	r	can	be	identified	with	the	function	ϕr	:	ω	→	{0,	1}
given	 by	 ϕr(i)	 =	 ri,	 ∀	 i	 ∈	 ω.	 It	 is	 easy	 to	 see	 that	 the	 correspondence	 r	 ↔	 ϕr	 is	 a	 one-to-one



correspondence	between	the	interval	[0,	1]	and	2ω.
We	have	seen	that	the	set	 	of	the	rational	numbers	is	equipotent	with	ω;	it	is	easy	to	show	that	the

set	 	of	 the	complex	numbers	 is	equipotent	with	 ;	 thus,	by	the	preceding	paragraph,	all	of	classical
mathematics	 deals	 with	 only	 two	 sizes	 of	 infinite	 sets,	 namely,	 sets	 equipotent	 with	 ω	 and	 sets
equipotent	with	2ω;	 the	 power	of	 2ω	 is	 often	 called	 the	power	 of	 the	 continuum.	 Now	 an	 interesting
question	which	arises	is	the	following:	is	there	a	power	between	that	of	ω	and	that	of	2ω?	That	is,	does
there	exist	any	set	A	such	that	ω	 	A	 	2ω?	Since	no	such	set	occurs	anywhere	in	classical	mathematics,
and	 there	 appears	 to	 be	 no	 way	 of	 constructing	 one,	 it	 was	 conjectured	 by	 Cantor	 and	 his
contemporaries	that	the	answer	to	that	question	must	be	“no;”	this	conjecture	is	known	as	the	continuum
hypothesis.	A	closely	related	conjecture	 is	 the	generalized	continuum	hypothesis,	which	proposes	 that
for	every	set	B,	there	is	no	set	A	such	that	B	 	A	 	2B.	These	hypotheses	have	never	been	either	proven
or	disproven;	we	shall	have	more	to	say	about	them	in	Chapter	11.
The	aim	of	this	chapter	is	to	exploit	the	various	ideas	which	have	been	motivated	in	our	introduction.

We	will	define	rigorously	the	concepts	of	finite	and	infinite	set,	“power,”	and	cardinality,	and	give	the
classical	results	of	Cantor’s	theory.

2	EQUIPOTENCE	OF	SETS

In	the	preceding	section,	we	have	defined	the	symbols	≈	,	 	,	and	 	as	follows:

A	≈	B	iff	A	is	in	one-to-one	correspondence	with	B.

A	 	B	iff	A	is	in	one-to-one	correspondence	with	a	subset	of	B.

A	 	 B	 iff	 A	 is	 in	 one-to-one	 correspondence	 with	 a	 subset	 of	 B	 and	 A	 is	 not	 in	 one-to-one
correspondence	with	B.

It	is	immediate	from	the	second	of	these	statements	that

7.5 	 A	 	B	iff	there	exists	an	injective	function	A	→	B.

Furthermore,	we	have	the	following.

7.6	Lemma	There	exists	an	injective	function	f	:	A	→	B	if	and	only	if	there	exists	a	surjective	function	g
:	B	→	A.

Proof

i) 	 Suppose	f	:	A	→	B	is	injective;	by	2.25,	there	exists	a	function	g	:	B	→	A	such	that	g	 	f	=	IA;	thus,
by	5.4,	g	is	surjective.

ii) 	 Suppose	g	:	B	→	A	is	surjective;	by	5.4,	there	exists	a	function	f	:	A	→	B	such	that	g	 	f	=	IA;	thus,
by	2.25,	f	is	injective.	
By	7.5	and	7.6	we	have

7.7 	 A	 	B	iff	there	exists	a	surjective	function	B	→	A.



7.8	Theorem	Let	A,	B,	C,	and	D	be	sets	where	A	∩	C	=	Ø	and	B	∩	D	=	Ø.	If	f	:	A	→	B	and	g	:	C	→	D
are	bijective	functions,	then	f	∪	g	is	a	bijective	function	A	∪	C	→	B	∪	D.

Proof.	If	f	:	A	→	B	and	g	:	C	→	D	are	functions,	then	clearly	f	:	A	→	B	∪	D	and	g	:	C	→	B	∪	D	are
functions,	hence	by	2.16,

is	a	function.	Now	f	:	A	→	B	and	g	:	C	→	D	are	bijective,	hence	by	2.21,

are	functions;	thus,	as	above,

is	a	function.	But	clearly	f−	1	∪	g−	1	=	(f	∪	g)−	1,	hence

is	a	function;	thus,	by	2.22,

is	bijective.	

7.9	Corollary	Suppose	A	∩	C	=	Ø	and	B	∩	D	=	Ø;	if	A	≈	B	and	C	≈	D,	then	A	∪	C	≈	B	∪	D.

7.10	Theorem	If	A	≈	B	and	C	≈	D,	then	A	×	C	≈	B	×	D.

Proof.	Let	f	:	A	→	B	and	g	 :	C	→	D	be	bijective	functions,	and	 let	us	define	h	 :	A	×	C	→	B	×	D	as
follows:

h(x,	y)	=	(f	(x),	g(y)),	∀	(x,	y)	∈	A	×	C.

It	can	easily	be	shown	that	h	:	A	×	C	→	B	×	D	is	bijective;	the	details	are	left	to	the	reader.	

7.11	Theorem	If	A	≈	B	and	C	≈	D,	then	AC	≈	BD.

Proof.	 Let	 f	 :	A	→	B	 and	 g	 :	D	→	C	 be	 bijective	 functions,	 and	 let	 us	 define	 h	 :	AC→	BD	 in	 the
following	way.	For	each	α	∈	AC,	that	is,	for	each	function	α	:	C	→	A,	let	h(α)	=	f	 	α	 	g;	clearly	f	 	α	 	g
is	a	function	D	→	B,	 that	is,	 f	 	α	 	g	∈	BD.	 It	can	be	shown	routinely	 that	h	 :	AC→	BD	 is	a	bijective
function;	the	details	are	left	to	the	reader.	



7.12	Corollary	If	A	≈	B,	then	 .

This	follows	immediately	from	7.11	and	2.35.

EXERCISES	7.2

1. 	 Complete	the	proof	of	Theorem	7.10.
2.	Complete	the	proof	of	Theorem	7.11.
3.	Prove	that	if	(A	−	B)	≈	(B	−	A),	then	A	≈	B.
4.	Suppose	A	≈	B,	a	∈	A,	and	b	∈	B.	Prove	that	(A	−	{a})	≈	(B	−	{b}).
5.	Suppose	that	A	≈	B,	C	≈	D,	C	⊂	A	and	D	⊂	B.	Prove	that	(A	−	C)	≈	(B	−	D).
6.	Let	{Bi}i∈	I	and	{Ci}i∈	I	each	be	a	family	of	mutually	disjoint	sets.	If	Bi	≈	Ci	for	each	i	∈	I,	prove	that

7.	Let	{Bi}i∈	I	and	{Ci}i∈	I	be	families	of	sets.	If	Bi	≈	Ci	for	each	i	∈	I	,	prove	that

3	PROPERTIES	OF	INFINITE	SETS

A	set	A	is	said	to	be	finite	if	A	is	in	one-to-one	correspondence	with	a	natural	number	n;	otherwise,	A	is
said	to	be	infinite.	Several	other	definitions	of	“finite”	and	“infinite”	are	to	be	found	in	the	mathematical
literature;	foremost	among	them	are	the	following:

i) 	 A	is	infinite	if	and	only	if	A	has	a	denumerable	subset.
ii) 	 A	is	infinite	if	and	only	if	A	is	equipotent	with	a	proper	subset	of	itself.

In	each	of	the	above	two	cases,	a	set	is	called	“finite”	if	it	is	not	infinite.
It	will	be	shown	next	that	(i)	and	(ii)	are	each	equivalent	to	our	definition	of	“infinite,”	given	above.

7.13	Lemma	If	A	is	a	denumerable	set	and	x	∈	A,	then	A	−	{x}	is	a	denumerable	set.

Proof.	If	A	is	denumerable,	then	there	exists	a	bijective	function	f	:	ω	→	A.	Corresponding	to	x,	there	is
an	n	∈	ω	such	that	f	(n)	=	x;	define	g	:	ω	→	A	as	follows:

It	is	easy	to	see	that	g	is	a	bijective	function	from	ω	to	A	−	{x};	the	details	are	left	to	the	reader.	



7.14	Theorem	A	is	an	infinite	set	if	and	only	if	A	has	a	denumerable	subset.

Proof

i) 	 Well-order	A;	by	Theorem	4.62,	exactly	one	of	the	following	cases	holds:	(α)	ω	is	isomorphic	with
A;	(β)	ω	is	isomorphic	with	an	initial	segment	of	A;	(γ)	A	is	isomorphic	with	an	initial	segment	of
ω.	If	A	does	not	have	a	denumerable	subset,	then	(α)	and	(β)	cannot	hold,	hence	(γ)	holds;	therefore
A	is	equipotent	with	an	initial	segment	n	=	Sn	of	ω,	so	A	is	finite.*	We	have	just	proved	that	if	A
does	not	have	a	denumerable	subset,	then	A	is	finite.

ii) 	 To	prove	the	converse,	we	will	first	use	induction	to	show	that	a	natural	number	n	cannot	have	a
denumerable	subset.	This	assertion	is	clearly	true	for	n	=	0;	let	it	be	true	for	n,	and	suppose	n+	has	a
denumerable	subset	S.	If	n	∉	S,	then	S	is	a	denumerable	subset	of	n	(recall	that	“n“	was	defined	to
be	the	set	{0,	1,	…	,	n	−	1});	by	the	hypothesis	of	induction,	this	cannot	happen.	If	n	∈	S,	then	S	−
{n}⊆	n;	but	S	−	{n}	is	denumerable	(Lemma	7.13),	so	by	the	hypothesis	of	induction	this	cannot
happen.	 We	 conclude	 that	 n+	 cannot	 have	 a	 denumerable	 subset.	 Now	 suppose	 that	 A	 has	 a
denumerable	subset	B	and	A	 is	 finite;	 that	 is,	A	≈	n,	B	⊆	A,	and	B	≈	ω.	Then	we	have	 injective
functions	as	follows:	ω	→	B	→	A	→	n;	 their	composite	 is	an	 injective	function	ω	→	n,	and	we
have	just	proven	this	to	be	impossible.	Thus	if	A	has	a	denumerable	subset,	then	A	is	infinite.	

7.15	Corollary	Every	set	which	has	an	infinite	subset	is	infinite.

7.16	Corollary	Every	subset	of	a	finite	set	is	finite.

7.17	Corollary	If	A	is	an	infinite	set	and	B	is	nonempty,	then	A	×	B	and	B	×	A	are	infinite	sets.

Proof.	If	y	is	a	fixed	element	of	B,	the	function	f	:	A	→	A	×	B	given	by	f(x)	=	(x,	y)	is	clearly	injective.
Thus	if	g	:	ω	→	A	is	a	bijective	function,	then	f	 	g	:	ω	→	A	×	B	is	injective.	It	follows	that	A	×	B	has	a
denumerable	subset,	hence	A	×	B	is	infinite.	

7.18	Theorem	A	is	an	infinite	set	if	and	only	if	A	is	equipotent	with	a	proper	subset	of	itself.

Proof

i) 	 Suppose	that	A	is	infinite;	by	Theorem	7.14,	A	has	a	denumerable	subset	B	={a0,	a1,	a2	 ,	…}.	Let
the	function	f	:	A	→	A	be	defined	by

Clearly,	f	is	a	one-to-one	correspondence	between	A	and	A	−	{a0}.



ii) 	 Suppose	there	exists	a	bijective	function	 f	 :	A	→	B,	where	B	 is	a	proper	subset	of	A.	Let	c	be	an
arbitrary	 element	 of	A	 −	B;	 by	 the	 recursion	 theorem,	 there	 exists	 a	 function	 γ	 :	ω	→	A	 which
satisfies	the	conditions

(α)	γ	(0)	=	c	and	(β)	γ	(n+)	=	f	(γ	(n)).

Now	ran	f	=	B	and	c	∈	A	−	B,	so	c	∉	ran	f;	thus	by	6.9,	γ	is	injective.	The	range	of	γ	is	obviously	a
denumerable	subset	of	A,	so	by	7.14,	A	is	infinite.	

EXERCISES	7.3

1. 	 Let	A	and	B	be	a	pair	of	disjoint	finite	sets.	Use	induction	to	prove	that	if	A	≈	m	and	B	≈	n,	then	A
∪	B	≈	m	+	n.	Conclude	that	the	union	of	two	finite	sets	is	finite.

2. 	 Using	the	result	of	Exercise	1,	prove	that	if	A	is	an	infinite	set	and	B	is	a	finite	subset	of	A,	then	A	−
B	is	infinite.	Prove	A	−	B	≈	A.

3. 	 Prove	that	a	natural	number	is	not	equipotent	with	a	proper	subset	of	itself.	Conclude	that	if	A	≈	m
and	n	>	m,	then	A	 	n.

4. 	 Prove	that	A	is	an	infinite	set	if	and	only	if	∀n	∈	ω,	A	has	a	subset	B	such	that	B	≈	n.
5. 	 Let	A	 and	B	 be	 finite	 sets.	Use	 induction	 to	 prove	 that	 if	A	 ≈	m	 and	B	 ≈	 n,	 then	A	 ×	B	 ≈	mn.

Conclude	that	the	Cartesian	product	of	two	finite	sets	is	finite.
6. 	 Assuming	that	A	is	an	infinite	set	and	B	is	denumerable,	prove	that	A	≈	(A	∪	B).
7. 	 Suppose	x	∈	A;	prove	that	A	is	an	infinite	set	if	and	only	if	A	≈	(A	−	{x}).
8. 	 Use	induction	to	prove	that	if	A	≈	n,	then	 	≈	2n.	Conclude	that	if	A	is	a	finite	set,	then	 	is	a

finite	set.
9. 	 Prove	Corollary	7.15.
10. 	 Prove	Corollary	7.16.

4	PROPERTIES	OF	DENUMERABLE	SETS

Once	again,	a	set	is	called	denumerable	if	it	is	in	one-to-one	correspondence	with	ω.	The	fundamental
properties	of	denumerable	sets	are	presented	in	this	section.

7.19	Theorem	Every	subset	of	a	denumerable	set	is	finite	or	denumerable.

Proof.	First	we	note	that	every	subset	of	ω	is	finite	or	denumerable.	Indeed,	let	E	⊆	ω;	by	4.63,	either	E	
	ω	 or	E	 	Sn	 =	n	 for	 some	n	∈	ω.	Now	 let	A	 be	 a	 denumerable	 set	 and	 let	B	⊆	A;	 there	 exists	 a
bijective	function	f	:	A	→	ω.	Now	f(B)	⊆	ω,	so	f(B)	is	finite	or	denumerable;	but	f	is	bijective,	so	B	≈	f
(B);	hence	B	is	finite	or	denumerable.	

7.20	Theorem	ω	×	ω	≈	ω.

Proof.	We	will	use	the	recursion	theorem	to	establish	the	existence	of	a	bijective	function	from	ω	to	ω	×
ω.	Let	A	=	ω	×	ω;	we	define	a	function	f	:	A	→	A	as	follows:



We	note	that	f	is	injective,	for	suppose

If	r	=	0,	then	(because	of	the	way	f	is	defined)	m	=	0	and	p	=	0;	hence

So	k	=	n.	If	r	≠	0,	then

so	k	=	n	and	m	=	p.	Thus	f	is	injective.	Now	we	make	use	of	the	recursion	theorem:	we	define	a	function
γ	:	ω	→	A	by	the	two	conditions
i) 	 γ	(0)	=	(0,	0),	and

ii) 	 γ	(n+)	=	f	(γ	(n)).

We	note	(again,	because	of	the	way	f	is	defined)	that	(0,	0)	cannot	be	in	the	range	of	f;	it	follows	by	6.9
that	γ	is	injective.	Finally,	we	show	that	γ	is	surjective;	indeed,	we	will	show	that	if	k,	m	∈	ω,	then	(k,	m)
=	γ	(n)	for	some	n	∈	ω.	The	proof	is	by	induction	on	k	+	m:

I. 	 If	k	+m	=	0,	then	(k,	m)	=	(0,	0)	=	γ	(0).

II. 	 Suppose	k	+	m	=	n+;	if	k	=	0,	then	(k,	m)	=	f	(m	−	1,	0);	by	the	hypothesis	of	induction,	(m	−	1,	0)	=	γ
(q)	for	some	q	∈	ω	,	so

If	k	≠	0,	then	(k,	m)	=	f	(k	−	1,	m	+	1);	by	the	hypothesis	of	induction,	(k	+m	−	1,	0)	=	γ	(p)	for	some
p	∈	ω;	thus

7.21	Corollary	If	A	and	B	are	denumerable	sets,	then	A	×	B	is	a	denumerable	set.

Proof.	If	A	≈	ω	and	B	≈	ω,	then	A	×	B	≈	ω	×	ω	(7.10).	But	ω	×	ω	≈	ω;	thus	A	×	B	≈	ω.	

7.22	Theorem	Let	{An}n∈ω	be	a	denumerable	family	of	denumerable	sets,	and	let



then	A	is	denumerable.	[A	denumerable	union	of	denumerable	sets	is	denumerable.]

Proof.	To	say	 that	each	An	 is	denumerable	means	 that	 there	exists	a	 family	{fn}n∈ω	of	 functions	such
that,	∀n	∈	ω,	fn	:	ω	→	An	is	bijective.	We	define	σ	:	ω	×	ω	→	A	by:	σ	(k,	m)	=	fk(m).	It	is	easy	to	see	that
σ	is	surjective:	for	if	x	∈	A,	then	x	∈	An	for	some	n	∈	ω,	and	if	x	∈	An,	then	x	=	fn(m)	=	σ	(n,	m)	 for
some	m	∈	ω.
By	Theorem	7.20,	there	exists	a	bijective	function	ϕ	:	ω	→	ω	×	ω;	hence	σ	 	ϕ	:	ω	→	A	is	surjective.

It	 follows	 (7.7)	 that	A	 ≈	E	 for	 some	 subset	E	⊆	ω;	 now	E	 is	 either	 finite	 or	 denumerable	 (Theorem
7.19);	hence	A	is	either	finite	or	denumerable.	By	Corollary	7.15,	A	is	not	finite,	so	A	is	denumerable.	

7.23	Corollary	The	union	of	two	denumerable	sets	is	denumerable.

EXERCISES	7.4

1. 	 Prove	that	the	union	of	two	denumerable	sets	is	denumerable.	(Corollary	7.23.)
2. 	 Let	 A	 be	 a	 denumerable	 set.	 Prove	 that	 A	 has	 a	 denumerable	 subset	 B	 such	 that	 A	 −	 B	 is

denumerable.
3. 	 Prove	 that	ωn	 ≈	ω.	 [Hint:	 Use	 the	 definitions	ω1	 =	ω	 and	ωn+	 =	ω	 n	 ×	ω;	 use	 7.10,	 7.20,	 and

induction.]	Conclude	that	if	A	is	a	denumerable	set,	then	An	is	a	denumerable	set.
4. 	 Prove	that	ω	∪	ω2	∪	ω3	∪	…	is	a	denumerable	set.
5. 	 Prove	 that	 the	 set	 of	 all	 finite	 subsets	 of	ω	 is	 denumerable.	Then	prove	 that	 the	 set	 of	 all	 finite

subsets	of	a	denumerable	set	is	denumerable.
6. 	 Let	A	be	an	infinite	set.	Prove	that	A	is	denumerable	if	and	only	if	A	≈	B	for	every	infinite	subset	B
⊆	A.

7. 	 Prove	that	if	A	is	a	nonempty	finite	set	and	B	is	denumerable,	then	A	×	B	is	denumerable.
8. 	 Let	 	be	the	set	of	all	polynomials	a0	+	a1x	+…	+	anxn	with	integer	coefficients.	Prove	that	 	is

denumerable.	[Hint:	This	may	be	proved	by	using	an	argument	of	the	kind	used	in	the	introduction
to	prove	that	 	is	denumerable.]

9. 	 An	algebraic	number	is	any	real	root	of	an	equation	a0	+	a1x	+…	+	anxn=	0,	where	the	coefficients
ai	are	integers.	Prove	that	the	set	of	all	algebraic	numbers	is	denumerable.

10. 	 A	real	number	is	called	transcendental	if	it	is	not	algebraic.	Prove	that	the	set	of	all	transcendental
numbers	is	nondenumerable.

11. 	 Use	 the	 results	 of	Exercises	 1	 and	 5,	 above,	 to	 prove	 that	 the	 set	 of	 all	 infinite	 subsets	 of	ω	 is
equipotent	with	2ω.

*	Note	that,	by	definition,	the	natural	number	n	is	the	set	{0,	1,	2,	…	,	n	−	1},	that	is,	n	is	exactly	the
initial	segment	Sn	of	ω.



8
Arithmetic	of	Cardinal	Numbers

1	INTRODUCTION

In	 the	preceding	chapter	we	defined	what	 is	meant	by	a	 finite	 set;	 it	 follows	 from	our	definition	 that
every	finite	set	is	equipotent	with	exactly	one	natural	number	n.	This	fact	has	an	important	consequence,
namely,	that	the	natural	numbers	may	be	used	as	a	set	of	standards—a	scale,	as	it	were—to	measure	the
size	 of	 finite	 sets.	 If	A	 is	 any	 finite	 set,	 then	A	may	 be	 “measured”	 by	 comparison	with	 the	 natural
numbers,	and	will	be	found	to	correspond—that	is,	to	be	equipotent—with	exactly	one	of	them.	When
the	 natural	 numbers	 serve	 in	 this	 capacity—as	 standards	 to	 measure	 the	 size	 of	 sets—they	 are
commonly	called	cardinal	numbers.
A	natural	and	fascinating	question	arises	now:	Can	we	find	a	way	of	extending	our	system	of	cardinal

numbers	so	as	to	create	a	set	of	standards	for	measuring	the	size	of	all	sets?	To	put	it	another	way:	Can
we	define	“infinite	cardinal	numbers,”	and	can	we	construct	a	sufficient	supply	of	them	so	that	every	set
has	a	cardinal	number	(if	A	has	n	elements,	we	say	that	A	has	cardinal	number	n)?	The	answer	is	“yes:”
We	 can	 generalize	 the	 concept	 of	 cardinal	 number	with	 such	 remarkable	 ease	 that	 almost	 all	 of	 the
properties	of	the	finite	cardinals—their	ordering,	their	arithmetic,	and	so	forth—apply	as	naturally	to	the
infinite	cardinals	as	they	did	to	the	finite	ones.	To	take	one	example:	What	is	meant	by	the	sum	m	+	n	of
two	cardinal	numbers?	The	idea,	clearly,	is	that	if	A	has	m	elements	and	B	has	n	elements—and	if	A	and
B	are	disjoint—then	m	+	n	is	the	cardinal	number	of	A	∪	B.	What	could	be	more	natural	than	to	extend
this	notion	of	cardinal	sum	to	all	sets	(or	rather,	to	all	“set	sizes”)?
Before	 giving	 a	 general	 definition	 of	 cardinal	 numbers,	 let	 us	 take	 one	 more	 look	 at	 the	 natural

numbers	 and	 see	why	 they	 can	 be	 used	 as	 standards	 to	measure	 the	 size	 of	 finite	 sets.	As	we	 stated
earlier,	every	finite	set	is	equipotent	with	exactly	one	natural	number	n;	that	is,	the	natural	numbers	are
well	defined	sets,	and	there	is	a	unique	natural	number	for	each	and	every	finite	“set	size.”	It	is	clear,
now,	what	we	expect	of	our	definition	of	cardinal	numbers:	The	cardinal	numbers	are	to	be	well-defined
sets,	and	every	set	is	to	be	equipotent	with	exactly	one	cardinal	number.	It	is	immaterial	what	sets	the
cardinal	numbers	are;	the	only	requirement	is	that	there	be	exactly	one	cardinal	number	of	each	“size.”
A	 simple	 way	 of	 constructing	 the	 cardinal	 numbers	 would	 be	 the	 following.	We	 observe	 that	 the

relation	“A	is	equipotent	with	B”	(A	≈	B)is	an	equivalence	relation	among	sets.	Thus	we	might	partition
the	 class	 of	 all	 sets	 into	 equipotence	 classes,	 and	 select	 one	 representative	 of	 each	 class:	 the
representatives	 would	 be	 our	 cardinal	 numbers.	 This	 process	 seems	 quite	 natural—and	will,	 indeed,
serve	as	the	intuitive	basis	of	our	definition.	However,	it	cannot	be	applied	literally.	Note,	for	example,
that	if	A	is	a	set,	the	equipotence	class	{B	:	B	≈	A}	may	be	a	proper	class;	hence	it	is	not	legitimate	to
speak	of	the	“class	of	all	the	equipotence	classes.”	Furthermore,	even	if	we	could	speak	of	the	“class	of
all	 the	 equipotence	 classes,”	 it	 would	 not	 be	 legitimate	 to	 use	 the	 Axiom	 of	 Choice	 to	 pick	 a
representative	of	each	class;	indeed,	the	Axiom	of	Choice	(see	statement	Ch	1	on	page	115)	allows	us	to
pick	representatives	from	a	set	of	sets,	not	from	an	arbitrary	class	of	classes.
Since	 we	 cannot	 literally	 “select”	 our	 cardinals	 by	 using	 the	 Axiom	 of	 Choice,	 how	 are	 we	 to

proceed?	 A	 simple	 way,	 and	 one	 which	 is	 sanctioned	 by	 mathematical	 tradition,	 is	 to	 posit	 their
existence	(that	is,	to	posit	the	existence	of	a	representative	set	from	each	“equipotence	class”)	by	means



of	a	new	axiom.

A12	Axiom	of	Cardinality	There	is	a	class	CD	of	sets,	called	cardinal	numbers,	with	the	following
properties:

K1	If	A	is	any	set,	there	exists	a	cardinal	number	a	such	that	A	≈	a.
K2	If	A	is	a	set	and	a,	b	are	cardinal	numbers,	then	A	≈	a	and	A	≈	b	⇒	a	=	b.

We	will	add	the	Axiom	of	Cardinality	to	our	list	of	axioms	for	set	theory—but	only	on	a	provisional
basis,	for	in	the	next	chapter	we	will	describe	a	method	for	constructing	sets	with	properties	K1	and	K2
—that	 is,	we	will	 produce	 actual	 sets	 (in	much	 the	 same	way	 as	we	 produced	 the	 natural	 numbers)
which	will	serve	as	cardinal	numbers.
We	will	use	lower-case	Roman	letters,	such	as	a,	b,	c,	d,	etc.,	to	denote	cardinal	numbers.
It	is	worth	nothing,	incidentally,	that	the	class	CD	of	all	the	cardinal	numbers	is	a	proper	class.	For

suppose	CD	is	a	set:	since	each	cardinal	number	is	a	set,	it	follows	by	Axiom	A6	that

that	is,	the	union	of	all	the	cardinal	numbers,	is	a	set.	Thus	by	Axiom	A7,	 	(V	)	is	a	set;	but	then,	by
condition	K1	of	Axiom	A12,	there	is	a	cardinal	number	e	such	that	e	≈	 	(V).	Now	e	∈	CD,	hence	e	⊆
V	 ,	which	is	 impossible	by	Corollary	7.2.	This	contradiction	proves	that	CD	 is	not	a	set,	but	a	proper
class.

2	OPERATIONS	ON	CARDINAL	NUMBERS

If	A	is	a	set,	a	is	a	cardinal	number	and	A	≈	a,	then	we	say	that	a	is	the	cardinal	number	of	A.	We	denote
this	by	writing

Now	conditions	K1	and	K2	can	be	conveniently	restated	as	follows:

K1	If	A	is	any	set,	there	exists	a	cardinal	number	a	such	that	a	=	#A.
K2	If	A	is	a	set	and	a,	b	are	cardinal	numbers,	then	a	=	#A	and	b	=	#A	⇒	a	=	b.

8.1	Lemma	If	a	and	b	are	cardinal	numbers	and	a	≈	b,	then	a	=	b.

The	proof	is	an	immediate	consequence	of	K2.

8.2	Lemma	If	A	≈	B,	then	#A	=	#B.

Proof.	By	K1,	there	are	cardinals	a,	b	such	that	a	=	#A	and	b	=	#B.	Now	a	≈	A	and	b	≈	B;	thus,	if	A	≈	B,
it	follows	that	a	≈	A	and	b	≈	A,so	by	K2,	a	=	b.

We	 now	 proceed	 to	 define	 the	 addition	 and	 multiplication	 of	 cardinal	 numbers.	 Our	 definitions
require	 no	 comment;	 they	 correspond	 in	 the	most	 natural	 way	 to	 our	 intuitive	 understanding	 of	 the
process	of	adding	and	multiplying	whole	numbers.



Let	a	and	b	be	two	cardinals.	Let	A	and	B	be	disjoint	sets	such	that	a	=	#A	and	b	=	#B.	Then	a	+	b	is
the	cardinal	number	defined	by

Note. 	 In	 the	preceding	definition	 it	has	been	assumed	 that	we	can	always	 find	disjoint	 sets	A	 and	B
such	that	a	=	#A	and	b	=	#B.	This	is	obviously	true.	For	example,	take	A	=	a	×{0}	and	B	=	b	×{1};	then
A	consists	of	pairs	(x,0),	whereas	B	consists	of	pairs	(x,	1).

Let	a	and	b	be	two	cardinals.	Let	A	and	B	be	sets	such	that	a	=	#A	and	b	=	#B.	The	ab	is	the	cardinal
number	defined	by

Note.	Since	a	and	b	are	sets,	we	can	write	ab	=	#(a	×	b).
When	 introducing	 a	 new	operation,	 it	 is	 necessary	 to	 show	 that	 the	 operation	 is	well-defined.	 For

cardinal	addition	and	multiplication,	this	means	the	following.
For	addition:	If	A1	≈	A	and	B1	≈	B	then	A1	∪	B1	≈	A	∪	B.
For	multiplication:	If	A1	≈	A	and	B1	≈	B	then	A1	×	B1	≈	A	×	B.

This	guarantees	 that	 the	 sum	and	product	do	not	depend	on	 the	 specific	 sets	chosen,	 so	 long	as	 their
cardinality	 is	 the	 same.	 The	 proof	 of	 these	 two	 assertions	 are	 given	 as	 exercises	 at	 the	 end	 of	 the
Section.
The	 usual	 algebraic	 laws	 for	 addition	 and	multiplication	 follow	 from	 the	 elementary	 properties	 of

sets.

8.3	Theorem	If	a,	b,	c	are	cardinal	numbers,	the	following	laws	hold:
i) 	 a	+	b	=	b	+	a,
ii) 	 ab	=	ba,
iii) 	 a	+	(b+	c)=	(a+	b)+	c,
iv) 	 a(bc)=	(ab)c,
v) 	 a(b+	c)=	ab	+	ac.

Proof.	 Properties	 (i),	 (iii),	 and	 (v)	 are	 immediate	 consequences	 of	 Theorems	 1.25(i),	 1.25(v),	 and
1.32(ii)	 respectively.	 To	 prove	 (ii),	 it	 must	 be	 shown	 that	 there	 exists	 a	 one-to-one	 correspondence
between	A	×	B	and	B	×	A;	 the	 function	φ(x,	y)=	(y,	x)is	obviously	 such	a	 correspondence.	Finally,	 to
prove	(iv),	we	must	show	that	there	exists	a	one-to-one	correspondence	between	A	×	(	B×	C)and	(	A	×
B)	×	C;	the	function

is	clearly	such	a	correspondence.

Let	A	and	B	be	finite	sets.	In	Chapter	2	we	defined	AB	to	be	the	set	of	all	functions	from	B	to	A.	Now
suppose	 that	A	 has	m	 elements	 and	 B	 has	 n	 elements,	 and	 consider	 the	 process	 of	 constructing	 an
arbitrary	function	from	B	to	A.	Since	B	has	n	elements,	and	each	element	can	be	assigned	an	image	in	m



possible	ways,	this	means	there	are	exactly	mn	distinct	functions	from	B	to	A.	This	simple	observation
suggests	the	following	definition	of	cardinal	exponentiation:

Let	a	and	b	be	two	cardinals.	Let	A	and	B	be	sets	such	that	a	=	#A	and	b	=	#B.	Then	ab	is	the	cardinal
number	defined	by

For	notational	convenience,	we	agree	that	0a	=	0	and	a0	=	1.

8.4	Theorem	For	any	cardinals	a,	b,	c	the	following	rules	hold:

i) 	 ab+c	=	abac,

ii) 	 (ab)c	=	acbc,

iii) 	 (ab)c	=	abc.

Proof.	Let	A,	B,	C	be	sets	such	that

(For	part	(i)	of	the	proof,	assume	B	∩	C	=	Ø.)

i) 	 We	must	show	that	there	exists	a	bijective	function	σ	:	AB∪C	→	AB	×	AC.
We	define	σ	as	follows:	If	f	∈	AB∪C,	then	σ(f)=	(f[B],f[C]),	where	f[B]	 is	the	restriction	of	f	to	B	and
f[C]	is	the	restriction	of	f	to	C.	It	is	immediate	that	σ	is	a	function	from	AB∪C	to	AB	×	AC.

σ	is	injective.	Suppose	σ(f)=	σ(g),	where	f	,	g	∈	AB∪C;	then

that	is,

Thus,	by	Theorem	2.15,

σ	is	surjective.	For	if	(f1,	f2)	∈	AB	×	AC	then,	by	Theorem	2.16,

ii) 	 We	will	show	that	there	exists	a	bijective	function



We	define	σ	as	follows:	If	(f1,	f2)∈	AC	×	BC,	then	σ(f1,	f2)is	the	function	f	defined	by

certainly	f	∈	(A×	B)C.	Now	it	is	immediate	that	σ	is	a	function	from	AC	×	BC	→	(A×	B)C.
σ	is	injective.	For	if	f	=	σ(f1,	f2)=	σ(f1,	f2)=	f,	then

so	f1(c)=	f′1(c)and	f2(c)=	f′2(c).	It	follows	that	f1	=	f′1	and	f′2	=	f′2,	hence

σ	is	surjective.	For	if	f	∈	(A×	B)C,	we	may	define

and

It	is	easily	shown	that	f1	∈	AC,	f2	∈	BC,	and	f	=	σ(f1,	f2);	the	details	are	left	to	the	reader.

iii) 	 We	will	show	that	there	exists	a	bijective	function	σ	:	(AB)C	→	AB×C.	Note	that	if	f	∈	(AB)C	and	c	∈
C,	then	f(c)	∈	AB;	thus,	if	b	∈	B,	then	[f(c)](b)	∈	A.	Now	define	σ(f)to	be	the	function	 	given	by

Certainly,	σ(f)=	 	∈	AB×C.	Now	it	is	immediate	that	σ	is	a	function	from	(AB)C	to	AB×C.
σ	is	injective.	For	if	 	=	σ(f)=	σ(f′)=	 ',	then

Thus	∀c	∈	C,	f	(c)=	f′	(c),	so	finally,	f	=	f	′	.
σ	is	surjective.	For	if	g	∈	AB×C	and	c	∈	C,	let	fc	be	defined	by

Clearly	fc	∈	AB,Now,if	f	 is	given	by	 f(c)=	fc,	 it	 is	easily	verified	that	 f	 is	a	function	from	C	 to	AB;
clearly	g	=	σ(f).

The	finite	cardinal	numbers	are	designated,	as	usual,	by	the	symbols	0,	1,	2,	and	so	forth.	It	is	to	be
especially	noted	 that	 0	 is	 the	 cardinal	 number	of	 the	 empty	 set,	 and	1	 is	 the	 cardinal	 number	of	 any
singleton.	 The	 cardinal	 number	 of	 ω—that	 is,	 the	 cardinal	 number	 of	 any	 denumerable	 set—is
customarily	designated	by	the	symbol	 0	(“aleph-null”).



It	is	useful	to	distinguish	between	finite	cardinal	numbers—that	is,	cardinal	numbers	of	finite	sets—
and	 infinite,or	 transfinite,	cardinal	numbers,	which	 are	 the	 cardinal	 numbers	 of	 infinite	 sets.	We	will
see,	shortly,	that	infinite	cardinals	have	several	properties	which	do	not	hold	for	finite	cardinals.

EXERCISES	8.2

1. 	 Prove	each	of	the	following,	where	a	is	any	cardinal	number.

2. 	 Prove	each	of	the	following,	where	a	is	any	cardinal	number.

3. 	 If	a,	b	are	arbitrary	cardinal	numbers,	prove	that	ab	=	0	if	and	only	if	a	=	0	or	b	=	0.
4. 	 If	a,	b	are	arbitrary	cardinal	numbers,	prove	that	ab	=	1	if	and	only	if	a	=	1	and	b	=	1.
5. 	 Give	a	counterexample	to	the	rule:	a	+	b	=	a	+	c	⇒	b	=	c.
6. 	 Give	a	counterexample	to	the	rule:	ab	=	ac	⇒	b	=	c.
7. 	 If	n	is	a	finite	cardinal	number,	use	induction	to	prove	that	na	=	a	+	a	+…+	a,	where	the	right-hand

side	of	the	equality	has	n	terms.

8. 	 If	n	is	a	finite	cardinal	number,	use	induction	to	prove	that	an	=	aa	…	a,	where	the	right-hand	side
of	the	equality	has	n	factors.

9. 	 Let	a,	b	be	cardinals,	and	let	A,	B	be	sets	such	that	a	=	#A	and	b	=	#B.	Prove	that	a	+	b	=	#(A∪	B)+
#(A∩	B).

10. 	 Prove	that	if	a	is	an	infinite	cardinal	number	and	n	is	a	finite	cardinal	number,	then	a	+	n	=	a.
11. 	 Prove	that	if	a	+	1	=	a,	then	a	is	an	infinite	cardinal	number.
12. 	 If	b	is	an	infinite	cardinal	number,	prove	that	 0	+	b	=	b.

13. 	 Prove:	If	A1	≈	A	and	B1	≈	B	then	A1	∪	B1	≈	A	∪	B.
14. 	 Prove:	If	A1	≈	A	and	B1	≈	B	then	A1	×	B1	≈	A	×	B.

3	ORDERING	OF	THE	CARDINAL	NUMBERS

Since	cardinal	numbers	measure	the	size	of	sets,	we	naturally	expect	the	cardinal	number	of	a	smaller
set	to	be	“less	than”	the	cardinal	number	of	a	larger	set.	This	suggests	a	natural	ordering	of	the	cardinal
numbers:

Let	a	 and	b	 be	 cardinals,	 and	 let	A	 and	B	 be	 sets	 such	 that	a	 =	 #A	 and	b	 =	 #B.	 The	 relation	 	 is
defined	by

Note. 	 Clearly,	a	 	b	 if	 and	only	 if	a	 	b.	 In	particular,	a	 	b	 if	 and	only	 if	 there	 exists	 an	 injective
function	f	:	a	→	b.
Our	goal	in	this	section	is	to	show	that	the	relation	 	defined	above	is	an	order	relation	among	the

cardinal	 numbers,	 and,	 in	 particular,	 that	 the	 class	 of	 all	 the	 cardinal	 numbers	 is	 well	 ordered	 with



respect	to	this	relation.

8.5	Theorem	(Schröder-Bernstein).	Let	a	and	b	be	cardinal	numbers;	if	a	 	b	and	b	 	a,	then	a	=	b.

Proof.	Suppose	a	 	b	and	b	 	a;	if	A	and	B	are	sets	such	that	a	=	#A	and	b	=	#B,	then	A	 	B	and	B	 	A,
that	is,	there	exist	injective	functions	f	:	A	→	B	and	g	:	B	→	A.	If	C	⊆	A,	let	(c)=	A	−	 [B	−	 	(C)];	it	is
easy	to	see	that	if	C	and	D	are	subsets	of	A,	then

Now,	let	S	={B	:	B	⊆	A	and	B	⊆	Δ(B)},	and	let	A1	=	 	B.	We	will	prove	that	A1	=	Δ(A1).

i) 	 If	a	∈	A1,	then	a	∈	B	for	some	B	∈	S;but	B	⊆	A1,	so	by	(1),	(B)⊆	(A1).	Thus	we	have

ii) 	 We	have	 just	shown	that	A1	⊆	 (A1),	hence	by	(1),	Δ(A1)	⊆	Δ[Δ(A1)],so	Δ(A1)	∈	S.	But	A1	 is	 the
union	of	all	the	elements	of	S,so	Δ(A1)	⊆	A1.	Thus,	we	have	proved	that	A1	=	(A1),	which	is	the	same
as

By	elementary	class	algebra	(see	Exercise	11,	Exercise	Set	1.3)	this	gives

Now,	f	and	g	are	injective	functions,	hence	A1	≈	 (A1)and,	by	(2),

But	 (A1)	≈	A1;	thus,	by	7.9,	A	≈	B.

It	 is	 immediate	 that	 the	relation	 	between	cardinal	numbers	 is	reflexive	and	transitive;	by	8.5	 it	 is
antisymmetric,	hence	it	is	an	order	relation.	In	fact,	the	cardinal	numbers	are	linearly	ordered	by	 .	That
is,	any	two	cardinals	are	comparable.

8.6	Theorem	If	a	and	b	are	cardinal	numbers	then	a	 	b	or	b	 	a.



Proof.	Since	a	and	b	are	sets,	it	follows	from	5.22	that	a	and	b	can	be	well-ordered.	Thus,	from	4.62,
there	exists	an	injection	a	→	b	or	b	→	a.

8.7	Theorem	Every	class	of	cardinal	numbers	has	a	least	element.

Proof.	Let	 	be	an	arbitrary	class	of	cardinal	numbers,	and	let	a	∈	 	;	if	a	is	the	least	element	of	 ,	we
are	done;	otherwise,	let	 ={b	∈	 :	b	<	a}.	Using	the	well-ordering	theorem,	let	us	well	order	a;	 for
each	b	∈	 ,	let	φ(b)be	the	least	element	x	∈	a	such	that	b	≈	Sx.	Now	the	set	{φ(b):	b	∈	 }	has	a	least
element	φ(d)because	it	is	a	subset	of	a;	we	will	show	that	d	is	the	least	element	of	 .	Indeed,	let	b	be	an
arbitrary	element	of	 ;	φ(d) 	φ(b),	hence	Sφ(d)	⊆	Sφ(b).	Thus	we	have	injective	functions

(	λ	is	the	inclusion	function),	hence	d	 	b.	Thus	d	is	the	least	element	of	Let	 ,	hence	the	least	element
of	 .

We	are	able	to	conclude:

8.8	The	class	of	all	the	cardinal	numbers,	ordered	by	 ,	is	well	ordered.

The	familiar	“rules	of	inequality”	apply	to	the	cardinal	numbers,	as	we	shall	see	next.

8.9	Theorem	Let	a,	b	be	cardinal	numbers.	Then	a	 	b	if	and	only	if	there	exists	c	such	that	b	=	a	+	c.

Proof
i) 	 Suppose	b	=	a	+	c;	let	A,	B,	C	be	sets	(assume	A	∩	C	=	Ø)	such	that

Then	there	exists	a	bijective	function	f	:	A	∪	C	→	B.	Clearly	f[A]	is	an	injective	function	from	A	to
B,so	A	 	B.

ii) 	 Suppose	a	 	b;	let	A,	B	be	disjoint	sets	such	that

There	exists	an	injective	function	f	:	A	→	B;	since	f	is	injective,	A	≈	 (A),so	a	=	#f	(A).	If	C	=	B	−	f
(A)	and	c	=	#C,	clearly	b	=	a	+	c.

8.10	Theorem	Let	a,	b,	c,	d	be	cardinal	numbers.	If	a	 	c	and	b	 	d,	then	we	have	the	following:

i) 	 a	+	b	 	c	+	d,	ii) 	 ab	 	cd,	iii) 	 ab	 	cd.

Proof.	By	Theorem	8.8,	there	exists	r,	s	such	that	c	=	a	+	r	and	d	=	b	+	s.
i) 	 c	+	d	=	a	+	r	+	b	+	s	=	(A+	b)+	(r	+	s),	so	by	8.8,	a	+	b	 	c	+	d.
ii) 	 cd	=	(a+	r)(b+	s)=	ab	+	as	+	rb	+	rs	=	ab	+	(as	+	rb	+	rs),soby	Theorem	8.8,	ab	 	cd.



iii) 	 First	we	must	show	that	ab	 	(a+	r)b;	that	is,	if	A,	R,	B	are	sets	such	that	a	=	#A,	b	=	#B	and	r	=	#R,
we	must	show	that	there	exists	an	injective	function	σ	:	AB	→	(A∪	R)B.	We	define	σ	by

and	not	(see	2.4)	that	a	function	f	:	B	→	A	is	also	a	function	f	:	B	→	A	∪	R.	It	is	immediate	that	σ	is
injective,	hence	ab	 	(a	+	r)b,	that	is	ab	 	cb.	Finally,	using	part	(ii),	we	have

Remark.	It	is	important	to	note	that	8.8	gives	us	valuable	new	information	on	the	relation	A	 	B	among
sets.	Indeed,	the	following	are	two	immediate	consequences	of	8.8:
1) 	 If	A	and	B	are	arbitrary	sets,	then	A	 	B	or	B	 	A.
2) 	 If	A	 	B	and	B	 	A,	then	A	≈	B.

Item	(2)	is	especially	useful	when	we	need	to	prove	that	two	sets	are	in	one-to-one	correspondence,	for
it	is	now	sufficient	to	show	that	there	is	an	injective	function	from	A	to	B	and	an	injective	function	from
B	to	A	(alternatively,	a	surjective	function	from	A	to	B	and	a	surjective	function	from	B	to	A).

EXERCISES	8.3

1. 	 Prove	that	if	A	and	B	are	arbitrary	sets,	then	A	 	B	or	B	 	A.
2. 	 Prove	that	is	A	 	B	and	B	 	A,	then	A	≈	B.
3. 	 Prove	the	following,	where	a,	b,	c,	d	are	cardinal	numbers.

a) 	 If	ac	<	b	c,	then	a<	b.

b) 	 If	ac	<	ad,	then	c<	d.
4. 	 Prove	that	if	a	+	b	=	c,	then	(r+	s)c	≥	rasb.
5. 	 Prove	that	there	exists	a	strictly	increasing	sequence	a1	<	a2	<	…	of	cardinal	numbers,	each	with

the	property	ai 0	=	ai.[Hint:	Take	a1	= 0
0;	then	take	a2	=	2a1 0,a3	=	2a2 0,	etc.]

6. 	 Let	A	be	a	denumerable	set.	Prove	each	of	the	following:

a) 	 AA	⊆	 (A	×	A).	Conclude	that	AA	 	 (A×	A),	hence	AA	 	 	(A).

b) 	 Verify	that	the	function	φ	given	by:	φ(f)=	range	f,	∀f	∈	AA,	is	a	surjective	function	AA	→	 (A)
−	φ.	Conclude	that	 (A)	 	AA.

c) 	 AA	≈	( (A);	that	is,	AA	≈	2A.	Conclude	that	 0
0	=	2 0	.

7. 	 Use	the	argument	outlined	in	the	preceding	problem	to	prove	that	the	set	of	all	injective	functions	A
→	A	is	equipotent	with	2A.

4	SPECIAL	PROPERTIES	OF	INFINITE	CARDINAL	NUMBERS

A	few	remarkable	arithmetic	rules	hold	exclusively	for	infinite	cardinals.	As	a	result	of	these	rules,	the
arithmetic	of	infinite	cardinal	numbers	is	a	very	simple	matter.



8.11	Theorem	If	a	is	an	infinite	cardinal	number,	then	aa	=	a.

Proof.	Let	A	be	a	set	such	that	a	=	#A.	Since	A	is	infinite,	A	has	a	denumerable	subset	D.	By	Corollary
7.21,	D	≈	D	×	D;	that	is,	there	exists	a	bijective	function	φ	:	D	→	D	×	D.	Now	let	A	be	the	set	of	all
pairs	(B,	f	)which	satisfy	the	following	conditions:
i) 	 B	is	a	subset	of	A	and	f	is	a	bijective	function	from	B	to	B	×	B.
ii) 	D	⊆	B.

iii) 	 φ	⊆	f.

We	order	 	by	the	relation	(B1,	f1) 	(B2,	f2)	iff	B1	⊆	B2	and	f1	⊆	f2.	 	is	nonempty,	for	(D,	φ)	∈	A.	Now
it	is	easy	to	verify	that	 	satisfies	the	hypotheses	of	Zorn’s	Lemma	(the	details	are	left	as	an	exercise	for
the	reader).	Thus	 	has	a	maximal	element	(C,	g);	it	remains	only	to	show	that	#C	=	a.	We	will	prove
this	by	contradiction—assuming	that	#C	<	a	and	proving	this	to	be	impossible.
Let	b	=	#C	and	assume	that	b	<	a.	Since	C	×	C	≈	C,	it	follows	that	bb	=	b;	furthermore,

and

hence	b	=	b	+	b.	Now	let	d	=	#(A	−	C);	C	and	A	−	C	are	disjoint,	so

We	note	that	b<	d,	for	d	 	b	implies	that

which	would	contradict	our	assumption	that	b	<	a.	From	b	<	d	it	follows	that	A	−	C	has	a	subset	E	such
that	#E	=	b.

Now

where	C	×	C,	C	×	E,	E	×	C,	E	×	E	are	mutually	disjoint	sets,	each	of	which	has	the	cardinal	bb	=	b.	Thus

hence	there	exists	a	bijective	function

It	follows	by	7.8	that	g	∪	h	is	a	bijective	function	from	C	∪	E	to



hence	(C	∪	E,	g	∪	h)>(C,g),	which	is	impossible	because	(C,	g)is	a	maximal	element	of	 .
The	assumption	that	b	<	a	has	led	to	a	contradiction;	thus	b	=	a,so	aa	=	a.

8.12	Corollary	Let	a	and	b	be	cardinals,	where	a	is	infinite	and	b	≠	0.	If	b	 	a,	then	ab	=	a.

Proof.	Since	b	 	1,	thus	a	=	a1	 	ab;but	ab	 	aa	=	a,	hence	ab	=	a.

8.13	Corollary	If	a	is	an	infinite	cardinal,	a	+	a	=	a.

Proof.	We	have	a	=	1a	 	2a	 	aa	=	a;	but	2a	=	(1	+	1)a	=	a	+	a,	so	a	+	a	=	a.

8.14	Corollary	Let	a	and	b	be	cardinals,	where	a	is	infinite.	If	b	 	a,	then	a	+	b	=	a.

Proof.	We	have	a	=	a	+	0	 	a	+	b;but	a	+	b	 	a	+	a	=	a,so	a	+	b	=	a.

8.15	Corollary	Let	a	and	b	be	infinite	cardinal	numbers.	Then

8.16	Theorem	Let	a	>	1	be	a	cardinal	number	and	let	b	be	an	infinite	cardinal	number.	If	a	 	b,	then	ab

=	2b.

Proof.	By	7.4,	a<	2a,so	ab	 	(2a)b	=	2ab.	But	by	Corollary	8.12	ab	=	b,	so	ab	 	2b.	On	the	other	hand,	2	
a,	so	2b	 	ab.	Consequently	ab	=	2b.

Remark.	Theorem	8.11	 and	 its	 corollaries	 can	 be	 interpreted	 very	 profitably	 in	 terms	 of	 sets	 and	 the
relation	A	 	B	among	sets.	For	example,	Theorem	8.11	tells	us	that	if	A	is	an	infinite	set,	then	A	≈	A	×	A.
This	has	an	interesting	consequence:	A	×	A	has	a	partition	{Bx}x∈A	where	Bx	={(x,	y):	y	∈	A}.	Hence	the
bijective	function	from	A	×	A	to	A	induces	a	corresponding	partition	{Cx}x∈A	of	A,	where	A	is	the	index
set	and	each	member	of	the	partition	is	equipotent	with	A.

EXERCISES	8.4

1. 	 If	a	is	an	infinite	cardinal	number	and	a	 	bc,	prove	that	a	 	b	or	a	 	c.
2. 	 Let	a	be	a	cardinal	number	>	1,	and	let	b	be	an	infinite	cardinal	number.	Prove	that	if	a	=	ab,	then	b

<	a.
3. 	 An	infinite	cardinal	number	a	is	said	to	be	dominant	if	it	satisfies	the	following	condition:	if	b	and

c	are	cardinal	numbers	such	that	b	<	a	and	c<	a,	then	bc	<	a.	Prove	that	a	is	a	dominant	cardinal
number	if	and	only	if	d	<	a	⇒	2d	<	a.

4. 	 If	a,	c,	and	d	are	arbitrary	cardinal	numbers	and	b	is	an	infinite	cardinal	number,	prove	that



5. 	 Let	a,	b,	c,	d	be	cardinal	numbers.	Prove	that	if	a<	b	and	c<	d,	 then	ac	<	bd	and	a	+	c<	b	+	d.
[Hint:	For	the	case	where	b	and	d	are	both	finite,	this	result	has	been	proven	in	Exercises	5	and	6,
Exercise	Set	 6.4.	 Ignore	 this	 case,	 and	 assume	 that	b	 is	 infinite	 or	d	 is	 infinite	 (this	 assumption
includes	three	cases).]

In	Exercises	6	through	8,	a,	b,	and	c	are	arbitrary	cardinals.	For	each	of	these	problems,	the	case	where
a,	b,	 and	c	 are	 all	 finite	 has	 been	 considered	 in	Chapter	 6.	 Ignore	 this	 case,	 and	 treat	 the	 remaining
cases.
6. 	 Prove	that	if	a	+	a	=	a	+	b,	then	a	 	b.
7. 	 Prove	that	if	a	+	b	<	a	+	c,	then	b<	c.
8. 	 Prove	that	if	ab	<	ac,	then	b<	c.

5	INFINITE	SUMS	AND	PRODUCTS	OF	CARDINAL	NUMBERS

Early	in	this	book	we	spoke	of	the	union	of	two	classes;	later	we	extended	this	notion	by	defining	the
union	of	an	arbitrary	 family	of	classes.	Similarly,	we	 introduced	 the	Cartesian	product	of	 two	classes
and	 later	 generalized	 this	 to	 the	product	 of	 a	 family	of	 classes.	 In	both	 cases,	 extending	our	original
definition	seemed	like	a	perfectly	natural	thing	to	do,	for	the	intuitive	concepts	of	union	and	product	can
be	applied	as	easily	to	a	family	of	classes	as	to	a	pair	of	classes.	The	same	holds	true	for	the	process	of
adding	and	multiplying	cardinal	numbers;	they	lend	themselves	to	the	following	obvious	generalization.

Let	{ai}i∈I	be	a	family	of	cardinal	numbers;	let	{Ai}i∈I	be	a	family	of	disjoint	sets	such	that	ai	=	#Ai
for	each	i	∈	I.	Then	 	is	the	cardinal	number	defined	by

Let	{ai}i∈I	be	a	family	of	cardinal	numbers,	and	let	{Ai}i∈I	be	a	family	of	sets	such	that	ai	=	#Ai	 for
each	i	∈	I.	Then	 	is	the	cardinal	number	defined	by

In	elementary	arithmetic	we	learn	that	ab	is	the	result	of	“adding	a	to	itself	b	times,”	and	that	ab	is	the
result	 of	 “multiplying	 a	 by	 itself	 b	 times.”	 It	 is	 useful	 to	 know	 that	 this	 holds	 true	 for	 all	 cardinal
numbers	a	and	b.

8.17	Theorem	Let	a	and	b	be	cardinal	numbers,	and	let	I	be	a	set	such	that	b	=	#I	.	If	a	=	ai,	∀i	∈	 I	 ,
then



Proof
i) 	 Let	{Ai}i∈I	be	a	family	of	disjoint	sets	such	that	a	=	ai	=	#Ai	for	each	i	∈	I	,	and	let	A	be	a	set	such

that	a	=	#A.	Since	Ai	≈	A	for	each	i	∈	I	,	there	exists	a	family	{fi	:	A	→	Ai}i∈I	of	bijective	functions.
We	define

by

it	is	elementary	to	verify	that	f	is	bijective.	Thus

that	is,

ii) 	 We	wish	to	show	that	AI	≈	 ,	where	Ai	=	A	for	each	i	∈	I.	But	a	glance	at	the	definitions	of	AI

and	 	Ai	(where	Ai	=	A,	∀i	∈	I	)	will	reveal	that	they	both	refer	to	the	same	set—the	set	of	all
functions	from	I	to	A.

Theorem	8.9	has	the	following	analogue	for	infinite	sums	and	products.

8.18	Theorem	Let	{ai}i∈I	and	{bi}i∈I	be	families	of	cardinal	numbers.	If	ai	 	bi	for	each	i	∈	I	,	then

Proof

i) 	 Let	{Ai}i∈I	and	{Bi}i∈I	be	a	families	of	disjoint	sets	such	that	ai	=	#Ai	and	bi	=	#Bi	for	each	i	∈	 I.
Since	ai	 	bi	for	every	i	∈	I	,	there	exists	a	family	{fi	:	Ai	→	Bi}i∈I	of	injective	functions.	It	is	easy
to	 verify	 that 	 is	 an	 injective	 function	 from	 	 (The	 details	 are	 left	 as	 an
exercise	for	the	reader.)

ii) 	 Given	the	family	{fi	:	Ai	→	Bi}i∈I	introduced	above,	we	define	a	function	:



as	follows:	if	 ,	then

We	verify	that	f	is	injective:	If	f	(u)=	f(v),	then

But	each	fi	is	injective,	so	ui	=	vi	for	every	i	∈	I	;	hence	u	=	v.

Theorem	8.17	and	8.18	have	the	following	useful	corollary.

8.19	Corollary	Let	{ai	:	i	∈	I	}	be	a	set	of	cardinal	numbers,	and	let	b	and	c	be	cardinal	numbers.	If	ai	
b	for	each	i	∈	I	and	if	#I	=	c,	then

The	proof,	which	follows	immediately	from	8.17	and	8.18,	is	left	as	an	exercise	for	the	reader.

EXERCISES	8.5

1. 	 Prove	that1.	Prove	that	 	=	0	if	and	only	if	ai	=	0	for	some	i	∈	I	.

2. 	 Suppose	ai	 	a,	∀i	∈	I	,	and	#I	 	a,	where	a	is	some	fixed	cardinal.	Prove	that	 	 	a,	[Hint:	Use

Theorems	8.17	and	8.18.]
3. 	 Suppose	ai	 	a,	∀i	∈	I	,	and	#I	 	a.	Prove	that	 	 	2a.
4. 	 Let	{ai}i∈I	 be	 a	 set	 of	 a	 cardinal	 numbers,	 and	 suppose	 there	 is	 no	 greatest	 element	 in	 this	 set.

Prove	that	∀j	∈	I,	aj	<	

5. 	 Prove	that	a	•	

6. 	 Use	Theorem	8.18	to	justify	each	of	the	following.	(Each	sum	is	understood	to	have	 0	terms.)

a) 	 1	+	2	+	3	+…	=	 0,	b) 	 n	+	n	+…	=	 0,	c) 	 0	+ 0	+	·	·	·	=	 0.

7. 	 Let	 f	 :	A	→	B	 be	 a	 surjective	 function,	where	B	 is	 an	 infinite	 set.	 If,	∀y	∈	B,	 f	−1(y)is	 finite	 or
denumerable,	prove	that	A	≈	B.

8. 	 Let	A	be	an	infinite	set,	and	let	F(A)	designate	the	family	of	all	finite	subsets	of	A.	Prove	that	F	(A)
≈	A.[Hint:	For	each	n	∈	ω,	let	Fn	designate	the	family	of	n-element	subsets	of	A.	There	exists	an
obvious	surjective	function	from	An	to	Fn;	there	are	 0	set	Fn.]



9. 	 If	{Ci}i∈I	is	a	family	of	sets,	prove	that	#	

10. 	 Let	{ai}i∈I	and	{ai}i∈J	be	families	of	cardinal	numbers.	Prove	that	
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Arithmetic	of	the	Ordinal	Numbers

1	INTRODUCTION

In	 elementary	 school	 we	 learn	 that	 there	 are	 cardinal	 numbers	 and	 ordinal	 numbers.	 The	 cardinal
numbers,	 we	 are	 told,	 are	 the	 “counting”	 numbers:	 1,	 2,	 3,	 and	 so	 on;	 the	 ordinal	 numbers	 are	 the
“ranking”	numbers:	 first,	 second,	 third,	etc.	The	distinction	may	appear	 to	be	somewhat	pedantic,	 for
the	 natural	 numbers	 serve	 in	 both	 capacities,	 as	 ordinals	 and	 as	 cardinals,	 and	 there	 is	 no	 need	 in
elementary	arithmetic	to	differentiate	between	the	two.	However,	one	of	the	unexpected	discoveries	of
modern	 set	 theory	 is	 that,	 just	 as	 the	 infinite	cardinals	behave	differently	 from	 the	 finite	ones,	 so	 the
infinite	 ordinals	 exhibit	 a	 strikingly	 different	 behaviour	 from	 the	 cardinals.	 It	 is	 the	 purpose	 of	 this
chapter	 to	 introduce	the	ordinal	numbers	and	explore	 their	properties—especially	 those	of	 the	 infinite
ordinals.
The	 dichotomy	 between	 cardinal	 and	 ordinal,	 from	 the	 scholastic	 point	 of	 view,	 arises	 from	 two

different	ways	of	using	the	natural	numbers.	In	their	role	as	cardinals,	the	natural	numbers	measure	the
“size,”	or	power,	of	 sets;	 in	 their	 role	as	ordinals,	 they	serve	 to	designate	 the	 rank,	or	position,	of	an
object	 in	a	 linearly	ordered	array.	We	will	use	 this	 insight—although	it	 is	somewhat	outdated—as	the
starting	point	of	our	discussion.
When	we	speak	of	ranking	elements	in	some	order,	what	kind	of	order	do	we	have	in	mind?	There

must	be	a	first	element,	a	second	element,	and	so	on—in	other	words,	 the	order	 is	 that	of	 the	natural
numbers,	which	is	a	well-ordering.	Now	the	reader	should	note	that	the	general	notion	of	well-ordering
is	an	extension	of	the	order	of	the	natural	numbers.	Every	infinite	well-ordered	set	has	a	first	element,	a
second	element,	and—for	each	natural	number	n—an	nth	element;	but	it	may	also	have	elements	which
are	“beyond	the	reach”	of	the	finite	ordinals.	Thus	the	set

has	a	first	element	x1,	a	second	element	x2,	and	so	forth;	but	y1,	for	example,	though	it	has	a	perfectly
well-defined	“position”	in	the	set,	cannot	be	described	as	the	“nth	element”	for	any	finite	n.
Situations	of	this	kind	arise	frequently	in	almost	every	branch	of	mathematics.	For	example,	on	page

141	we	defined	a	sequence	of	sets	by	these	conditions:
ω	=	K1,	 ,	and	so	on;	 ,	etc.	Continuing	in	this	manner,	we

get	the	well-ordered	family	of	sets

Now	K1	is	the	first	element	of	this	family,	and,	in	general,	Kn	is	the	n	th	element;	but	what	of	(say)	L1?
Its	 position	 in	 the	 family	 is	 unambiguous:	 L1	 immediately	 follows	 all	 of	 the	 sets	Ki	 ;	 yet	 classical
mathematics	has	not	provided	us	with	any	ordinal	number	to	describe	the	position	of	L1.
Thus,	as	 in	our	study	of	cardinal	numbers,	we	are	 led	 to	ask	an	 intriguing	question:	Can	we	find	a

way	of	extending	our	system	of	ordinal	numbers	so	as	to	create	a	set	of	standards	for	designating	the



position	of	any	element	in	any	well-ordered	set?	The	answer,	once	again,	is	“yes;”	we	can	generalize	the
concept	of	ordinal	number	with	such	remarkable	ease	that	no	barrier,	either	logical	or	intuitive,	seems	to
separate	the	finite	ordinals	from	the	infinite	ones.
We	will	approach	the	ordinals	in	much	the	same	way	that	we	approached	the	cardinals.	We	will	begin

by	defining	a	relation	of	“having	the	same	ordinal	number,”	and	later	define	the	ordinals,	essentially,	to
be	representative	of	the	distinct	classes	induced	by	this	relation.
If	A	and	B	are	well-ordered	sets,	and	if	x	∈	A	and	y	∈	B,	then	to	say	that	“x	has	the	same	rank	as	y”

(for	example,	x	is	the	third	element	of	A	and	y	is	the	third	element	of	B	)	is	the	same	as	saying	that	the
initial	segment	Sx	is	isomorphic	with	the	initial	segment	Sy.	To	say	that	“x	has	a	lower	rank	than	y”	is	the
same	as	saying	that	Sx	is	isomorphic	with	an	initial	segment	of	Sy.	The	reader	should	stop	here	until	he
has	thoroughly	understood	this	fact,	for	it	is	the	point	of	departure	for	achieving	an	understanding	of	the
modern	 approach	 to	 the	 ordinal	 numbers.	 Isomorphism	 plays	 the	 same	 role	 in	 the	 study	 of	 ordinal
numbers	that	one-to-one	correspondence	plays	in	the	study	of	cardinal	numbers.
An	 important	 warning	 needs	 to	 be	 given	 here.	 The	 alert	 reader	 may	 question	 the	 necessity	 of

introducing	the	concept	of	isomorphism.	After	all,	he	may	ask,	why	not	say	that	x	and	y	have	the	same
rank	if	and	only	if	Sx	is	equipotent	with	Sy?	Surely	if	ten	elements	precede	x	and	ten	elements	precede	y,
then	x	and	y	are	both	eleventh	in	their	class.	This	is	true	when	we	are	dealing	with	finite	rank,	but	untrue
in	the	case	of	infinite	rank;	a	simple	example	will	convince	the	reader.	In	the	set

both	y1	and	y2	are	preceded	by	a	denumerable	number	of	elements—that	is,	Sy1	is	equipotent	with	Sy2—
yet	y2	clearly	follows	y1.
When	we	say	 that	x	 has	 the	 same	 rank	as	y,	or	x	 has	 a	 lower	 rank	 than	y,	we	 are	 only	apparently

speaking	of	x	and	y;	actually,	we	are	comparing	the	initial	segments	Sx	and	Sy.	Hence	we	lose	nothing	if
we	 confine	 our	 attention	 to	 the	 study	 of	 initial	 segments	 of	well-ordered	 sets.	But	we	 can	 go	 a	 step
further:	An	 initial	 segment	 (of	 a	well-ordered	 set)	 is	 a	well-ordered	 set,	 and	 conversely,	 every	well-
ordered	 set	A	 is	 an	 initial	 segment	 (adjoin	 a	 last	 element	x	 to	A—then	A	 is	Sx	 ).	Hence	 the	 study	 of
ordinality	is,	essentially,	the	study	of	well-ordered	sets.
Motivated	by	the	foregoing	remarks,	we	introduce	the	following	definitions:

Let	A	and	B	be	well-ordered	sets.	We	say	that	A	and	B	are	similar	(or	have	the	same	ordinality)	if	A	is
isomorphic	with	B;	we	write	A	 	B.	If	A	is	isomorphic	with	an	initial	segment	of	B,	we	say	that	B	is	a
continuation	of	A,	or	A	has	a	lower	ordinality	than	B,	and	we	write	A	 	B.
It	follows	from	Theorem	4.62	that	if	A	and	B	are	any	two	well-ordered	sets,	then	A	 	B,	or	A	 	B,

or	B	 	A.
In	conclusion,	to	say	that	x	has	the	same	rank	as	y	is	the	same	as	saying	that	Sx	 	Sy,	and	to	say	that	x

has	a	lower	rank	than	y	 is	 the	same	as	saying	that	Sx	 	Sy.	Thus	we	have	completely	captured—and
formalized—the	 intuitive	 concept	 of	 “rank,”	 and	 have	 extended	 it	 beyond	 the	 unnatural	 confines	 of
finite	ordinality.
As	 for	 the	 ordinal	 numbers,	 we	 simply	 imitate	 the	 procedure	 we	 followed	 for	 the	 cardinals	 by

introducing	the

A13	Axiom	of	Ordinality	There	is	a	class	OR	of	well-ordered	sets,	called	ordinal	numbers,	with	 the
following	properties:



O1	If	A	is	any	well-ordered	set,	there	exists	an	ordinal	number	α	such	that	A	 	α.
O2	If	A	is	a	well-ordered	set	and	α,	β	are	ordinal	numbers,	then	A	 	α	and	 .

We	will	add	the	Axiom	of	Ordinality	to	our	list	of	axioms	for	set	theory—but	only	on	a	provisional
basis,	 for	 in	 the	 last	 section	 of	 this	 chapter	 we	 will	 describe	 a	 method	 for	 constructing	 sets	 with
properties	01	and	02;	those	sets	will	then	serve	the	purpose	of	ordinal	numbers.
It	is	worth	noting,	incidentally,	that	the	class	of	all	the	ordinal	numbers	is	a	proper	class.	Indeed,	let

OR	be	the	class	of	all	the	ordinal	numbers,	and	suppose	OR	is	a	set;	from	this	assumption	we	will	derive
a	 contradiction.	 Let	 ,	 where	 	 since	 each	 ordinal	 number	 α	 is	 a	 set	 and	 OR
(under	our	assumption)	is	a	set,	it	follows	by	Axioms	A6	and	A7	that	B,	and	therefore	A,	are	sets.	Let	us
well-order	A;	by	O1,	there	is	an	ordinal	number	α	such	that	α	 	A.	But	α	∈	OR,	hence	α	 	B,	so	by	7.2,
α	cannot	be	equipotent	with	 .	This	contradiction	proves	that	OR	is	a	proper	class.

2	OPERATIONS	ON	ORDINAL	NUMBERS

Following	 our	 “naive”	 introduction	 to	 ordinal	 numbers	 in	 the	 preceding	 section,	we	 now	 proceed	 to
study	 the	 ordinals	 from	 a	 formal	 point	 of	 view.	We	 will	 henceforth	 consider	 the	 ordinals	 to	 be	 the
objects	defined	by	Conditions	O1	and	O2.	The	reader	should	adjust	his	thinking	accordingly;	he	should
cease	thinking	of	ordinals	as	“symbols	for	designating	rank,”	and	begin	to	think	of	them	as	certain	well-
ordered	sets.

9.1	Definition	If	A	is	a	well-ordered	set,	α	is	an	ordinal	number,	and	A	 	α,	 then	we	say	that	α	is	the
ordinal	number	of	A.	We	denote	this	by	writing

Now	Conditions	O1	and	O2	can	be	conveniently	restated	as	follows:

O1	If	A	is	a	well-ordered	set,	there	exists	an	ordinal	number	α	such	that	α	=	 A.

O2	If	A	is	a	well-ordered	set	and	α,	β	are	ordinal	numbers,	then	α	=	 A	and	β	=	 A	⇒	α	=	β.

9.2	Lemma	If	α	and	β	are	ordinal	numbers	and	α	 	β,	then	α	=	β.

The	proof	is	an	immediate	consequence	of	02.

9.3	Lemma	If	A	 	B,	then	 A	=	 B.

The	proof	is	analogous	to	that	of	Lemma	8.2.

Before	defining	 the	addition	and	multiplication	of	ordinal	numbers,	we	need	 to	 introduce	 two	new
operations	on	well-ordered	sets.

9.4	Definition	Let	A	and	B	be	disjoint,	well-ordered	sets.	A⊕B,	called	the	ordinal	sum	of	A	and	B,	is	the
set	A	 	B	ordered	as	follows.	If	x,	y	 	A	 	B,	then	x	 	y	if	and	only	if
i) 	 x	∈	A	and	y	∈	A	and	x	 	y	in	A,	or



ii) 	 x	∈	B	and	y	∈	B	and	x	 	y	in	B,	or
iii) 	 x	∈	A	and	y	∈	B.

Thus,	in	A	⊕	B,	the	elements	of	A	are	ordered	as	before,	the	elements	of	B	are	ordered	as	before,	and
every	element	of	B	is	greater	than	every	element	of	A.

Having	defined	the	ordinal	sum	of	two	well-ordered	sets,	it	is	natural	to	define	the	ordinal	sum	of	an
arbitrary	family	of	well-ordered	sets.

9.5	Definition	Let	I	be	a	set,	let	{Ai}i∈I	be	a	family	of	disjoint	well-ordered	sets	and	let	the	index	set	I
be	well-ordered.

,	called	the	ordinal	sum	of	the	family	{Ai}i∈I,	is	the	set	 	ordered	in	the	following	way:	if	

,	then	x	 	y	if	and	only	if

i) 	 for	some	i	∈	I,	x	∈	Ai	and	y	∈	Ai	and	x	 	y	in	Ai,	or

ii) 	 x	∈	Ai	and	y	∈	Aj	and	i	<	j.
Thus,	in	 	Ai,	each	set	Ai	is	ordered	as	before,	and,	for	i	<	j,	every	element	of	Ai	is	less	than	every
element	of	Aj.
An	easy	step	leads	us,	now,	to	the	notion	of	ordinal	product.	To	put	it	simply,	the	product	A	 	B	is	the

result	of	“adding	A	to	itself	B	times.”	More	precisely,	if	{Ai}i∈B	is	a	family	of	disjoint,	well-ordered	sets,
indexed	by	B,	where	each	Ai	is	similar	to	A,	then	A	 	B	is	the	set	 .	The	only	remaining	difficulty	is
to	produce	the	family	{Ai}i	∈B.	To	do	so	is	easy	enough:	for	each	i	∈	B,	we	define	Ai	to	be	the	set	{(x,	i):
x	∈	A}—that	is,	Ai	=	A	×{i}.	But	a	happy	thought	strikes	us	now,	as	we	realize	that	the	set	 	is	none
other	than	the	Cartesian	product	A	×	B	ordered	by	the	antilexicographic	ordering	(Definition	4.2).	We
exploit	this	fortunate	coincidence	to	give	the	following	elegant	definition	of	ordinal	product:

9.6	Definition	Let	A	and	B	be	well-ordered	sets.	Then	A	 	B,	called	the	ordinal	product	of	A	and	B,	is
the	set	A	×	B	ordered	by	the	antilexicographic	ordering.

9.7	Example	Let	A	={a,	 b,	 c}	be	well	 ordered	 as	 follows:	a	<	b	<	 c.	Let	B	 =	 {1	<	2	<	3}	be	well
ordered	as	follows:	1	<	2	<	3.	Then	A	 	B	is	the	set	A	×	B	well	ordered	as	follows	(see	Fig.	9.1):



Fig.	9.1

Now,	back	to	the	ordinal	numbers.

9.8	Definition	Let	α	and	β	be	ordinal	numbers,	and	let	A	and	B	be	disjoint,	well-ordered	sets	such	that	α
=	 A	and	β	=	 B.	We	define	the	sum	α	+	β	to	be	the	ordinal	number	given	by

Let	α	and	β	be	ordinal	numbers,	and	let	A	and	B	be	well-ordered	sets	such	that	α	=	 A	and	β	=	 B.	We
define	the	product	αβ	to	be	the	ordinal	number	given	by

In	order	to	tie	down	the	definition	of	ordinal	addition	and	multiplication,	it	must	be	shown	that	these
operations	are	well-defined.	That	is,	if	α1	=	α2	and	β1	=	β2,	then	α1	+	β1	=	α2	+	β2	and	α1β1	=	α2β2.	This
is	easy	to	prove	and	left	as	an	exercise	at	the	end	of	this	Section.
The	elementary	properties	of	ordinal	addition	and	multiplication	are	given	in	the	following	theorem.

9.9	Theorem	Let	α,	β	and	γ	be	ordinal	numbers.	Then
i) 	 α	+	(β	+	γ)	=	(α	+	β)	+	γ,
ii) 	 α(βγ)	=	(αβ)γ,
iii) 	 α(β	+	γ)	=	αβ	+	αγ.

Proof.	Let	A,	B,	and	C	be	disjoint,	well-ordered	sets	such	that	α	=	 A,	β	=	 B,	and	γ	=	 C.

i) 	 We	must	show	that

But	it	follows	immediately	from	our	definition	of	ordinal	sums	that	both	A	⊕	(B	⊕	C)	and	(A	⊕	B)
⊕	C	designate	the	set	A	 	B	 	C	with	the	following	order:	If	x	and	y	are	both	in	A,	both	in	B,	or	both
in	C,	they	are	ordered	according	to	their	order	in	A,	B,	or	C	respectively;	furthermore,	every	element
of	C	is	greater	than	every	element	of	B,	and	every	element	of	B	is	greater	than	every	element	of	A.

ii) 	 We	must	show	that

We	have	seen	earlier	that	the	function

is	a	one-to-one	correspondence	between	A	×	(B	×	C)	and	(A	×	B)	×	C.	In	order	to	establish	that	f	is



an	isomorphism,	we	need	simply	show	that

if	and	only	if

The	details,	which	follow	immediately	from	the	definition	of	ordinal	product,	are	left	as	an	exercise
for	the	reader.

iii) 	 We	must	show	that

Both	A	 	(B	⊕	C)	and	(A	 	B)	⊕	(A	 	C)	designate	the	same	set,

with	certain	orderings;	it	is	easy	to	show	that	the	two	orderings	are	the	same.	The	details	are	left	as
an	exercise	for	the	reader.

As	usual,	0	is	the	ordinal	number	of	the	empty	set,	and	1	is	the	ordinal	number	of	any	singleton.	An
ordinal	number	μ	is	said	to	be	finite	if	μ	is	similar	to	a	natural	number	n;	if	μ	is	not	a	finite	ordinal,	then
μ	 is	called	an	 infinite,	or	 transfinite,	ordinal.	 It	 is	customary	 to	designate	 the	ordinal	number	of	ω	by
means	of	the	symbol	ω.
It	is	most	important	to	note	that	addition	and	multiplication	of	ordinal	numbers	are	not	commutative.

Two	simple	examples	will	suffice	to	establish	this	fact.	First,	let	us	take	addition.	If	we	compare	ω	+	1
with	1	+	ω,	we	observe	that	1	+	ω	is	similar	to	ω,	whereas	ω	+	1	is	not	(it	has	a	last	element!);	thus	ω	+
1	≠	1	+	ω.	Next,	let	us	take	multiplication.	We	observe	that

and	that

these	sets	are	obviously	not	isomorphic,	hence	ω2	≠	2ω.

We	note	also	that	the	“right	distributive	law	“	(α	+	β)γ	=	αγ	+	βγ	does	not	hold.	For	example,

whereas

and	we	noted	in	the	preceding	paragraph	that	2ω	≠	ω2;	thus



EXERCISES	9.2

1. 	 Let	A1,	A2,	B1,	B2	be	well-ordered	sets.	Prove	that	if	A1	 	A2	and	B1	 	B2,	then
a)	A1	⊕	B1	 	A2	⊕	B2,	and
b)	A1	 	B1	 	A2	 	B2.

2. 	 If	A	and	B	are	well-ordered	sets,	prove	that	A	⊕	B	and	A	 	B	are	well-ordered	sets.
3. 	 If	α	is	an	ordinal	number,	prove	that	1	+	α	=	α	iff	α	is	an	infinite	ordinal.
4. 	 Let	α	and	β	be	nonzero	ordinal	numbers.	Prove	that	if	α	+	β	=	ω,	then	α	is	a	finite	ordinal	number

(that	is,	similar	to	a	natural	number)	and	β	=	ω.	Now	assume	β	≠	1.	Prove	that	if	αβ	=	ω,	then	α	is
finite	and	β	=	ω.	[Hint:	Consider	the	well-ordered	sets	A	⊕	B	and	A	 	B,	where	α	=	 A	and	β	=	
B.]

5. 	 Prove	each	of	the	following,	where	μ	designates	a	finite	ordinal.
a)	μ	+	ω	=	ω,
b)	μω	=	ω,
c)	If	α	is	an	infinite	ordinal,	then	μ	+	α	=	α.

6. 	 Prove	that	(ω	+	ω)ω	=	ωω.
7. 	 Give	a	counterexample	to	the	(false)	rule

8. 	 Prove	the	following,	for	every	ordinal	number	α.

9. 	 Prove	that	αβ	=	0	if	and	only	if	α	=	0	or	β	=	0.
10. 	 Prove	each	of	the	following,	where	μ,	ν,	π	are	finite	ordinals.

11. 	 Give	a	complete	proof	of	the	isomorphism	[Theorem	9.9(ii)]

12. 	 Give	a	complete	proof	of	the	isomorphism	[Theorem	9.9(iii)]

3	ORDERING	OF	THE	ORDINAL	NUMBERS

In	the	introduction	to	this	chapter,	we	spoke	of	comparing	the	ordinality	of	well-ordered	sets.	If	A	and	B
are	 well-ordered	 sets,	 we	 say	 that	 A	 has	 a	 lower	 ordinality	 than	 B,	 (in	 symbols	 A	 	 B)	 if	 A	 is
isomorphic	with	an	initial	segment	of	B.	It	is	convenient	now	to	add:	the	ordinality	of	A	is	less	than	or
equal	to	the	ordinality	of	B	if	and	only	if	A	is	isomorphic	with	B	or	an	initial	segment	of	B;	in	this	case,
we	write	A	 	B.	This	 is	 the	 same	as	 saying	 that	 there	exists	 an	 injective,	order-preserving	 function
from	A	to	B,	whose	range	is	a	section	of	B.	(See	4.48	and	4.56.)



9.10	Lemma	Let	A	and	B	be	well-ordered	 sets.	A	 	B	 if	 there	 exists	 an	 injective,	 order	preserving
function	f	:	A	→	B.

Proof.	If	A	 	B	then	clearly	there	exists	an	injective,	order	preserving	function	from	A	to	B.

Conversely,	suppose	there	exists	an	injective,	order	preserving	function	f	:	A	→	B.	If	 ,	then
f	:	A	→	C	is	an	isomorphism.	By	4.63,	there	exists	an	isomorphism	g	:	C	→	D,	where	D	is	B	or	an	initial
segment	of	B.	Now	g	 	f	:	A	→	D	is	an	isomorphism,	hence	A	 	B.	

9.11	Corollary	If	A	 	B	and	B	 	C	then	A	 	C.

Proof.	 Clearly	 the	 composite	 of	 two	 injective,	 order	 preserving	 functions	 is	 injective	 and	 order
preserving.	

If	A	and	B	are	well-ordered	sets	and	A	has	a	 lower	ordinality	 than	B,	we	quite	naturally	expect	 the
ordinal	number	of	A	 to	be	“less	 than”	 the	ordinal	number	of	B.	Accordingly,	we	define	 the	“natural”
ordering	of	the	ordinal	numbers	as	follows.

9.12	Definition	Let	α	and	β	be	ordinals,	and	let	A	and	B	be	well-ordered	sets	such	that	α	=	 A	and	β	=	
B.	The	relation	 	is	defined	by

We	note	that	α	 	B	if	and	only	if	α	 	β.

The	relation	 	which	we	have	just	defined	is	obviously	reflexive;	it	is	antisymmetric	by	Lemma	4.61;
it	is	transitive	by	Lemma	9.10;	hence	it	is	an	order	relation	among	the	ordinal	numbers.
Next,	 we	 are	 able	 to	 show	 that	 any	 two	 ordinal	 numbers	 are	 comparable.	 That	 is,	 if	α	 and	 β	 are

ordinals,	then	α	 	β	or	β	 	α.	This	fact	follows	immediately	from	4.62.	Moreover:

9.13	Theorem	Every	nonempty	class	of	ordinal	numbers	has	a	least	element.

Proof.	Let	 	be	a	nonempty	class	of	ordinal	numbers,	and	let	α	be	an	arbitrary	element	of	 .	If	α	is	the
least	element	of	 ,	we	are	done;	otherwise,	let	 	It	follows	from	our	definition
of	the	relation	<	that	every	 	is	similar	to	an	initial	segment	of	α.	For	each	 ,	let	ϕ(β)	be	the
least	element	x	∈	α	such	that	β	 	Sx.	Now	the	set	{ϕ(β)	:	 	}	has	a	least	element	ϕ(δ)	because	it	is
a	subset	of	α.	We	will	show	that	δ	is	the	least	element	of	 .
Indeed,	 let	 ;	 then	ϕ(δ)	 	ϕ(β),	hence	 ,	 so	by	4.63,	 .	Thus	we

have

so,	by	9.10,	δ	 	β.	

Thus,	the	class	of	all	the	ordinal	numbers	is	well	ordered.

9.14	Theorem



i) 	 If	β	>	0,	then	α	<	α	+	β.
ii) 	 β	 	α	+	β.

Proof

i) 	 Let	A	and	B	be	well-ordered	sets	such	that	α	=	 A	and	β	=	 B.	If	b	is	the	least	element	of	B,	then
clearly	A	is	the	initial	segment	Sb	of	A	⊕	B.	Thus	A	 	A	⊕	B,	so	α	<	α	+	β.

ii) 	 B	 	A	⊕	B,	hence	by	4.63,	B	is	isomorphic	with	A	⊕	B	or	an	initial	segment	of	A	⊕	B.	Thus	B	
A	⊕	B,	so	β	 	α	+	β.	

9.15	Theorem	Let	α	and	β	be	ordinals	such	that	α	<	β.	Then	there	exists	a	unique	ordinal	γ	>	0	such
that	α	+	γ	=	β.

Proof.	If	A	and	B	are	well-ordered	sets	such	that	α	=	 A	and	β	=	 B,	then	A	 	B;	that	is,	A	 	Sx	for
some	x	∈	B.	Let	C	=	B	−	Sx;	C	is	well	ordered	and	C	≠	Ø,	so	if	γ	=	 C,	then	γ	>	0.	Now	B	=	Sx	⊕	C,	α
=	 Sx	(because	Sx	 	A),	so	β	=	α	+	γ.	For	uniqueness,	suppose	β	=	α	+	γ	=	α	+	γ′,	where,	say,	γ	<	γ′;	that
is,	γ′	=	γ	+	δ(δ	>	0).	Then

which	is	in	contradiction	with	the	result	of	Theorem	9.14(i).	Thus	γ	=	γ′.	

9.16	Theorem	For	any	ordinal	numbers	α,	β,	γ,	the	following	rules	hold:

Proof.	In	(i),	(iii),	(v),	and	(vii)	we	assume	that	α	<	β,	hence	we	assume	that	there	exists	δ	>	0	such	that
β	=	α	+	δ.	[Note	:	In	(iii)	and	(vii),	the	case	α	=	β	is	easily	disposed	of;	indeed,	if	α	=	β,	then	α	+	γ	=	β	+
γ	and	αγ	=	βγ	(see	Exercise	1,	Exercise	Set	9.2).]

i) 	 γ	+	β	=	γ	+	(α	+	δ)	=	(γ	+	α)	+	δ	>	γ	+	α	[this	last	relation	is	a	consequence	of	9.14(i)],	so	γ	+	β	>	γ	+
α.

ii) 	 Suppose	γ	+	α	<	γ	+	β.	If	α	=	β,	then	γ	+	α	=	γ	+	β	(Exercise	1,	Exercise	Set	9.2).	If	β	<	α,	then	γ	+	β
<	γ	+	α	by	(i).	Hence	α	<	β.

iii) 	 Suppose,	on	the	contrary,	that	β	+	γ	<	α	+	γ	;	that	is,	α	+	(δ	+	γ)	<	α	+	γ.	Then	δ	+	γ	<	γ	by	(ii),	and
this	is	impossible	by	9.14(ii);	thus	α	+	γ	 	β	+	γ.

iv) 	 Suppose	α	+	γ	<	β	+	γ.	If	α	=	β,	then	α	+	γ	=	β	+	γ.	If	β	<	α,	then	β	+	γ	 	α	+	γ	by	(iii).	Thus	α	<	β.
v) 	 γβ	=	γ(α	+	δ)	=	γα	+	γδ	>	γα	[this	last	relation	holds	by	9.14(i)].



vi) 	 Suppose	γα	<	γβ.	If	α	=	β,	then	γα	=	γβ.	If	β	<	α,	then	γβ	<	γα	by	(v).	Thus	α	<	β.
vii) 	 We	must	show	that	αγ	 	(α	+	δ)γ.	Let	α	=	 A,	γ	=	 C,	δ	=	 D	;	A	⊆	A	⊕	D,so

It	follows	by	4.63	that

or	αγ	 	(α	+	δ)γ
viii) 	 Suppose	αγ	<	βγ.	If	α	=	β,	then	αγ	=	βγ.	If	β	<	α,	then	βγ	 	αγ	by	(vii).	Hence	α	<	β.	

9.17	Theorem
i) 	 If	γ	+	α	=	γ	+	β,	then	α	=	β.
ii) 	 Assume	γ	>	0.	If	γα	=	γβ,	then	α	=	β.

The	proof,	an	immediate	consequence	of	9.16(i)	and	(v),	is	left	as	an	exercise	for	the	reader.

9.18	Lemma	If	γ	<	βα,	then	there	exist	ordinals	δ	and	ε	such	that	γ	=	βδ	+	ε,	δ	<	α,	and	ε	<	β.

Proof.	Let	A,	B,	and	C	be	well-ordered	sets	such	that	α	=	 A,	β	=	 B	and	γ	=	 C.	Our	assumption	is	that
C	 	B	 	A,	that	is,	C	 	S(b,a)	for	some	(b,	a)	∈	B	 	A.

Let	E	=	{(x,	a)	:	x	<	b},	that	is,	E	=	Sb	 	{a};	clearly	E	 	Sb.	We	will	show	that

(this	relation	is	illustrated	in	Fig.	9.2).

Fig.	9.2

Let	x	∈	B,	y	∈	A.	Then



Now	it	 is	easy	to	verify	that	the	ordering	of	(B	 	Sa)	⊕	E	 is	 the	same	as	 the	ordering	of	S(b,a);	 the
details	are	left	as	an	exercise	for	the	reader.	We	conclude	that

Let	ε	=	 E	=	 Sb	and	δ	=	 Sa.	By	the	definition	of	the	relation	<,	ε	<	β	and	δ	<	α.	Now	γ	=	 C	=	 S(b,
a);	thus	γ	=	βδ	+	ε.	

It	is	very	useful	to	note	that	the	“division	algorithm”	for	the	natural	numbers	can	be	generalized	to	all
the	ordinal	numbers.

9.19	Theorem	If	α	and	β	>	0	are	ordinals,	then	there	exist	unique	ordinals	ξ	and	ρ	such	that	α	=	βξ	+	ρ
and	ρ	<	β.

Proof

Existence.	Since	β	 	1,	we	have	βα	 	α.	If	βα	=	α,	we	are	done;	otherwise,	α	<	βα,	so	by	Lemma	9.18
there	exist	ordinals	δ	<	α	and	ε	<	β	such	that	α	=	βδ	+	ε,	hence	again	we	are	done.

Uniqueness.	Assume	α	=	βξ	+	ρ	=	βξ′	+	ρ′,	where	(say)	ξ′	<	ξ;	that	is,	ξ	=	ξ′	+	μ	(μ	>	0).	Then

so	ρ′	=	βμ	+	ρ	>	βμ	 	β,	which	contradicts	our	assumption	that	ρ′	<	β.	Thus	we	cannot	have	ξ′	<	ξ;	by
symmetry,	we	cannot	have	ξ	<	ξ′;	thus	ξ	=	ξ′.	It	follows	by	9.17(i)	that	ρ	=	ρ′.	

If	α	is	an	ordinal	number,	it	is	easy	to	see	that	α	+	1	is	the	immediate	successor	of	α.	Now	let	β	be	a
non-zero	ordinal	number;	if	β	has	no	immediate	predecessor—that	is,	if	β	is	not	equal	to	α	+	1	for	any
ordinal	α	—then	β	is	called	a	limit	ordinal.	Otherwise—that	is,	if	β	has	an	immediate	predecessor—then
β	is	called	a	nonlimit	ordinal.	Limit	ordinals	have	the	following	useful	properties.

9.20	Theorem
i) 	 If	α	is	a	limit	ordinal,	there	exists	a	unique	ordinal	ξ	such	that	α	=	ωξ.
ii) 	 If	α	is	a	nonlimit	ordinal,	there	exists	a	unique	ordinal	ξ	and	a	unique	finite	ordinal	n	≠	0	such	that	α

=	ωξ	+	n.

Proof.	We	will	prove	the	existence	assertions;	the	uniqueness	assertions'	are	left	as	an	exercise	for	the



reader.

i) 	 By	Theorem	9.19,	there	exist	unique	ordinals	ξ	and	ρ	such	that	α	=	ωξ	+	ρ	and	ρ	<	ω.	But	if	ρ	<	ω,
then	ρ	must	be	finite.	But	then	ρ	must	be	0;	for	otherwise	ρ	=	m	+	1	for	some	finite	m,	hence	α	=	ωξ
+	m	+	1	would	not	be	a	limit	ordinal.

ii) 	 As	above,	α	=	ωξ	+	ρ,	where	ρ	is	finite.	Now	ρ	≠	0;	for	if	ρ	=	0,	then	α	=	ωξ,	which	is	impossible
because	ωξ	is	a	limit	ordinal	(see	Exercise	6,	Exercise	Set	9.3).	

EXERCISES	9.3

1. 	 Prove	that	1	+	α	=	α	if	an	only	if	α	 	ω.
2. 	 An	ordinal	number	ρ	>	0	is	called	irreducible	if	there	exists	no	pair	of	ordinals	α,	β	such	that	α	<	ρ,

β	<	ρ,	and	α	+	β	=	ρ.	Prove	the	following:
a) 	 An	ordinal	ρ	is	irreducible	if	and	only	if	π	+	ρ	=	ρ	for	every	ordinal	π	<	ρ.
b) 	 Suppose	ρ	>	1	and	ε	>	0;	ερ	irreducible	⇒	ρ	irreducible.
c) 	 If	ρ	is	irreducible	and	0	<	μ	<	ρ,	then	there	exists	an	irreducible	ordinal	ξ	such	that	ρ	=	μξ.
d) 	 Suppose	α	>	0;	the	set	of	all	irreducible	ordinals	 	α	has	a	greatest	element.	[Hint:	Consider	the

set	of	all	β	such	that	α	=	ρ	+	β	for	some	irreducible	ρ.]
3.	Show	that	an	ordinal	α	is	a	limit	ordinal	if	and	only	if

4. 	 Let	γ	be	a	nonlimit	ordinal.	Prove	the	following.

5. 	 Let	β	≠	0.	Prove	that	α	+	β	is	a	limit	ordinal	if	and	only	if	β	is	a	limit	ordinal.
6. 	 Let	α,	β	≠	0.	Prove	that	αβ	is	a	limit	ordinal	if	and	only	if	α	is	a	limit	ordinal	or	β	is	a	limit	ordinal.

[Hint:	Use	Exercise	3	and	Lemma	9.18.]
7. 	 Prove	that	nω	=	ω,	∀n	∈	ω.	[Hint:	Use	Theorem	9.19	to	“divide”	ω	by	n.]
8. 	 Let	α	≠	0.	Prove	that	α	is	a	limit	ordinal	if	and	only	if	nα	=	α,	for	every	finite	n.	[Hint:	Use	Exercise

7	and	Theorem	9.20(i).	For	the	converse,	use	Exercise	4(b).]
9. 	 a) 	 Use	induction	to	prove	that	if	γ	is	an	infinite	ordinal,	then	(γ	+	1)n	=	γn	+	1	for	all	finite	n.	[Use

Exercise	1.]
b) 	 Prove	that	∀γ	>	0,	(γ	+	1)ω	=	γω.	[Hint:	If	γ	is	infinite,	assume	γω	<	(γ	+	1)ω	and	use	Theorem

9.18	to	arrive	at	a	contradiction.	If	γ	is	finite,	use	Exercise	7.]
c) 	 Conclude	that	if	β	is	any	limit	ordinal,	then

10. 	 Let	α	be	a	nonlimit	ordinal.	Prove	that	∀γ	>	0,	(γ	+	1)α	>	γ	α.	[Hint:	Use	Exercise	4.]
11. 	 If	α	is	an	infinite	ordinal	and	β	≠	0	is	a	nonlimit	ordinal,	prove	that

[Hint:	Use	Theorem	9.20(ii)	and	assume	αβ	+	1	<	(α	+	1)β	to	arrive	at	a	contradiction.	Use	Exercise	9.]



12. 	 a) 	 If	α	is	a	limit	ordinal,	prove	that	α	=	sup{β	:	β	<	α}.	[Use	Exercise	3.]
b) 	 If	α	is	a	limit	ordinal	and	β	is	any	ordinal,	prove	that

[Hint:	If	γ	is	an	upper	bound	of	{β	+	μ	:	μ	<	α},	then	γ	>	β,	that	is,	γ	=	β	+	δ;	δ	proves	to	be	an	upper
bound	of	{μ	:	μ	<	α}.]

13. 	 If	α	is	a	limit	ordinal	and	β	is	any	ordinal,	prove	that

[Hint:	If	γ	is	an	upper	bound	of	{βμ	:	μ	<	α},	then	γ	=	αδ	+	ρ(ρ	<	α).	Note	that	μ	<	α	⇒	γ	 	α(μ	+	1)and
conclude	that	δ	is	an	upper	bound	of	{μ	:	μ	<	α}.]

14. 	 Prove	Theorem	9.17.
15. 	 Prove	the	uniqueness	assertions	of	Theorem	9.20.

4	THE	ALEPHS	AND	THE	CONTINUUM	HYPOTHESIS

In	 Chapter	 8	 it	 was	 proven	 that	 the	 relation	 	 among	 cardinals	 is	 a	 well-ordering;	 hence	 there	 is	 a
smallest	 infinite	 cardinal,	 a	 next	 greater	 infinite	 cardinal,	 and	 so	 on;	 every	 infinite	 cardinal	 has	 a
uniquely	determined	immediate	successor.	It	follows	that	the	infinite	cardinal	numbers	can	be	ranked	in
“first,	 second,	 third,	…”	 order.	 This	 opportunity	 of	 ranking	 the	 cardinals—and	 using	 the	 ordinals	 to
designate	the	ranks—has	valuable	applications	in	mathematics.
We	will	proceed	to	show	that	there	is	an	isomorphism	between	the	class	of	all	the	infinite	cardinals

and	the	class	of	all	the	ordinals.

9.21	Theorem	Let	IC	be	the	class	of	all	the	infinite	cardinals	and	let	OR	be	the	class	of	all	the	ordinals.
There	exists	an	isomorphism	from	IC	to	OR.

Proof	We	begin	by	noting	that	every	initial	segment	of	IC	is	a	set.	If	a	is	an	infinite	cardinal,	then	{b	∈
IC	:	b	<	a}	is	an	initial	segment	of	IC	denoted	here	by	Ia.	We	well-order	a,	and	for	each	x	∈	a,	Sx	=	{u
∈	a	 :	u	<	x}	 is	an	 initial	 segment	of	a.	Let	ϕ	 :	a	→	 Ia	be	defined	by	ϕ(x)=	#Sx	 for	 each	x	∈	a.	ϕ	 is
surjective,	because	if	b	∈	Ia,	 (hence	b	<	a)	 then	b	 is	 isomorphic	 (hence	equipotent)	with	some	 initial
segment	of	a.	(The	alternative,	namely	a	isomorphic	with	some	initial	segment	of	b,	contradicts	b	<	a).
Thus	ϕ	is	surjective.	Since	a	is	a	set,	Ia	is	a	set	by	Axiom	A9.	Likewise,	every	initial	segment	of	OR	is	a
set.

Now	 IC	 and	OR	 are	 both	well-ordered	 classes,	 hence	 by	 4.62,	 exactly	 one	 of	 the	 following	 three
cases	must	hold:	(a)	IC	 	OR,	(b)	IC	is	similar	to	an	initial	segment	of	OR,	(c)	OR	is	similar	to	an	initial
segment	of	IC.	Suppose	for	a	moment	that	(c)	holds.	From	the	previous	paragraph,	every	initial	segment
of	IC	is	a	set,	hence	by	2.36,	OR	is	a	set.	But	we	have	proved	that	OR	is	a	proper	class,	hence	(c)	cannot
hold.	Analogously,	(b)	cannot	hold,	which	proves	that	(a)	holds.	



If	a	is	an	infinite	cardinal	number,	the	ordinal	Ω(a)	is	called	the	ordinal	rank	of	a.	Note	that	Ω	is	an
isomorphism;	 thus,	 if	 a	 is	 the	 least	 infinite	 cardinal,	 then	 Ω(a)=	 0;	 if	 a	 is	 the	 next	 greater	 infinite
cardinal,	then	Ω(a)=	1,	and	so	on.
The	infinite	cardinals	are	often	called	alephs.	If	a	is	an	infinite	cardinal	and	α	=	Ω(a),	we	frequently

write

Thus	the	first	few	infinite	cardinals	are	 0	,	 1	,	 2	,	…
Theorem	9.21	has	the	following	simple	consequences:

9.22
i) 	 α	= β	⇒	α	=	β,
ii) 	 α	=	β	⇒ α	= β,

iii) 	 α	<	 β	⇒	α	<	β,
iv) 	 α	<	β	⇒ α	<	 β

We	have	seen	that	every	infinite	cardinal	number	a	has	an	immediate	successor—but	what	exactly	is
the	 immediate	 successor	 of	a?	We	 know	 that	 2a	 is	 greater	 than	 a,	 but	 is	 there	 any	 cardinal	 number
between	a	and	2a?	Let	us	ask	a	more	specific	question:	We	have	seen	that	 0	is	the	cardinal	number	of
denumerable	sets	(for	the	cardinal	number	of	ω	is	the	least	infinite	cardinal),	and	that	2 0	is	the	cardinal
number	of	the	real	numbers;	is	there	a	cardinal	number	between	these	two?
The	early	set	 theorists	proposed	the	hypothesis	 that	 there	 is	no	cardinal	between	 0	and	2 0	 ,	and

named	it	the	continuum	hypothesis—for	it	is	equivalent	to	saying	that	every	set	of	real	numbers	which	is
not	denumerable	has	the	power	of	the	real	numbers,	called	the	“power	of	the	continuum.”	An	obvious
extension	of	this	conjecture	is	the	statement:	For	every	infinite	cardinal	number	a,	there	is	no	cardinal
between	a	and	2a;	this	is	called	the	generalized	continuum	hypothesis.

Continuum	Hypothesis.	There	does	not	exist	any	cardinal	c	such	that	 0	<	c	<	2 0

Generalized	Continuum	Hypothesis.	If	a	is	any	infinite	cardinal,	there	does	not	exist	any	cardinal	c	such
that	a	<	c	<	2a.

It	 has	 been	 proven	 in	 recent	 years	 that	 the	 continuum	 hypothesis	 and	 the	 generalized	 continuum
hypothesis	cannot	be	proven	 from	 the	other	axioms	of	 set	 theory,	and	do	not	contradict	 these.	Hence
their	 status	 is	 analogous	 to	 that	of	Euclid’s	 “Fifth	Postulate”	 in	geometry.	We	may	postulate	 them	or
deny	them,	in	each	case	getting	a	consistent	theory	of	cardinal	numbers.

EXERCISES	9.4

1. 	 Prove	that	the	generalized	continuum	hypothesis	is	equivalent	to

2. 	 Assuming	the	generalized	continuum	hypothesis,	prove	the	following:



3. 	 Assuming	the	generalized	continuum	hypothesis,	prove	the	following:

Further	problems	on	the	alephs	are	given	in	Exercise	Set	9.5.

5	CONSTRUCTION	OF	THE	ORDINALS	AND	CARDINALS

We	said,	in	the	introduction	to	this	chapter,	that	it	is	possible	to	construct	sets	which	satisfy	Conditions
01	and	02	of	 the	Axiom	of	Ordinality.	The	chief	purpose	of	 this	construction	 is	 to	prove	 that	we	can
dispense	with	the	Axiom	of	Ordinality	by	actually	producing	the	sets	whose	existence	the	axiom	asserts.
Our	 process	 of	 construction	 is	 based	upon	 the	 same	 idea—outlined	on	page	125—that	we	used	 to

construct	the	natural	numbers.	We	begin	by	defining

If	A	is	a	set,	we	define	the	successor	of	A	to	be	the	set	A+,	given	by

Thus	0	=	Ø,	1	=	0+,	2	=	1+,	and	so	on.	This	time,	however,	we	will	go	further	than	we	did	in	Chapter	7.
Starting	with	ω,	we	define

Then,	starting	with	ω	+	ω	=	ω2,	we	get

and	so	on.
This	 is	 the	basic	 idea	 of	our	 construction	process,	 but	we	will	 not	proceed	exactly	 in	 this	 fashion.

Instead	 of	 starting	 with	 0	 and	 constructing	 successive	 sets	 one	 by	 one,	 we	 will	 define	 all	 the	 sets
simultaneously.	This	can	be	accomplished	in	the	following	way.
The	“elementhood”	relation	∈	is	not,	generally	speaking,	an	order	relation;	for	example,	if	x	∈	A	and

A	∈	B,	it	does	not	necessarily	follow	that	x	∈	B.	However,	there	are	special	cases	where	∈	does	behave
as	if	it	were	an	order	relation;	one	of	these	cases	concerns	us	here.

9.23	Definition	A	class	A	is	said	to	be	∈-ordered	if	it	is	ordered	by	the	relation	∈.	It	is	understood	here
that	the	relation	∈	is	a	strict	order	relation	<.	Consequently,	to	say	that	A	is	∈-ordered	is	to	say	it	has	the
following	properties	∀a,	b,	c	∈	A	:

a)	a	∈	a.
b)	a	∈	b	⇒	b	∈	a.
c)	(a	∈	b)∧	(b	∈	c)⇒	a	∈	c



9.24	Remark.	It	is	immediate	that	the	transitive	law	(c)	holds	iff	b	∈	c	⇒	b	⊆	c.

By	Definition	6.5,	 a	 set	A	 is	 said	 to	 be	 transitive	 if:	 (x	∈	A)	∧	 (y	∈	 x)	⇒	 y	∈	A.	 Note	 that	 this
property	is	not	the	same	as	saying	that	(c)	above	holds	in	A.	Property	(c)	tells	us	that	every	element	of	A
is	transitive,	but	not	that	A	itself	is	transitive.	It	is	immediate	that	A	is	transitive	iff	x	∈	A	⇒	x	⊆	A.	Here
is	our	“abstract”	definition	of	ordinals:

9.25	Definition	A	 set	A	 is	 called	 an	ordinal	 if	A	 is	 transitive	 and	 ordered	 by	∈.	 This	means	 that	∈
satisfies	the	three	conditions	of	Definition	9.23	on	A,	and	A	is	a	transitive	set	by	Definition	6.5.

9.26	Lemma	Let	α	be	an	ordinal.
i) 	 Every	element	of	an	ordinal	is	an	ordinal.
ii) 	 If	x	∈	α,	then	x	=	Sx,	where	Sx	is	the	initial	segment	{y	∈	α	:	y	∈	x}.

Proof

i) 	 Suppose	x	∈	α;	show	that	x	is	an	ordinal.	Because	α	is	transitive,	x	⊆	α.	So	if	a,	b,	c	are	elements	of
x,	they	are	also	elements	of	α,	hence	satisfy	conditions	(a),	(b),	(c)	of	9.23.	Likewise,	if	u,	v,	w	are
elements	of	x,	they	are	elements	of	α,	hence	u	∈	v	∈	x	⇒	u	∈	x.

ii) 	 If	y	∈	x	then	(because	A	is	a	transitive	set)	y	∈	α.	Thus	y	∈	Sx.	Conversely,	if	y	∈	Sx	 then	by	the
definition	of	Sx,	y	∈	x.	Thus,	x	=	Sx.	

From	Lemma	9.26	we	draw	two	important	conclusions:	(1)	Every	ordinal	is	a	set	of	ordinals,	and	(2)
Every	ordinal	α	is	the	set	of	all	ordinals	β	<	α.

We	let	the	symbol	OR	stand	for	the	class	of	all	the	ordinals.	Since	ordinals	are	sets,	∈	is	a	relation
between	them,	and	our	first	objective	is	to	show	that	OR	satisfies	9.23(a),	(b)	and	(c).	We	aim	also	to
show	that	any	two	ordinals	α	and	β	are	comparable	by	the	order	relation	∈.	In	fact,	let’s	begin	with	that:

9.27	Theorem	Let	α	and	β	be	ordinals.	If	α	≠	β,	then	either	α	∈	β	or	β	∈	α.

Proof.	We	shall	call	two	sets	x	and	y	incomparable	if	x	≠	y,	x	∉	y	and	y	∉	x.	Let	A	be	 the	following
subset	of	OR:	A	=	{x	∈	OR	:	∃y	∈	OR	such	that	x	and	y	are	 incomparable}.	We	will	show	that	A	is
empty.	We	reason	by	contradiction	and	assume	A	is	nonempty.	At	this	point	we	shall	make	our	first	use
of	the	Axiom	of	Foundation	(A8),	which	states	that	every	nonempty	set	A	contains	an	element	disjoint
from	A.	That	is:	∃a	∈	A	such	that	a	 	A	=	 .	In	that	case,	the	set	B	=	{y	∈	OR:	y	is	incomparable	with
a}	is	not	empty.	As	above,	by	(A8)	there	is	an	element	b	∈	B	such	that	b	 	B	=	 .	It	will	now	be	shown
that	a	⊆	b.

If	z	∈	a	then	z	is	an	ordinal,	and	z	∉	A	because	a	 	A	=	 .	For	every	y	∈	OR,	y	and	z	are	comparable.
In	particular,	b	and	z	are	comparable.	Now	if	it	were	the	case	that	z	=	b	that	would	imply	b	∈	a	hence	b
∉	B,	which	is	contradiction.	Similarly,	if	it	were	the	case	that	b	∈	z,	then	b	∈	a	because	a	is	transitive,
hence	b	∉	B.	Again	a	contradiction.	Thus,	z	∈	b,	and	since	z	was	an	arbitrary	element	of	a,	this	proves



that	 a	⊆	b.	 In	 the	 same	 fashion	 you	 can	 show	 b	⊆	A,	 hence	 a	 =	 b.	 This	 contradiction	 proves	 the
theorem.	

9.28	Lemma	If	α	and	β	are	ordinals	then	α	∈	β	⇔	α	⊂	β.	(α	⊂	β	means	α	⊆	β	but	α	=β.	)

Proof.	Half	of	this	claim	is	true	from	Remark	9.24	with	9.23(a).	Now	suppose	α	⊂	β	:	It	must	be	shown
that	α	∈	β.	By	Theorem	9.27,	either	α	∈	β	or	β	∈	α.	The	latter	is	impossible,	because	from	α	⊆	β	we
would	get	β	∈	β,	contrary	to	9.23(a).	Thus	α	∈	β.	

The	class	of	all	the	ordinals	is	denoted	by	OR.	The	relation	∈	is	a	well-defined	relation	on	OR,	and
we	wish	to	show	that	∈	is	an	order	relation	on	OR.	In	order	to	do	this,	we	must	show	that	∈	satisfies
Properties	9.23(a),	(b)	and	(c)	on	OR.	We	also	show	that	OR	is	a	transitive	class.

9.29	Theorem	The	class	OR	of	all	the	ordinals	is	ordered	by	∈.

Proof.	Let	α,	β,	γ	∈	OR:

	 If	α	∈	α	then	α	is	an	element	of	an	ordinal,	hence	satisfies	9.23(a).	Thus,	α	∉	α.
	 We	show	the	transitive	law	first:	Suppose	α	∈	β	and	β	∈	γ	:	We	make	three	uses	of	Lemma	9.28:	α	⊂	β

and	β	⊂	γ	hence	α	⊂	γ	so	α	∈	γ.
	 Suppose	α	∈	β.	If	β	∈	α	then	(because	every	ordinal	is	transitive)	α	∈	α,	which	is	false	from	(a).	

9.30	Lemma	If	α	is	an	ordinal	then	α	+	=	α	 	{α}	is	an	ordinal.
The	proof	of	this	lemma	is	a	simple	verification,	and	is	left	as	an	exercise.

9.31	Theorem

a) 	 If	α	is	an	ordinal	then	α	=	Sα.

b) 	OR	is	a	transitive	class.

Proof

a) 	 It	must	be	shown	that	if	α	is	an	ordinal	then	α	=	Sα.	From	9.26(ii),	all	we	need	is	to	show	that	α	is	an
element	of	an	ordinal.	It	is,	because	α	∈	α	+.

b) 	 Prove	that	x	∈	OR	⇒	x	⊂	OR.	In	other	words,	if	x	is	an	ordinal,	then	x	is	a	set	of	ordinals.	This
follows	from	Part	(a).	

9.32	Theorem	Every	non-empty	class	A	of	ordinals	has	a	least	element.



Proof	It	will	be	shown	that	if	A	is	any	class	of	ordinals,	then	 A	is	an	ordinal,	is	an	element	of	A,	and	is
therefore	the	least	ordinal	in	A.	If	x	∈	 A	then	for	any	y	∈	A,	x	∈	y.	So	now,	if	z	∈	x	then	z	∈	y	because
ordinals	are	transitive.	Since	this	is	true	for	each	y	∈	A,	it	follows	that	z	∈	 A.	This	proves	that	 A	 is
transitive.	It	 is	clear	 that	 A	 is	ordered	by	∈,	because	each	ordinal	 in	A	satisfies	9.23(a),	 (b)	and	(c),
hence	so	does	their	intersection.	Thus,	 A	is	an	ordinal.

Finally,	either	 A	=	A	(which	implies	A	is	a	singleton	{α}	so	α	∈	A	is	the	least	element	of	A)	or	 A
⊂	A.	Then	from	9.28,	 A	∈	A.	It	is	immediate	that	if	γ	∈	A	then	 A	⊂	γ,	so	 A	∈	γ.	Thus	 A	 is	 the
least	element	of	A.	

This	theorem	is	very	important,	because	it	shows	that	the	class	OR	of	all	ordinals	is	well-ordered	by
the	relation	∈.	Moreover,	since	from	9.26(i)	every	ordinal	α	 is	a	subset	of	OR,	 this	shows	 that	every
ordinal	is	well-ordered	by	∈.	One	essential	fact	about	OR	is	this:

9.33	Theorem	OR	is	a	proper	class.

Proof.	We	have	shown	that	OR	has	all	the	properties	of	an	ordinal.	Thus	if	OR	were	a	set,	it	would	be
an	ordinal,	and	then	we	would	have	OR	∈	OR,	which	is	impossible	by	9.23(c).	

Finally,	we	come	to	the	most	important	property	of	OR—the	reason	for	inventing	ordinals	in	the	first
place:

9.34	Theorem	Every	well-ordered	set	A	is	isomorphic	with	a	unique	ordinal.

Proof	 Since	 A	 and	 OR	 are	 well-ordered	 classes,	 it	 follows	 from	 Theorem	 4.62	 that	 either	 A	 is
isomorphic	with	an	initial	segment	of	OR,	or	OR	is	isomorphic	with	an	initial	segment	of	A,	or	OR	is
isomorphic	with	A.	The	last	two	are	impossible,	because	from	Axiom	A9,	this	would	make	OR	a	set,
whereas	OR	is	a	proper	class.	Thus,	A	is	isomorphic	to	the	initial	segment	Sα	=	α	of	OR.	The	proof	of
uniqueness	is	left	as	an	exercise.	

9.35	Remark.	Ordinal	numbers	have	many	applications	in	mathematics.	Here	is	a	brief	summary	of	the
high	points	that	it	is	important	to	retain:	Every	ordinal	α	is	an	∈-well-ordered	set	equal	to	the	set	of	all
ordinals	preceding	it:	α	=	{β	∈	OR	:	β	<	α}.	Moreover,	α	∈	β	⇔	α	⊂	β.	Thus,	when	we	think	of	ordinals
as	sets	(which	they	are),	each	ordinal	is	a	chain	of	sets:	α	is	the	chain	of	all	the	sets	β	⊂	α.	As	a	set,	α	=	
{β	∈	OR	:	β	⊂	α}.	In	fact,	if	A	is	any	class	of	ordinals,	then	A	may	correctly	be	viewed	as	a	chain	of

sets.	Consequently,	any	bounded	class	A	of	ordinals	has	a	least	upper	bound	sup(A)	=	 A.

9.36	Remark.	Let	C	⊆	OR	be	a	class	of	ordinal	numbers,	and	suppose	the	following	three	conditions
hold:	(a)	0	∈	C.	(b)	If	α	∈	C	then	α	+	∈	C.	(c)	Let	α	be	a	limit	ordinal:	If	β	∈	C	for	all	β	<	α	then	α	∈	C.
Then	C	=	OR.	This	fact	is	easy	to	prove:	Indeed,	if	C	≠	OR,	let	D	be	the	class	of	all	ordinals	γ	such	that
γ	 ∉	 C.	 By	 assumption,	 D	 ≠	 ,	 so	 from	 9.32,	 D	 has	 a	 least	 element	 μ.	 It	 is	 easy	 now	 to	 get	 a
contradiction.



If	A	is	an	arbitrary	set,	consider	the	class	of	all	the	ordinals	equipotent	with	A;	this	class	has	a	unique
least	element,	which	we	call	 the	 initial	ordinal	equipotent	with	A.	 It	 is	 trivial,	now,	 to	verify	 that	 the
class	of	all	the	initial	ordinals	satisfies	Conditions	K1	and	K2	of	the	Axiom	of	Cardinality.	Thus	we	are
justified	in	making	the	following	definition.

9.37	Definition	By	a	cardinal	number	we	mean	an	initial	ordinal.

Thus,	the	class	CD	of	the	cardinal	numbers	is	the	class	of	all	the	initial	ordinals.
We	have	thus	fulfilled	our	promise	of	actually	producing	sets	to	serve	as	the	cardinal	numbers	and	the

ordinal	numbers.
We	 noted	 earlier	 that	 every	 natural	 number	 is	 a	 transitive,	∈-well-ordered	 set,	 that	 is,	 an	 ordinal

number.	 It	 is	 immediate,	 too,	 that	 every	 natural	 number	 is	 an	 initial	 ordinal	 number.	 Thus,	 in	 our
construction,	the	natural	numbers	coincide	with	the	finite	ordinals,	as	well	as	with	the	finite	cardinals.

The	reader	should	note	that	everything	we	have	proved	in	Chapters	8	and	9	about	the	class	CD	of	the
cardinal	numbers	has	depended	solely	upon	Conditions	K1	and	K2	of	the	Axiom	of	Cardinality.	Thus
everything	 we	 have	 already	 said	 about	 the	 cardinals	 holds,	 without	 any	 alteration,	 for	 the	 class	 CD
defined	by	9.37.	In	particular,	9.22	still	holds,	that	is,

is	an	isomorphism	between	OR	and	the	class	of	all	the	infinite	cardinals.
It	 is	 important	 to	 note	 that	 by	 9.37,	 α	 is	 both	 a	 cardinal	 and	 an	 ordinal	 (specifically,	 an	 initial

ordinal).	In	order	to	avoid	any	confusion,	it	is	common	practice	in	mathematics	to	write

for	every	infinite	cardinal	 α	 ,	and	to	treat	 α	as	a	cardinal	number	and	ωα	as	an	ordinal	number.	In
other	words,	the	number	in	question	is	denoted	by	 α	when	it	is	used	as	a	cardinal,	and	by	ωα	when	it	is
used	as	an	ordinal.	For	example,	 α	+ β	designates	the	cardinal	sum	of	the	two	numbers,	whereas	ωα	+
ωρ	designates	their	ordinal	sum.

EXERCISES	9.5

1. 	 For	each	ordinal	number	α,	prove	that	α	 	ωα;	conclude	that	#α	 	 α.	[Hint:	Use	4.58.]
2. 	 Prove	that	if	β	is	a	limit	ordinal,	then	 β	=	sup{ γ	:	γ	<	β}.	[Hint:	Use	9.22.]

3. 	 Prove	that	 .

4. 	 If	μ	is	a	limit	ordinal,	prove	that	 .
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Transfinite	Recursion.	Selected	Topics	in	the	Theory	of	Ordinals	and

Cardinals

1	TRANSFINITE	RECURSION

In	Chapter	6	we	discussed	the	notions	of	finite	induction	and	finite	recursion;	finite	induction	is	method
of	 proof	 by	 induction	 and	 is	 familiar	 to	 most	 students	 of	 elementary	 algebra.	 Finite	 recursion	 is	 a
method	of	definition	by	induction.	Proof	by	induction	works	as	follows:	A	theorem	is	first	shown	to	be
true	for	0.	Then	it	is	shown	that	if	the	theorem	is	true	for	n,	it	must	likewise	be	true	for	n	+	1.	We	are
then	 able	 to	 conclude	 that	 the	 theorem	 is	 true	 for	 all	 natural	 numbers.	 Induction	 rests	 on	 the	 same
principle,	but	is	a	way	of	defining	a	function.	First,	we	define	the	value	of	the	function	at	0.	Then	we
use	its	value	at	n	to	define	its	value	at	n	+	1.	In	this	way,	its	value	is	defined	for	every	natural	number.
Our	purpose	here	is	to	go	beyond	the	natural	numbers	and	use	the	same	principle	on	the	class	of	all

the	 ordinals.	 Transfinite	 induction	 has	 been	 described	 briefly	 in	 Section	 4.5.	 The	 chief	 difference
between	conventional	induction	and	transfinite	induction	is	that	there	are	two	kinds	of	induction	step:
One	for	the	case	where	α	is	a	successor	ordinal,	and	one	for	the	case	where	α	is	a	limit	ordinal.
The	two	cases	must	obviously	be	treated	differently,	because	if	α	is	a	successor	ordinal,	say	α	=	β+,

then	the	task	is	to	show	that	if	a	property	is	true	for	β	then	it	is	true	for	β+.	On	the	other	hand,	if	α	is	a
limit	ordinal,	the	task	is	to	show	that	if	the	property	is	true	for	all	β	<	α,	then	it	is	true	also	for	α.
The	difference	between	induction	and	recursion	is	clear:	In	induction	the	objective	is	to	prove	that	a

property	P(α)	 is	 true	for	every	ordinal	α.	 In	 recursion	 the	objective	 is	 to	assign	a	value	 to	a	 function
F(α)	for	every	ordinal	α.	The	idea	is	the	same,	but	the	added	complication	is	that	the	value	you	assign	is
in	a	set	A	which	is	the	range	of	F.
Suppose	α	 is	a	successor	ordinal,	α	=	β+.	The	idea,	in	recursion	as	in	induction,	is	that	the	value	of

F(β+)	 is	 obtained	directly	 from	 the	value	of	F(β)—in	other	words,	 by	 performing	 some	operation	 on
F(β).	If	G	is	the	symbol	assigned	to	that	operation,	then

On	the	other	hand,	if	α	is	a	limit	ordinal,	what	you	do	to	all	the	values	F(β),	β	<	α	in	order	to	get	F(α)	is
to	assign	the	“next	value”	to	F(α),	which	is	their	least	upper	bound:

As	we	have	just	seen,	G	is	an	operation	on	the	range	of	F.	So	the	next	question	is:	What	is	the	range
of	F	?	Let’s	use	the	symbol	A	for	the	range	of	F.	Different	choices	of	A	give	you	different	versions	of
the	recursion	theorem.	You	want	to	be	as	noncommittal	as	possible	so	as	to	allow	the	recursion	theorem
to	be	used	in	a	wide	range	of	applications.	So,	let’s	say	that	A	is	any	subclass	of	the	class	V	of	all	sets.
Since	anything	in	mathematics	can	be	construed	as	a	set,	this	is	very	satisfactory.	Given	any	set	of	sets,
their	least	upper	bound	is	usually	their	union.	Thus,	our	induction	step	for	limit	ordinals	may	be	written
thus:



It	is	good	to	recall	here,	from	9.35,	that	OR	is	a	chain	of	sets	ordered	by	⊂.	Thus,	any	subclass	C	⊆
OR	is	likewise	a	chain	of	sets,	so	its	union	is	its	least	upper	bound.	That	is,	sup	C	=	 	C.	It	is	also	good
to	recall	that	every	ordinal	α	is	equal	to	the	initial	segment	Sα	of	OR,	and	since	Sα	 is	a	chain	of	sets,	

.	So	here	we	have	it:

Transfinite	Recursion	Theorem	Let	A	⊆	V	be	any	class	of	sets,	let	G	:	A	→	A	be	a	function,	and	let	a
∈	A.	Then	there	exists	a	unique	function	F	:	OR	→	A	such	that

Proof.	The	proof	will	flow	smoothly	if	we	think	of	all	our	functions	as	sets	of	ordered	pairs—which	is
actually	what	they	are.	Our	task	now	is	to	show	that	for	every	ordinal	α	there	is	exactly	one	element	xα
such	that	the	ordered	pair	(α,	xα)	is	in	F.	In	the	mind’s	eye,	we	should	think	of	F	as	being	built	up	stage
by	stage—adding	a	new	ordered	pair	at	each	stage—until	F	is	“full”.
Condition	(i)	of	the	theorem	tells	us	that	the	pair	(0,a)	is	in	F.	Thus,	F	is	not	empty.	If	dom(F)	=	OR,

we	are	done.	If	not,	let	α	be	the	least	ordinal	such	that	no	pair	(α,	xα)	is	in	F	for	any	element	xα.	 (Use
Theorem	9.32.)	Consider	two	cases:

a) 	 α	is	a	successor	ordinal,	α	=	β+.	By	assumption,	F	contains	an	ordered	pair	(β,	xβ)	for	some	element
xβ.	Then	from	Condition	(ii),	 the	ordered	pair	(β+,	G(xβ))	 is	 in	F:	This	contradicts	 the	assumption
that	no	pair	(α,	xα)	is	in	F.

b) 	 α	is	a	limit	ordinal.	Then	by	assumption,	for	all	β	<	α,	there	are	ordered	pairs	(β,	xβ)	 in	F.	That	is,
{(β,	xβ)	:	β	<	α}⊆	F.	Then	by	the	rule	of	induction	(iii),	there	is	 	such	that	(α,	xα)	∈	F.
This	shows	that	for	every	α,	some	pair	(α,	xα)	is	in	F.

We	use	 induction	on	α	 to	prove	 that	 for	each	ordinal	α,	 there	 is	only	one	xα	 such	 that	 (α,	xα)	∈	F.
Suppose	that	for	all	β	<	α,	there	is	just	one	ordered	pair	(β,	xβ)	∈	F.	That	is,	if	(β,	xβ)	∈	F	and	(β,	 )	∈
F	then	xβ	=	 .	Let	α	be	a	successor	ordinal,	α	=	β+,	and	suppose	there	are	different	elements	xα	and	
such	that	(α,	xα)	∈	F	and	(α,	 )	∈	F.	From	Condition	(ii),	 .	Now
let	 α	 be	 a	 limit	 ordinal,	 and	 suppose	 (α,	 xα)	 ∈	 F	 and	 (α,	 )	 ∈	 F.	 From	 (iii),	

.	This	proves	that	the	set	F	of	ordered	pairs	is	a	function.
From	9.36,	the	domain	of	F	is	all	of	OR.	It	has	thus	been	shown	that	F	is	a	function	whose	domain	is

OR	and	range	is	in	A,	and	that	Conditions	(i)–(iii)	determine	F	uniquely.	

Remark.	The	reasoning	in	Paragraph	3	of	this	proof	may	be	interpreted	as	follows:	For	every	ordinal	α,if
F	 	Sα	is	the	only	function	with	domain	Sα	that	satisfies	Conditions	(i)–(iii),	then	F	 	Sα+	=	(F	 	Sα)	∪	(α,
xα)	is	the	only	function	with	domain	Sα+	that	satisfies	(i)–(iii).	But	 ,	so	F	is	the	unique
function	with	domain	OR	that	satisfies	(i)–(iii).



Just	 as	 finite	 recursion	was	 used	 in	Chapter	 6	 to	 define	 the	 addition	 and	multiplication	 of	 natural
numbers,	 transfinite	 recursion	 may	 be	 used	 to	 give	 alternative	 definitions	 for	 the	 addition	 and
multiplication	of	ordinal	numbers.

10.2	Definition	For	any	arbitrary	α	∈	OR,	we	define	a	function	σα	:	OR	→	OR	as	follows:

a) 	 σα(0)	=	α,

b) 	 σα(β+)	=	[σα(β)]+,
c) 	 σα(β)	=	sup{σα(γ)	:	γ	<	β}	if	β	is	a	limit	ordinal.

Theorem	10.1	guarantees	the	existence	of	a	unique	function	σα	satisfying	(a),	(b),	(c).

10.3	Theorem	For	arbitrary	ordinals	α,	β,	σα(β)	=	α	+	β.

Proof.	If	β	=	0,	then	σα(0)	=	α	=	α	+	0.	By	induction,	let	us	suppose	now	that	the	theorem	holds	for	all	γ
<	β.	If	β	is	a	limit	ordinal,	then

If	β	is	a	nonlimit	ordinal,	β	=	δ+,	then

Theorem	10.3	tells	us	that	if	we	define	the	addition	of	ordinal	numbers	by

then	10.4	is	equivalent	to	Definition	9.8.
10.4	may	also	be	written	in	the	following	form:

Since	10.5	is	equivalent	to	Definition	9.8,	we	will	henceforth	consider	10.5	to	define	the	addition	of
ordinal	numbers.

10.6	Definition	For	an	arbitrary	α	∈	OR,	we	define	a	function	πα	:	OR	→	OR	as	follows:



a) 	 πα(0)	=	0,

b) 	 πα(β+)	=	πα(β)	+	α,
c) 	 πα(β)	=	sup{πα(γ)	:	γ	<	β}	if	β	is	a	limit	ordinal.

Theorem	10.1	guarantees	the	existence	of	a	function	πα	satisfying	the	conditions	(a),	(b),	and	(c).

10.7	Theorem	For	arbitrary	ordinals	α,	β,	πα(β)	=	αβ.

Proof.	If	β	=	0,	then	πα(0)	=	0	=	α0.	By	induction,	let	us	suppose	that	the	theorem	holds	for	every	γ	<	β;
that	is,	πα(γ)	=	αγ,	∀γ	<	β.	If	β	is	a	limit	ordinal	then

If	β	is	a	nonlimit	ordinal,	β	=	δ+,	then

Theorem	10.7	tells	us	that	if	we	define	the	multiplication	of	ordinal	numbers	by

then	10.8	is	equivalent	to	Definition	9.8.
10.8	may	also	be	written	in	the	following	form:

Since	 10.9	 is	 equivalent	 to	 9.8,	 we	 will	 henceforth	 consider	 10.9	 to	 be	 the	 definition	 of	 ordinal
multiplication.

2	PROPERTIES	OF	ORDINAL	EXPONENTIATION

10.5	and	10.9	provide	us	with	an	alternative	way	of	defining	the	addition	and	multiplication	of	ordinal
numbers,	 using	 transfinite	 recursion.	 We	 will	 use	 this	 new	 (and	 in	 many	 ways,	 more	 convenient)
approach	to	define	ordinal	exponentiation.



10.10	Definition	If	α	≠	0	is	any	ordinal,	we	define	a	function	ηα	:	OR	→	OR	as	follows:

a) 	 ηα(0)	=	1.

b) 	 ηα(β+)	=	ηα(β)α,
c) 	 ηα(β)	=	sup{ηα(γ)	:	γ	<	β}	if	β	is	a	limit	ordinal.

Theorem	10.1	guarantees	the	existence	of	a	function	ηα	:	OR	→	OR	which	satisfies	conditions	(a),	(b),
and	(c)	above.

10.11	Definition	We	define	ordinal	exponentiation	as	follows:	If	α	and	β	are	arbitrary	ordinals,	we	let

and	0β	=	0.
In	view	of	10.10,	10.11	may	therefore	be	written	as	follows:

10.12	a) 	 α0	=	1,

b) 	 αβ+	=	(αβ)α,

c) 	 αβ	=	sup{αγ	:	γ	<	β},if	β	is	a	limit	ordinal,

d) 	 0β	=	0.

We	will	now	develop	the	fundamental	properties	of	ordinal	exponentiation.

10.13	Lemma	If	γ	is	a	limit	ordinal	and	ε	<	αγ,	then	 .

Proof.	Suppose,	on	the	contrary,	that	∀π	<	γ,απ	 	ε;	this	means	that	ε	is	an	upper	bound	of	the	set	{απ	:	π
<	γ};	but	αγ	is	the	sup	of	this	same	set,	so	αγ	 	ε,	which	contradicts	our	assumption	that	ε	<	αγ.	Thus	for
some	π	<	γ,	ε<	απ.	

10.14	Theorem	For	any	ordinal	numbers	α>	1,	β,	γ,

i)	β	<	γ	⇒	αβ	<	αγ,
ii)	αγ	<	αβ	⇒	γ	<	β.

Proof
i) 	 The	proof	is	by	induction	of	γ.	If	γ	=	0,	the	condition	is	satisfied	vacuously.	Now	suppose	that	(i)

holds	∀δ	<	γ,	that	is,

Suppose	first	that	γ	 is	a	limit	ordinal.	If	β	<	γ,	then	β	+	1	<	γ,	and	by	the	hypothesis	of	 induction	we
have



but	αγ	=	sup{αβ	:	β	<	γ},	so	αβ+1	 	αγ	;	thus	αβ	<	αγ.
Now	suppose	that	γ	is	a	nonlimit	ordinal,	γ	=	δ	+	1.	If	β	<	γ,	then	β	=	δ	or	β	<	δ.	If	β	=	δ,	then	we	have

If	β	<	δ,	then	by	the	hypothesis	of	induction,	αβ	<	αδ,	so	we	have

ii) 	 αγ	 	αβ	⇒	γ	 	β	is	the	contrapositive	of	(i).	Now	suppose	αγ	<	αβ;	if	γ	=	β,	then	αγ	=	αβ,	hence	γ	<	β.	

10.15	Theorem	For	any	ordinal	numbers	α,	β,	and	γ,

i) 	 α	 	β	⇒	αγ	 	βγ,

ii) 	 βγ	<	αγ	⇒	β	<	α.

Proof
i) 	 The	proof	 is	by	 induction	on	γ.	 If	γ	=	0,	 the	 condition	 is	 satisfied	 trivially.	Now	suppose	 that	 (i)

holds	∀δ	<	γ,	that	is,

Suppose	 first	 that	γ	 is	 a	nonlimit	 ordinal,	 γ	 =	δ	+	1.	We	assume	α	 	β	 and,	 by	 the	 hypothesis	 of
induction,	αδ	 	βδ.	Thus,	by	10.12(b)	and	9.16(v)	and	(vii),	we	have

Next,	suppose	that	γ	is	a	limit	ordinal;	then	αγ	=	sup{αδ	:	δ	<	γ}.	If	δ	<	γ,	then	by	the	hypothesis	of
induction	αδ	 	βδ;	but	βδ	 	βγ	because	βγ	=	sup{βδ	:	δ	<	γ},	hence	αδ	 	βγ	for	every	δ	<	γ.	It	follows
that	βγ	is	an	upper	bound	of	{αδ:	δ	<	γ},	hence	αγ	 	βγ.

ii) 	 This	is	simply	the	contrapositive	of	(i).	

10.16	Theorem	αβαγ	=	αβ+γ	for	any	ordinal	numbers	α,	β,	and	γ.

Proof.	The	proof	is	by	induction	on	γ	;	the	theorem	holds	trivially	if	γ	=	0,	hence	we	assume	that	αβαδ	=
αβ+δ	for	every	ordinal	δ	<	γ.



i) 	 Let	us	suppose	first	that	γ	is	a	nonlimit	ordinal,	γ	=	δ	+	1;	then

ii) 	 Now	let	us	suppose	that	γ	is	a	limit	ordinal;	we	shall	prove	the	two	inequalities	(a)	αβ+γ	 	αβαγ	and
(b)	αβαγ	 	αβ+γ.
a)	If	γ	is	a	limit	ordinal,	then	clearly	β	+	γ	is	a	limit	ordinal,	hence	by	10.12(c),

Now	if	δ	<	β	+	γ,	then	either	δ	 	β,or	if	δ>	β,	then	by	9.15,	δ	=	β	+	ρ	for	some	ρ	<	γ	[ρ	<	γ	because	δ
=	β	+	ρ	<	β	+	γ	⇒	ρ	<	 γ	 by	9.16(ii)].	 In	 the	 first	 case,	 namely	δ	 	β,	 it	 follows	 by	 10.14(i)	 and
9.16(v)	that	αδ	 	αβ	 	αβαγ.	(We	assume	that	α	≠	0,	hence	1	 	αγ	;if	α	=	0,	then	10.16	holds	trivially.)
In	the	second	case,	namely	δ	=	β	+	ρ	where	ρ	<	γ,	it	follows	by	10.14(i)	that	αρ	<	αγ,	hence	by	the
hypothesis	of	induction	and	9.16(v),

Thus,	in	either	of	the	two	cases,	αδ	 	αβαγ	for	every	δ	<	β	+	γ,	so	αβαγ	is	an	upper	bound	of	{αδ	:	δ	<
β	+	γ},	hence	αβ+γ	 	αβαγ.

b) 	 We	are	assuming	that	γ	is	a	limit	ordinal;	it	follows	very	easily	(see	Exercise	1(a)	at	the	end	of	this
section)	that	αγ	is	a	limit	ordinal,	hence	by	10.9(c),

Now	if	ε	<	αγ,	then	by	10.13,	∃π	<	γ	ε	<	απ	;	hence	by	9.16(v),	10.14(i),	and	the	hypothesis
of	induction,

Thus	αβ+γ	is	an	upper	bound	of	{αβε	:	ε	<	αγ},	hence	αβαγ	 	αβ+γ.	

10.17	Theorem	(αβ)γ	=	αβγ	for	any	ordinals	α,	β,	and	γ.

Proof.	 The	 proof	 is	 by	 induction	 on	 γ.	 If	 γ	 =	 0,	 the	 theorem	 follows	 trivially	 from	 10.12(a).	 Let	 us
assume,	then,	that	(αβ)δ	=	αβδ	for	every	δ	<	γ.
i) 	 Suppose	first	that	γ	is	a	nonlimit	ordinal,	γ	=	δ	+	1;	then	by	10.12(b),	 the	hypothesis	of	induction,

and	10.16,	we	have

ii) 	 Next,	we	shall	suppose	that	γ	is	a	limit	ordinal	and	we	will	prove	the	two	inequalities	(a)	(αβ)γ	 	αβγ

and	(b)	αβγ	 	(αβ)γ.



But	if	δ	<	γ,	then	βδ	<	βγ,	so	by	10.14(i),	αβδ	<	αβγ	;	it	follows	that	αβγ	is	an	upper	bound	of	{αβδ	:	δ	<
γ},	so	(αβ)γ	 	αβγ.

b)	 If	 γ	 is	 a	 limit	 ordinal,	 then	 (see	 Exercise	 6,	 Exercise	 Set	 9.3)	 βγ	 is	 a	 limit	 ordinal;	 thus	 by
10.12(c),

Now	if	δ	<	βγ,	then	by	9.18,	δ	=	βξ	+	ε,	where	ξ	<	γ	and	ε<	β;	thus

Now	ξ	<	γ	and	γ	is	a	limit	ordinal,	so	ξ	+	1	<	γ	;	thus,	by	the	hypothesis	of	induction	of	10.14(i),

Thus,	using	10.14(i)	once	again,	αδ	<	α	β(ξ+1)	<	(αβ)	γ.	It	follows	that	(αβ)γ	is	an	upper	bound	of	{αδ	:	δ
<	βγ},	so	αβγ	 	(αβ)γ.	

Note	that	by	10.12(c),	2ω	=	sup{2n	:	n	<	ω}=	ω.	We	noted	in	the	preceding	chapter	that	the	“usual”
arithmetic	laws	do	not	all	apply	to	 transfinite	ordinal	numbers;	 in	particular,	 the	commutative	law	for
multiplication	does	not	hold,	nor	does	the	right	distributive	law.	As	we	shall	now	see,	the	law	(αβ)γ	=	αγ

βγ	does	not	apply	generally	to	ordinal	numbers.

10.18	Example

i) 	 (2	·	2)ω	=	4ω	=	ω	because	4ω	=	sup{4n	:	n	<	ω}=	ω.

ii) 	 2ω2ω	=	ωω	=	ω2.	Since	ω	<	1,	it	follows	by	9.16(v)	that	ωω	>	ω1	=	ω;	thus	(2	·	2)ω	≠	2ω2ω.

EXERCISES	10.2

1. 	 Prove	the	following:

a) 	 If	γ	is	a	limit	ordinal	and	α	>	1,	then	αγ	is	a	limit	ordinal.

b) 	 If	α	is	a	limit	ordinal	and	γ	≠	0,	then	αγ	is	a	limit	ordinal.
2. 	 Prove	that	for	any	ordinals	α	>	1,β,	and	γ,	αβ	=	αγ	⇒	β	=	γ.
3. 	 Use	10.5,	10.9,	and	10.12	to	prove	that	for	any	finite	ordinal	n.

a) 	 n	+	ω	=	ω,	b)	nω	=	ω,	c)	nω	=	ω.
4. 	 Use	induction	to	prove	that	for	every	ordinal	number	β,	2β	 	β.	Consider	that	for	every	α>	0	and	β,

αβ	 	β.
5. 	 Prove	that	if	α>	1	and	β	≠	0,	then	αβ	 	αβ.



6. 	 Prove	 that	 if	α	 is	 a	 limit	 ordinal	 and	 p	 and	q	 are	 finite	 ordinals,	 then	 (αp)q	 =	 αqp.	 [Hint:	 Use
Exercise	8,	Exercise	Set	9.3.]

7. 	 Let	a	limit	ordinal	γ	be	called	simple	if	it	cannot	be	written	γ	=	δ	+	ω	for	any	ordinal	δ.	Prove	that	γ
is	simple	if	and	only	if	∀ε<	γ,	there	exists	a	limit	ordinal	λ	ε	<	λ	<	γ.

8. 	 If	α	 is	 a	 denumerable	 ordinal	 (that	 is,	 if	 #α	 =	 ),	 use	 9.8	 to	 prove	 that	 αω	 is	 denumerable.
Conclude	that	the	ordinals	ω,	ω2,	…,	ωn,	…	(n	finite)	are	all	denumerable.

9. 	 a)	Let	{γi	:	i	∈	I}	be	a	set	of	ordinals;	prove	that

[Use	9.25	and	9.26(ii).]
b) 	 Prove	 that	 if	 {γn	 :	n	∈	α}	 is	 a	 set	 of	 denumerable	 ordinals,	where	α	 is	 a	 denumerable,	 then

sup{γn	:	n	∈	α}	is	a	denumerable	ordinal.	Note:	It	follows	immediately	from	Exercises	2	and	9,
Exercise	Set	8.5	that

c) 	 Use	the	result	of	Exercise	8	above	to	prove	that	ωω	is	a	denumerable	ordinal.	(Note	that	ωω	=
sup{ωn	:	n	∈	ω}.)

d) 	 Conclude	similarly	that	 ,	 ,	etc.,	are	denumerable	ordinals.

10. 	 Prove	that	if	α	and	β	are	denumerable	ordinals,	then	αβ	is	a	denumerable	ordinal.	[Use	9(ii)	above.]

3	NORMAL	FORM

It	 is	 a	 well-known	 fact	 of	 elementary	 number	 theory	 that	 every	 natural	 number	 n	 has	 a	 uniquely
determined	decimal	representation.	That	is,	given	n,	there	exist	unique	natural	numbers	k,	m0,m1,	…,	mk
(each	mi	<	10)	such	that

The	decimal	representation	of	n	is	also	called	its	representation	with	base	10;	it	can	easily	be	shown	that
every	natural	number	n	also	has	a	unique	representation	with	base	b,	for	any	b	>	1.
The	 idea	 of	 giving	 every	 number	 a	 representation	 with	 base	 b	 can	 easily	 be	 extended	 to	 ordinal

numbers	generally.	In	the	sequel	we	will	only	consider	base	ω,	but	it	should	be	clear	to	the	reader	that
any	other	base	will	do.

10.19	Definition	Let	γ	be	an	ordinal	number;	suppose	there	are	nonzero	natural	numbers	a1,	…,	an	and
ordinal	α1	>	α2	>	…	>	αn	such	that



Then	10.20	is	called	a	normal	form	representation	of	γ.

10.21	Theorem	Every	ordinal	γ	≠	0	has	a	normal	form	representation.

Proof.	The	proof	will	be	by	induction	on	γ.	If	γ	=	1,	then	γ	=	ω01	is	a	normal	form	representation	of	γ.
Now	assume	the	theorem	is	true	∀ρ	<	γ.	Let	A	={μ	:	ωμ	>	γ};	A	is	nonempty,	as	may	easily	be	seen	by
using	Exercise	4,	Exercise	Set	10.2.	Thus	A	has	a	least	element	ν;	ων	>	γ.	Suppose	ν	is	a	limit	ordinal,
ων	=	sup{ωδ	:	δ	<	ν}.	For	each	δ	<	ν,ωδ	 	γ	because	ν	is	the	least	element	of	A;	thus	γ	is	an	upper	bound
of	{ωδ	:	δ	<	ν},so	ων	 	γ.	This	is	contrary	to	our	choice	of	ν,	hence	ν	=	α1	+	1	for	some	ordinal	α1.

By	9.19,	 ,	where	 ;	clearly	ξ	<	ω,	for	if	ξ	 	ω	then

which	 is	 impossible	 by	 9.14(i).	 It	 follows	 that	 ξ	 is	 a	 natural	 number	 a1,so	 γ	 =	 ,	 where	
.	By	the	hypothesis	of	induction,	there	exist	nonzero	natural	numbers	a2,	…,	an	and	ordinals

α2	>	…	>	αn	such	that

clearly	α1	>	α2,	for	α1	 	α2,	then

which	is	false	because	 .	Thus,

where	a1,	…,	an	are	nonzero	natural	numbers	and	α1	>	…	>	αn.	

We	will	prove	next	that	the	normal	form	representation	of	γ	is	unique.

10.22	Lemma	If	 	is	a	normal	form	representation	of	 ,

Proof.	By	10.19,	αi	<	α1	for	i	=	2,	…,	n;	thus	 	for	i	=	2,	…,	n.	Thus,

10.23	Theorem	The	normal	form	representation	of	any	ordinal	γ	is	unique.



Proof.	Suppose	 ,	where	a1,	…,	an,	b1,	…,	bm	are	nonzero	natural	numbers,	α1	>	α2
>	…	>αn	and	β1	>	…	>	βm.	Let	us	write

thus,

Suppose	α1	<	β1;	then	α1	+	1	 	β1,	so

But	by	10.22,	 ,	so	we	have	a	contradiction.	Analogously,	we	cannot	have	β1	<	α1,	hence	α1	=
β1.	Thus,

Now	suppose	a1	<	b1,	hence	a1	+	1	 	b1;	then

that	is,

Thus

This	 gives	 us	 ,	 hence	 .	 But	 this	 is	 impossible,
for	α2	<	α1,	hence	 ,	so	by	10.22,	 	 .	Consequently,	we	cannot	have	a1	<b1;
analogously,	we	cannot	have	b1	<a1,	so	a1	=	b1.
Thus,	 ,	so	ρa	=	ρb.	By	induction,	we	may	now	assume	that	the	normal	form

representation	of	ρa	=	ρb	is	unique,	hence	α2	=	β2,	…,	αn	=	βn,	a2	=	b2,	…,	an	=	bn.	

The	theorem	which	follows	makes	it	easy	to	add	and	multiply	ordinal	numbers	when	they	are	written
in	normal	form.

10.24	Theorem

i) 	 If	α	<	β,	then	ωαa	+	ωβb	=	ωβb.
ii) 	 If	 	is	the	normal	form	representation	of	γ	and	if	β	≠	0,	then	
iii) 	 If	 	 is	 the	 normal	 form	 of	 γ	 and	 if	 b	 is	 finite,	 then	



.

Proof

i) 	 If	α	<	β,	then	by	9.15,	β	=	α	+	δ	for	some	δ	>	0.	Thus,

Since	a	is	finite,	it	is	clear	that	a	+	ωδb	=	ωδb	(see,	for	example,	Exercise	3,	Exercise	Set	10.2).	Thus

ii) 	 It	can	be	proven	very	easily	that	nω	=	ω	for	every	n	∈	ω	(see,	for	example,	Exercise	3,	Exercise	Set
10.2).	It	follows	that	nωβ	=	ωβ	for	every	β	>	0	and	n	∈	ω.	Indeed,	for	β	=	1	this	has	just	been	given:
if	β	>	1,	then	by	9.14(i),	β	=	1	+	δ	for	some	δ	>	0,	so	we	have

Thus

On	the	other	hand,	 ,	hence	 .
iii) 	 The	proof	is	by	finite	induction	on	b.	If	b	=	1,	there	is	nothing	to	prove.	Now	suppose	(iii)	holds	for

b,	and	let	us	prove	it	for	b	+	1.	We	have

by	 the	 hypothesis	 of	 induction.	 The	 reader	 should	 note	 that	 in	 the	 above	 sum,	 the	 terms	
	all	precede	the	term	 ,	and	that	α1	>	α2,	…,	α1	>	αn;	 thus,	by	10.24(i),	 they

disappear	from	the	sum.	Thus,



When	adding	or	multiplying	ordinal	numbers	in	normal	form,	it	is	also	useful	to	remember	that	if	β	is
an	infinite	ordinal	and	n	is	finite,	then	n	+	β	=	β	(see,	for	example,	Exercise	3,	Exercise	Set	10.2).

10.25	Example	Let

We	shall	form	the	sums	α	+	β	and	β	+	α	and	the	products	αβ	and	βα.

Note	that	the	terms	 	precede	 ,	so	by	10.24(i)	they	disappear	from	the	sum.

EXERCISES	10.3

1. 	 In	each	of	the	following,	compute	α	+	β,	β	+	α,	αβ	and	βα.

a) 	 α	=	ωω32	+	ωω4	+	ω105;	β	=	ωω+17	+	ω29	+	14.

b) 	 α	=	ωωω9	+	ωω7	+	ω2;	β	=	ωω58	+	ω72	+	1.
c) 	 α	=	ωω3	22	+	ωω184	+	71;	β	=	ωω2+312	+	100.
2. 	 Let	γ	be	an	ordinal	number;	prove	 that	γ	 is	 irreducible	 (See	Exercise	2,	Exercise	Set	9.3.)	 if	and

only	if	γ	=	ωβ	for	some	ordinal	β.
In	each	of	the	following	exercise,	we	will	assume	that

is	the	normal	form	representation	of	γ
3. 	 Prove	that	γ	is	a	limit	ordinal	if	and	only	if	αn	≠	0.
4. 	 Let	us	define	the	magnitude	of	γ	to	be	the	ordinal	α1.	Prove	that	α	+	β	=	β	if	and	only	if	magnitude

α<	magnitude	β.
5. 	 Prove	that	ωγ	=	γ	if	and	only	if	α1,	…,	αn	are	all	infinite	ordinals.	Conclude	that	ωγ	=	γ	if	and	only



if	γ	=	ωωβ	for	some	ordinal	β.
6. 	 Let	γ	be	a	limit	ordinal	and	let	b	be	a	finite	ordinal.	Use	finite	induction	on	b	to	prove	that

7. 	 Use	the	result	of	Exercise	6	above	to	compute	α6	and	β15,	where	α	and	β	are	given	in	Exercise	1(a).

4

Cantor	 investigated	 the	 properties	 of	 an	 interesting	 class	 of	 limit	 ordinals	 which	 he	 called	 epsilon
numbers.	These	numbers	shed	some	light	on	the	structure	of	the	well-ordered	class	OR	and	have	useful
applications	in	analysis	and	elsewhere.	We	shall	give	a	brief	review	of	their	properties	in	this	section.

10.26	Definition	Let	α	be	an	ordinal	number;	α	is	called	an	epsilon	number	if	α	=	ωα.

It	is	immediate	that	every	epsilon	number	is	necessarily	a	limit	ordinal.	Now,	the	first	question	we	are
led	to	ask	is:	Are	there	any	epsilon	numbers?	To	answer	this	question,	we	first	need	a	lemma.

10.27	Lemma	Let	{βi	:	i	∈	I}	be	a	set	of	ordinals,	and	let	β	=	sup{βi	:	i	∈	I};	then	αβ	=	sup{αβi	:	i	∈	I};

Proof.
i) 	 Suppose	that	β	=	βi	for	some	i	∈	I.	Thus,	 	It	follows	that

ii) 	 Now	suppose	that	∀i	∈	I,	β	≠	βi;	β	must	be	a	limit	ordinal,	for	if	β	=	δ	+	1,	then	∃i	∈	I	βi	>δ,so	βi	=
δ	+	1	=	β,	which	is	contrary	to	our	assumption.	Now	αβ	=	sup{αγ	:	γ	<	β};	 for	each	 i	∈	 I,	βi	<β,
hence	αβi	<	αβ;	thus	 .	On	the	other	hand,	if	γ	<	β,	then	βi	>γ	for	some	i	∈	I,	hence

.	Thus

Consequently,

We	now	 return	 to	 the	question:	Are	 there	any	epsilon	numbers?	The	answer	 is	 “yes,”	 and	 this	 can
easily	be	shown	as	follows:

We	define	a	function	f0	:	ω	→	OR	as	follows:

The	existence	of	f0	is	guaranteed	by	the	finite	recursion	theorem,	6.8.	Clearly,	we	have



Now,	let	ε0	=	sup{f	(n)	:	n	∈	ω};	we	claim	that	ε0	is	an	epsilon	number.	Indeed,	by	10.27,

Thus	there	is	at	least	one	epsilon	number,	namely	ε0;	we	can	easily	show,	in	fact,	that	ε0	is	the	least
epsilon	number.

10.29	ε0	is	the	least	epsilon	number.

Proof.	 	 	 If	α	 is	 an	epsilon	number,	 then	 f0(0)	=	1	 	α	 (for	 clearly	 0	 is	 not	 an	 epsilon	 number).	Now
suppose	that	f	(n)	 	α;	then	f(n	+	1)	=	ωf	(n)	 	ωα	=	α.	 It	 follows	by	finite	 induction	that	 f	 (n)	 	α	 for
every	n	∈	ω;	thus,	ε0	 	α.	

Is	ε0	the	only	epsilon	number	or	are	there	others?	It	is	easy	to	answer	this	question,	for	the	method	we
used	to	construct	ε0	may	be	used	to	construct	infinitely	many	other	epsilon	numbers.	Indeed,	we	have
the	following:

10.30	If	α	is	any	ordinal	number,	let	fα	be	the	function	defined	inductively	by	the	pair	of	conditions

and	let	S(α)	=	sup{fα(n)	:	n	∈	ω}.	Then	S(α)	is	an	epsilon	number;	furthermore,	S(α)	is	the	least	epsilon
number	greater	than	α.

Proof.	By	10.27,

Clearly	α	>	S(α).	Now	let	γ	be	an	epsilon	number	such	that	α	>	γ	;	then	fα(0)	=	α	+	1	 	γ.	Furthermore,
assuming	that	fα(n)	 	γ,	we	have

It	 follows,	by	 finite	 induction,	 that	 fα(n)	 	γ	 for	 every	n	∈	ω,	 hence	S(α)	 	γ.	 Thus	 S(α)	 is	 the	 least
epsilon	number	greater	than	α.

It	is	easy	to	see	that	ε0	is	S(0);	thus,	the	first	few	epsilon	numbers	are	S(0),	S(1),	S(2),	S(3),	etc.	The
next	question	we	are	led	to	ask	is:	Are	there	any	epsilon	numbers	greater	than	all	the	S(n),	(n	∈	ω)?	The
question	is	easily	answered	in	the	following	theorem.



10.31	Let	{αi	:	i	∈	I}	be	a	set	of	epsilon	numbers;	if	β	=	sup{αi	:	i	∈	I},	then	β	is	an	epsilon	number.

Proof.	By	10.27,

Let	ε	:	OR	→	OR	be	the	function	defined	recursively	as	follows	[we	agree	to	write	εi	for	ε(i)]:

10.32

10.33	ε	is	an	isomorphism	from	OR	to	the	class	of	all	the	epsilon	numbers.

Proof.			To	prove	that	εβ	is	an	epsilon	number	for	every	β	∈	OR,	we	argue	by	induction:
i) 	 We	have	already	seen	that	ε0	is	an	epsilon	number.

ii) 	 Now	assume	that	εα	is	an	epsilon	number	for	every	α	<	β.	If	β	is	a	nonlimit	ordinal,	β	=	δ	+	1,	then

is	an	epsilon	number	by	10.30.	If	β	is	a	limit	ordinal,	then

is	an	epsilon	number	by	10.31.	Thus,	∀β	∈	OR,	εβ	is	an	epsilon	number.	It	is	immediate	that
ε	is	a	strictly	increasing	function,	hence	it	is	injective.	To	show	that	the	range	of	ε	is	the	class
E	of	the	epsilon	numbers,	let	δ	∈	E	and	let	εγ	be	the	least	εζ	such	that	δ	<	εζ	.	Now	γ	cannot
be	a	limit	ordinal,	for	if	it	is,	then	by	10.32,

hence	(because	δ	<	εγ)	∃π	<	γ	δ	<	επ,	which	contradicts	our	choice	of	γ.	Thus,	γ	is	a	nonlimit
ordinal,	γ	=	π	+	1;	by	the	choice	of	γ,	επ	 	δ	>	επ+1,	so	by	10.30,	δ	=	επ.	The	fact	that	ε	is	an
isomorphism	follows	now	by	4.48.

It	 turns	out,	 then,	 that	 there	 are	 “as	many”	epsilon	numbers	 as	 there	 are	ordinals.	The	class	of	 the
epsilon	numbers	is



as	α	ranges	over	all	the	ordinals.
A	few	easy	arithmetic	rules	simplify	computations	which	involve	epsilon	numbers.	They	are	given	in

the	next	theorem.

10.34	Let	ε	designate	an	arbitrary	epsilon	number.	Then
i) 	 If	α	>	ε,	then	α	+	ε	=	ε.
ii) 	 If	α	>	ε,	then	αε	=	ε.

iii) 	 If	α	>	ε,	then	αε	=	ε.

Proof.			Let	α	>	ε,	and	write	α	in	normal	form:

Thus	 .	 Since	 every	 epsilon	 number	 is	 a	 limit	 ordinal,	 	 so	 by
10.34(ii),	(α1	+	1)ε	=	ε.	Thus,	finally,

But	we	always	have	αε	 	ε	(see	Exercise	4,	Exercise	Set	10.2.),	so	αε	=	ε.

It	is	worth	noting	that	α	is	an	epsilon	number	if	and	only	if	α	satisfies	the	following	condition:

10.35				If	β	>	α	and	γ	>	α,	then	βγ	>	α.

The	proof	of	this	statement	is	left	as	an	exercise	for	the	reader	(Exercise	4	below).

EXERCISES	10.4

1. 	 Prove	that	if	α	is	an	epsilon	number,	then	α	is	a	limit	ordinal.
2. 	 If	α	is	an	epsilon	number,	prove	that	βω

α
	=	βωα	for	every	ordinal	number	β.



3. 	 Prove	that	if	α	is	an	infinite	ordinal	and	αβ	=	β,	then	β	is	an	epsilon	number.
4. 	 a) 	 Prove	that	if	α(α	>	ω)	satisfies	10.35,	then	α	is	a	limit	ordinal.

b) 	 Prove	that	α(α	>	ω)	is	an	epsilon	number	if	and	only	if	α	satisfies	10.35.
5. 	 Prove	that	α(α	>	ω)	is	an	epsilon	number	if	and	only	if	2α	=	α.

5	INACCESSIBLE	ORDINALS	AND	CARDINALS

Inaccessible	 ordinals	 and	 cardinals	 play	 an	 important	 role	 in	 current	 investigations	 on	 the	 axiomatic
foundations	 of	 set	 theory.	 They	 also	 have	 applications	 in	 functional	 analysis,	 topology,	 algebra,
mathematical	logic	and	other	areas	of	advanced	mathematics.	In	this	section	we	will	introduce	them	and
give	a	few	of	their	basic	properties.
If	α	is	any	ordinal	numbers,	let	Z(α)	designate	the	class	of	all	the	ordinals	which	are	equipotent	with

α;	 the	 least	element	of	Z(α)	 is	 called	 the	 initial	ordinal	belonging	 to	α,	 and	 is	denoted	by	 Io(α).	 It	 is
immediate	that

10.36			∀α	∈	OR,	Io(α)	 	α,

and

10.37			Io(α)	is	the	largest	initial	ordinal	less	than	or	equal	to	α.

(To	prove	10.37,	note	that	if	Io(α)	>	γ	 	α,	then	Io(α)	⊆	γ	⊆	α,	hence	Io(α)	≈	α	≈	γ.)	We	have	seen	that
the	class	of	all	the	initial	ordinals	satisfies	conditions	K1	and	K2	of	the	axiom	of	cardinality,	hence	we
are	justified	in	making	the	following	definition	(see	9.33):

By	a	cardinal	number	we	mean	an	initial	ordinal;	thus,	the	class	CD	of	all	the	cardinal	numbers	is
the	class	of	all	the	initial	ordinals.

We	have	noted	that	if	α	is	any	ordinal	number,	it	is	common	practice	to	write	 α	=	ωα,	treating	 α	as	a
cardinal	and	ωα	as	an	ordinal.	If	α	is	any	ordinal	number,	it	is	easy	to	see	that

10.38

It	follows	easily	from	10.36,	10.37,	10.38	that	if	A	is	any	well-ordered	set,

10.39

(To	prove	10.39,	 set	 γ	 =	 	 hence	 Io(γ)	=	#γ	 =	 #A;	 the	 simple	details	 are	 left	 as	 an	 exercise	 for	 the
reader.)
We	will	now	begin	the	process	of	defining	inaccessible	ordinals	and	cardinals.



10.40	Definition		Let	A	be	a	well-ordered	class	and	let	B	⊆	A;	we	say	that	B	is	a	cofinal	subclass	of	A	if

10.41	Lemma	 If	C	 is	 a	 cofinal	 subclass	 of	B	 and	B	 is	 a	 cofinal	 subclass	 of	A,	 then	C	 is	 a	 cofinal
subclass	of	A.

Proof.			Let	x	∈	A;	then	∃y	∈	B	∈	y	>	x;	hence	∃z	∈	C	∋	z	>	y,	so	z	>	x.

10.42	Lemma	Let	α	be	an	ordinal	and	let	B	⊆	α;	B	is	a	cofinal	subset	of	α	if	and	only	if	sup	B	=	α.

Proof.	 	 	 The	 reader	 should	 note	 that	 by	 9.26(ii)	 and	9.24,	 every	 element	 of	 an	 ordinal	 number	 is	 an
ordinal	number,	and	γ	>	α	iff	γ	∈	α.	
i) 	 Let	B	be	a	cofinal	subset	of	α;∀x	∈	B,	x	∈	α,	that	is,	x	<	α,	so	α	is	an	upper	bound	on	B.	Now	if	γ	<
α,	then	γ	∈	α,	so	by	10.40,	∃β	∈	B	∋	β	>	γ,	so	γ	is	not	an	upper	bound	on	B;	this	proves	that	α	is	the
least	upper	bound	of	B.

ii) 	 Suppose	sup	B	=	α;	if	γ	∈	α,	that	is,	γ	<	α,	then	(because	γ	is	not	an	upper	bound	of	B)	∃β	∈	B	∋	β	>
γ.	Thus	B	is	a	cofinal	subset	of	α.	

10.43		Definition			Let	α	be	a	limit	ordinal;	by	the	cofinality	of	α	we	mean	the	least	ordinal	β	such	that	α
has	a	cofinal	subset	similar	to	β.	If	β	is	the	cofinality	of	α,we	write	β	=	cf	(α).

10.44	If	β	=	cf	(α)	for	some	α	∈	OR,	then	β	=	cf	(β).

Proof.			Let	γ	=	cf	(β);	now	α	has	a	cofinal	subset	similar	to	β	and	β	has	a	cofinal	subset	similar	 to	γ,
hence	by	10.41,	α	has	a	cofinal	subset	similar	to	γ.	But	β	is	the	least	ordinal	γ	such	that	α	has	a	cofinal
subset	similar	to	γ,	so	β	 	γ	;now	γ	&	 	β	because	γ	is	similar	to	a	subset	of	β,so	β	=	γ.	

10.45	Let	β	be	a	limit	ordinal;	if	β	=	cf	(β),	then	β	is	an	initial	ordinal.

Proof.			Let	ωα	=	Io(β),	and	let	f	be	a	bijective	function	f	:	ωα	→	β;	let	A	=	{γ	∈	ωα	:∀δ	<	γ,	f(δ)	<	f(γ)}.
We	will	show	first	that	 	is	a	cofinal	subset	of	β.	Indeed,	if	ν	∈	β,	then	(because	β	is	a	limit	ordinal
and	a	 limit	ordinal	has	no	greatest	element),	 there	are	elements	ξ	∈	ωα	 f(ξ)	>	ν.	 (Remember	 that	 f	 is
bijective!)	Let	π	be	the	least	such	element;	then	∀ξ	<	π,	f(ξ)	 	ν	<	f(π),	hence	π	∈	A;	this	proves	that	∀ν
∈	β,	∃π	∈	A	∋	f(π)	>	ν;	thus	 	is	a	cofinal	subset	of	β.
Because	of	the	way	we	have	defined	A,	it	is	easy	to	see	that	f[A]	:	A	→	 	is	an	isomorphism;	thus,

if	δ	=	 ,	then	δ	is	similar	to	a	cofinal	subset	of	β,	so	cf	(β)	 	δ.	But	A	is	a	subset	of	ωα,so	δ	 	ωα;	thus,
β	=	cf	(β)	 	ωα.	But	ωα	is	the	least	ordinal	equipotent	with	β,	so	ωα	 	β.	Thus	ωα	=	β,	so	β	is	an	initial
ordinal.	

10.46	A	limit	ordinal	β	is	called	regular	if	cf	(β)	=	β.

It	follows,	by	Lemma	10.44,	that	the	class	of	the	regular	ordinals	is	the	range	of	the	function	cf	:	OR
→	OR.	By	Theorem	10.45,	every	 regular	 ordinal	 is	 an	 initial	 ordinal	ωα.	 Thus,	 in	 particular,	 every



regular	ordinal	is	a	cardinal.

10.47	If	ωα	is	a	regular	ordinal,	then	 α	is	called	a	regular	cardinal.

The	 significance	 of	 regular	 cardinals	 in	 set	 theory	 will	 become	 apparent	 once	 we	 have	 given	 an
alternative	definition	for	them.	We	begin	with	the	following	two	lemmas:

10.48	Let	{γi	:	i	∈	I}	be	a	set	of	ordinals,	and	let	#γi	= δi	for	each	i	∈	I.	If	ωα	=	sup{γi	:	i	∈	I},	then	α	=
sup{δi	:	i	∈	I}.

Proof.		If	ωα	=	sup{γi	:	i	∈	I},	then,	for	each	i	∈	I,	γi	 	ωα,	hence	by	10.39,	 δi	=	#γi	 	 α,	so	by	9.22,	δi
	α.	Now	suppose	that	for	every	i	∈	I,	δi	<	π;	then	∀i	∈	I,	#γi	= δi	<	 π,	hence	by	10.39	γi	>	ωπ.	But
ωα	=	sup{γi	:	i	∈	I},	so	ωα	 	ωπ,	hence	by	9.22,	α	 	π.	It	follows	that	α	is	the	least	upper	bound	of	{δi	:	i
∈	I}.

10.49	Let	{δi	:	i	∈	I}	be	a	set	of	ordinals,	and	let	α	be	any	ordinal	such	that	#	I	<	 α.	Then	 =	 α

if	and	only	if	α	=	sup{δi	:	i	∈	I}.

Proof.		If	I	is	finite,	the	result	follows	trivially;	thus,	we	may	assume	I	is	infinite.
i) 	 Suppose

Then	for	each	j	∈	I,

hence	δj	 	α.	Thus	α	is	an	upper	bound	of	{δi	:	i	∈	I}.	Before	going	on,	we	note	that	there	exists	an	i
∈	I	such	that	#I	<	 δi	;	for	if	 δi	 	#I	for	every	i	∈	I,	then	by	8.19, 	 	(#I)(#I)	=	#I< α,	which

is	contrary	to	our	assumption.	Now	suppose	that	δi	<	π	for	every	i	∈	I.	Then	by	8.19,

But	we	have	just	seen	that	for	some	i	∈	I,	#I	<	 δi,	hence	#I	 	 π	;	thus	(#I) π	= π.	It	follows	that	

	 	 π,	that	is,	 α	 	 π,	so	by	9.22,	α	 	π.	We	have	proved	that	α	is	the	least	upper	bound	of

{δi	:	i	∈	I}.
ii) 	 Suppose	α	=	sup{δi	:	i	∈	I}.	For	each	i	∈	I,	δi	 	α,	so	by	9.22,	 .	Thus	by	8.19,



Now	let	 .	Then	for	each	j	∈	I,

hence	by	9.22,	δj	 	δ.	But	α	=	sup	δi,so	α	 	δ,	hence

Thus,	finally,

10.50	Theorem	 	is	a	regular	cardinal	if	and	only	if	it	satisfies	the	following	condition:

10.51	If	{ai	:	i	∈	I}	is	any	set	of	cardinals	such	that	ai	<	 	for	each	i	∈	I	and	#I	< ,	then	 .

Proof
i) 	 Suppose	 	is	a	regular	cardinal	and	{ai	:	i	∈	I}	is	a	set	of	cardinals	such	that	ai	<	 	for	each	i	∈	I

and	#I	<	 .	We	may	assume	the	ai	are	all	infinite	cardinals,	for	any	finite	αi	among	them	would	not
affect	our	result;	thus,	we	may	set	ai	=	 	for	each	i	∈	I.	We	now	have	 	<	 	for	each	i	∈	I	and	#I
<	 ,	so	by	8.19,	 .	Now	if	 ,	then	by	10.49,	α	=	sup{δi	:	i	∈	I},
hence	by	9.22,

so	by	10.42,	{ωδi	:	i	∈	I}	is	a	cofinal	subset	of	ωα.	But	this	is	impossible,	for	the	following	reason:
#I	> ,	hence

so	by	10.39,	 	which	is	in	contradiction	with	the	fact	that	ωα	is	a	regular	ordinal.

ii) 	 Conversely,	suppose	 	satisfies	10.51,	and	let	{γi	:	i	∈	I}	be	a	cofinal	subset	of	ωα,	that	is,

[We	will	assume	that	the	γi	are	all	distinct,	hence	#{γi	:	i	∈	I}	=	#I.]	Set	 	=	#γi	for	each	i	∈	I.	Then,
by	10.48,	α	=	sup{δi	:	i	∈	I},	hence	by	10.49,



Thus,	by	10.51,	we	must	necessarily	have	#I	 	 ,	so	by	10.39,

This	proves	that	any	cofinal	subset	of	ωα	has	ordinality	 	ωα,so	ωα	is	a	regular	ordinal.

10.52	Corollary	If	α	is	a	nonlimit	ordinal,	then	 	is	a	regular	cardinal.

Proof.	If	α	=	δ	+	1,	then	set	ai	=	 	for	each	i	∈	I,	where	#I	=	 .	Then	by	8.17,

Thus,	by	10.50,	 	is	a	regular	cardinal.

10.53	Definition	Let	a	 be	 a	 cardinal	 number;	a	 is	 called	 an	 inaccessible	 cardinal	 (more	 precisely,	 a
strongly	inaccessible	cardinal)	if
i) 	 a	is	a	regular	cardinal,	and

ii) 	 b	<	a	and	c	<	a	⇒	bc	<	a.

ωα	is	called	an	inaccessible	ordinal	if	 	is	an	inaccessible	cardinal.

In	view	of	Theorem	10.50,	an	infinite	cardinal	number	b	is	inaccessible	if	and	only	if	it	satisfies	the
following	pair	of	conditions:
i) 	 If	{ai	:	i	∈	I}	is	a	set	of	cardinals	such	that	ai	<	b	for	each	i	∈	I	and	#I	<	b,	then	

ii) 	 If	a	<	b	and	c	<	b,	then	ac	<	b.

In	other	words,	an	infinite	cardinal	number	b	is	inaccessible	if	and	only	if	it	cannot	be	obtained	either	as
a	 sum	of	 fewer	 than	b	 cardinals	 smaller	 than	b,	 or	 by	 raising	a	 cardinal	 smaller	 than	b	 to	 a	 power
smaller	than	b.	This	explains	the	use	of	the	word	“inaccessible.”	It	can	be	shown,	furthermore,	that	if	b
is	an	inaccessible	cardinal,	then	b	cannot	be	obtained	as	a	product	of	fewer	than	b	cardinals	smaller	than
b	(see	Exercise	4,	below).

We	may	call	a	nonempty	set	A	inaccessible	if	it	cannot	be	constructed	from	smaller	sets	by	using	the
set-theoretical	operations	of	union,	intersection,	product,	or	power	set.	To	be	technical,	this	means	that
i) 	 A	is	not	equal	to	 	for	any	set	of	sets	{Bi	:	i	∈	I},	where	{Bi	:	i	∈	I}	 	A	and	Bi	 	A

for	each	i	∈	I	;
ii) 	 A	is	not	the	power	set	of	any	set	B	such	that	B	 	A.

For	example,	if	we	begin	with	the	empty	set	and	start	to	construct	sets	such	as



and	 if	 we	 proceed	 to	 construct	 larger	 and	 larger	 sets	 from	 these	 by	 using	 the	 operations	 of	 union
(including	infinite	union),	product	(including	infinite	product)	and	power	set,	we	will	never	end	up	with
an	 inaccessible	 set.	 Now,	 in	 view	 of	 what	 we	 have	 said	 in	 the	 preceding	 paragraph,	 it	 is	 clear	 that
inaccessible	cardinals	are	the	cardinals	of	inaccessible	sets.
A	rather	obvious	question	which	arises	in	axiomatic	set	theory	is,	“Are	there	any	inaccessible	sets?”

In	other	words,	do	inaccessible	cardinals	exist?	The	existence	of	inaccessible	cardinals	cannot	be	proved
by	means	of	the	axioms	we	have	already	introduced;	however,	a	new	axiom	may	be	added	to	set	theory,
called	the	axiom	for	inaccessible	cardinals,	asserting	their	existence.	It	has	been	proven	in	recent	years
that	this	axiom	is	not	a	consequence	of	the	other	axioms	of	set	theory;	whether	it	is	consistent	with	the
other	axioms	of	set	theory	is	still	an	open	question.
The	following	definition	is	useful:

10.54	Definition	 	is	called	a	weakly	inaccessible	cardinal	if
i) 	 	is	a	regular	cardinal,
ii) 	 α	is	a	limit	ordinal.

By	Corollary	10.52,	if	α	is	a	nonlimit	ordinal,	then	 	is	necessarily	regular;	thus,	it	is	natural	to	ask
whether	 there	 are	 any	 regular	 cardinals	 	 where	 α	 is	 a	 limit	 ordinal.	 Again,	 we	 cannot	 prove	 the
existence	of	such	cardinals	from	the	usual	axioms	of	set	theory,	but	their	existence	follows	immediately
from	the	axiom	for	inaccessible	cardinals;	indeed,	we	have:

10.55	Theorem	If	a	is	strongly	inaccessible,	then	a	is	weakly	inaccessible.

Proof.	Suppose	 	is	strongly	inaccessible,	and	assume	α	is	a	nonlimit	ordinal,	α	=	δ	+	1.	By	8.16,

which	is	contrary	to	our	hypothesis	that	 	is	strongly	inaccessible;	thus	α	is	a	limit	ordinal.	

There	is	another	interesting	connection	between	strong	and	weak	inaccessibility:

10.56	Theorem	Assuming	the	generalized	continuum	hypothesis	to	be	true,	if	a	is	weakly	inaccessible
then	a	is	strongly	inaccessible.

Proof.	Assume	the	generalized	continuum	hypothesis,	let	 	be	weakly	inaccessible,	and	suppose	 .
By	9.22,	β	>	α,	and	since	α	is	a	limit	ordinal,	β	+	1	<	α,so	 	But	by	the	generalized	continuum
hypothesis,	 ,	hence	 	It	follows	(see	Exercise	3,	Exercise	Set	10.5.)	that	 	is	strongly
inaccessible.	

Thus,	if	we	assume	the	generalized	continuum	hypothesis,	 then	the	notions	of	strongly	inaccessible
and	weakly	inaccessible	are	equivalent.



EXERCISES	10.5

1. 	 Prove	10.37	and	10.38.
2. 	 Prove	10.39.
3. 	 Prove	that	a	is	strongly	inaccessible	if	and	only	if

a) 	 a	is	regular,	and

b) 	 ∀b	<	a,	2b	<	a.	[See	Exercise	3,	Exercise	Set	8.4.]
4. 	 Prove	that	if	b	is	an	inaccessible	cardinal,	than	b	satisfies	the	following	condition:

If	{ai	:	i	∈	I}	is	a	set	of	cardinals	such	that	a	<	b	for	each	i	∈	I	and	#I	<	b,	then	

5. 	 Prove	 that	 if	an	 infinite	cardinal	b	 satisfies	 the	condition	 in	Exercise	4,	 then	b	 is	an	 inaccessible
cardinal.



11
Consistency	and	Independence	in	Set	Theory

1	WHAT	IS	A	SET?

Most	textbooks	of	set	theory	begin	by	asking	this	question.	However,	it	is	only	now—	at	this	stage	of
the	 course—that	 it	 is	 possible	 to	 give	 a	meaningful	 answer.	When	Georg	Cantor	 first	 began	writing
about	 sets,	 he	 defined	 a	 set	 to	 be	 any	 collection	of	 definite	 objects.	That’s	 the	way	most	 people	 still
think	of	 sets,	 and	 they’re	not	wrong.	 In	 the	material	world,	 sets	 are	 finite	 collections	of	 objects,	 and
what	is	called	naïve	set	theory	is	perfectly	adequate	and	correct	for	finite	sets.	It	is	only	in	the	case	of
infinite	sets	that	difficulties	make	their	appearance.	People	have	no	experience	with	infinite	collections
of	things,	and	that	is	why	our	intuitions	fall	short.
Cantor	 constructed	 his	 theory	 as	 a	 theory	 of	 infinite	 sets,	 and	 fully	 understood	 that	 they	 are	 very

different	from	finite	sets.	He	saw	no	reason	to	distinguish	sets	in	mathematics	from	arbitrary	collections
of	objects,	because	the	discovery	of	the	famous	“paradoxes”,	or	contradictions,	was	still	decades	away.
Moreover,	the	theory	he	constructed	was	so	beautiful	in	its	clarity	and	simplicity	that	when	we	recollect
it	 today,	 we	 refer	 to	 it	 as	 “Cantor’s	 Paradise”.	 In	 fact,	 when	 the	 earliest	 of	 the	 paradoxes	 were
announced,	nobody	took	them	seriously,	because	it	was	so	comfortable	in	Cantor’s	Paradise	that	nobody
wanted	to	leave.
As	we	have	seen	in	previous	chapters,	in	set	theory	we	can	construct	the	integers,	and	from	them	we

may	define	rational	numbers	as	ordered	pairs	of	integers.	Every	real	number	may	be	identified	with	a
convergent	sequence	of	rational	numbers.	There	is	no	need	to	go	on:	All	of	mathematics,	piece	by	piece,
can	be	constructed	out	of	sets.	Although	sets	are	viewed	differently	today,	it	still	remains	true	that	all	of
mathematics	can	be	built	within	the	framework	of	set	theory.
Axiomatic	set	 theory	 is	not	 for	 the	masses:	 It	 is	a	specialized	branch	of	mathematics	built	on	firm,

solid	foundations,	designed	to	be	used	as	a	framework	for	all	other	mathematical	theories.	The	various
axiomatic	 systems	 of	 set	 theory	 used	 today	 are	 lean	 and	 mean:	 They	 assume	 the	 bare	 minimum
necessary	for	the	construction	of	number	systems,	analysis,	and	mathematics	generally.	To	understand
the	 motivation	 behind	 them,	 you	 must	 keep	 in	 mind	 that	 they	 are	 designed	 to	 be	 minimalist	 and
pragmatic	 in	character:	They	presuppose	 the	absolute	 least	 that	 suffices	 to	get	 their	enterprise	off	 the
ground,	and	are	directed	solely	toward	the	goal	of	constructing	mathematical	models.
The	 class	 OR	 of	 all	 the	 ordinal	 numbers	 is	 indispensable	 in	 mathematics,	 hence	 we	 begin	 by

establishing	 the	 existence	 of	OR.	The	 class	 of	 the	 ordinals	 is	 defined	 recursively	 beginning	with	 the
empty	set	as	follows:

As	noted	in	Chapter	9,	the	class	OR	of	the	ordinals	is	a	proper	class.
Inspired	by	the	simplicity	of	the	class	OR,	Zermelo	defined	a	hierarchy	of	sets	which—he	proposed

—was	adequate	for	carrying	out	all	of	mathematics.	It	is	known	as	the	Cumulative	Hierarchy,	because



its	members	are	arranged	in	successive	levels	indexed	by	the	ordinal	numbers.

Finally,	V	is	defined	to	be	the	union	of	all	the	levels:	
This	 construction	 begins	 with	 just	 one	 set,	 which	 is	 the	 empty	 set.	 Then,	 by	 using	 the	 power	 set

axiom	and	the	axiom	of	unions,	we	build	progressively	larger	sets.	Note	that	these	are	the	only	sets	that
are	guaranteed	to	exist	in	axiomatic	set	theory.	The	essence	of	the	construction	process	is	that	we	begin
at	a	stage	0	with	the	simplest	possible	set,	which	is	the	empty	set,	and	work	upward	stage	by	stage.	At
every	stage,	let	us	say	stage	α	+	1,	the	elements	of	Vα+1	are	all	the	sets	in	Vα	(that	is,	the	subsets	of	Vα).
And	if	α	is	a	limit	ordinal,	then	all	the	elements	of	Vα	are	sets	that	exist	at	the	previous	levels	Vβ	for	β	<
α.	So	the	elements	at	each	level	are	the	sets	that	were	created	at	the	previous	levels.
The	 value	 of	 this	 hierarchy	 is	 that	 it	 classifies	 sets	 according	 to	 their	 complexity,	 that	 is,	 their

“distance”	up	from	the	empty	set.	The	division	of	all	the	sets	into	successive	levels	means	that	you	can
prove	things	by	transfinite	induction,	and	define	objects	using	transfinite	recursion.	The	“distance	of	a
set	from	the	empty	set”	is	called	its	rank	and	defined	as	follows:

11.1	DefinitionThe	rank	of	a	set	A	is	the	least	ordinal	α	such	that	A	∈	Vα.

Zermelo	proposed	that	for	the	purposes	of	mathematics	every	possible	set	is	a	member	of	V,	and	he
called	V	the	universe	of	sets.	In	order	for	this	claim	to	be	plausible,	it	must	be	possible	to	show	that	the
members	of	V	satisfy	all	the	axioms	of	set	theory.	To	do	this,	we	must	first	show	that	the	members	of	V
have	two	essential	properties	which	they	share	(almost)	with	the	ordinals.	The	first	property	is	given	in
the	two	definitions	that	follow:

11.2	DefinitionIf	we	treat	the	membership	relation	∈	as	a	relation	on	a	set	A,	then	an	element	x	∈	A	is
said	to	be	∈-minimal	if	there	is	no	element	y	∈	A	such	that	y	∈	x.

It	is	very	important,	here,	to	distinguish	a	minimal	element	of	A	from	a	least	element	of	A:	The	least
element	is	comparable	with	every	element	of	A.	But	a	minimal	element	is	not.

11.3	DefinitionA	set	A	 is	 said	 to	 be	well-founded	 if	 every	non-empty	 subset	 of	A	 has	 an	∈-minimal
element.

11.4	Remark.Note	that	a	least	element	of	a	set	is	always	minimal,	but	the	converse	is	not	true.	Thus,	if	a
set	A	is	∈-well-ordered	(see	Chapter	9)	then	it	is	well-founded,	but	a	well-founded	set	is	not	necessarily
∈-well-ordered.	If	a	set	A	is	well-founded,	this	fact	has	several	far-reaching	consequences	that	are	very
easy	to	prove:

11.5	TheoremLet	A	be	a	well-founded	set.	Then	the	following	are	true	in	A:
a) 	 For	every	x	∈	A,	x	∉	x.



b) 	 For	any	x,	y	∈	A,	if	x	∉	y	then	y	∉	x.
c) 	 In	A,	there	is	no	infinite	descending	set	of	elements	…	∈	x3	∈	x2	∈	x1	∈	x0.
d) 	 A	is	well-founded	iff	∃x	∈	A	such	that	x	∩	A	=∅.

Proof.For	(c),	the	set	{xi	:	i	∈	ω},	if	it	existed,	would	have	no	minimal	element.
(a) 	 If	there	were	an	x	∈	A	such	that	x	∈	x,	we’d	have	a	descending	sequence	{…x	∈	x	∈	x}.
(b) 	 Here	we	would	have	a	descending	sequence	{…y	∈	x	∈	y	∈	x}.	Finally,	the	proof	of	(d)	is	left	as

an	exercise.	

It	was	mentioned	above	that	in	axiomatic	set	theory,	a	set	is	whatever	can	be	built	up	from	the	empty
set	by	iterating	the	power	set	and	union	steps.	That’s	the	point	of	the	concept	of	well-founded.	The	set
membership	relation	can	go	down	only	a	finite	number	of	times,	thus	proving	that	every	possible	set	is
at	some	stage	in	a	hierarchy	of	set	membership.

11.6	DefinitionA	set	A	is	said	to	be	transitive	if	every	element	of	A	is	a	subset	of	A.	Equivalently:	(x	∈
A)	∧	(y	∈	x)	⇒	(y	∈	A).
We	have	seen	(Chapter	9)	that	every	ordinal	number	is	a	transitive	set.

From	Parts	(a)	and	(b)	of	the	last	theorem,	if	a	set	A	is	transitive	and	well-founded,	this	means	that	∈
is	an	order	relation	on	A.	(Specifically,	it	is	a	strict	order	relation	<.)	However,	∈	is	not	a	linear	order	on
A,	because	two	arbitrary	elements	x,	y	∈	A	are	not	necessarily	comparable.	 In	fact,	 if	∈	were	a	 linear
order	on	A,	 then	 a	well-founded	 set	A	would	be	 an	∈-well-ordered	 set,	 and	 therefore	A	would	be	an
ordinal.

11.7	Lemma

a) 	 Every	subset	of	a	transitive	set	is	transitive.
b) 	 Every	union	of	transitive	sets	is	transitive.
c) 	 The	power	set	of	a	transitive	set	is	transitive.

(The	simple	proofs	are	left	as	exercises.)

11.8	TheoremFor	any	two	ordinal	numbers	ξ	and	α,

a) 	 Vα	is	a	transitive	set,	and
b) 	 ξ	<	α	⇒	Vξ	⊂	Vα.

Proof.We	prove	(a)	and	(b)	jointly	by	induction	on	α.
Assume	(a)	and	(b)	are	true	for	all	β	<	α.	The	claims	are	trivial	for	α	=	0.	If	α	is	a	limit	ordinal,	then	(a)
and	(b)	follow	immediately	from	Lemma	11.7(b).	If	α	is	a	successor	ordinal,	α	=	β	+	1,	then	 .
Since	Vβ	 is	 transitive,	 it	 follows	 from	Lemma	11.7(c)	 that	Vα	 is	 transitive.	Finally,	Vβ	⊂	Vα	 from	 the
definition	of	the	cumulative	hierarchy.	

The	sets	Vα	have	a	property	that	is,	more	or	less,	a	converse	of	transitivity:

11.9	LemmaIf	x	⊂	Vα	then	x	∈	Vα+1.



Proof.From	the	definition	of	the	cumulative	hierarchy,	the	elements	of	Vα+1	are	the	subsets	of	Vα.	

To	reach	our	goal,	we	must	prove	now	that	every	Vα	is	well-founded:

11.10	Theorem	For	every	α	∈	OR,	Vα	is	well-founded.

Proof.We	begin	by	showing	the	following:	(x	∈	Vα)	∧	(y	∈	x)	⇒	y	∈	Vβ	for	some	β	<	α.	The	proof	is	by
induction	on	α.	If	α	 is	a	limit	ordinal	then	 .	Then	x	∈	Vα	⇒	x	∈	Vβ	 for	some	β	<	α.	By	 the
hypothesis	of	induction,	y	∈	Vβ	⊂	Vα.	Next,	if	α	=	β	+	1,	then	 .	So	if	x	∈	Vα	then	x	⊂	Vβ,so	y
∈	x	⇒	y	∈	Vβ.	Now	for	our	main	result:
Let	Y	be	a	non-empty	subset	of	Vα.	Let	β	be	the	least	ordinal	such	that	Y	∩	Vβ	≠	∅.	Obviously	β	<	α,

since	Y	∩	Vα	=	Y.	Let	x	be	any	element	of	Y	∩	Vβ.	By	the	previous	paragraph,	y	∈	x	⇒	y	∈	Vδ	for	some
δ<	β.	But	β	was	the	least	ordinal	for	which	Y	∩	Vβ	≠	∅,	hence	y	∉	Y,	which	is	a	contradiction.	Thus,	x	is
∈-minimal.	

We	have	shown	that	every	Vα	 is	transitive	and	well-founded.	Can	the	same	be	said	for	sets	that	are
members	of	Vα?	Let’s	try:

11.11	TheoremIf	A	∈	Vα,	then	A	is	well-founded.

Proof.If	X	is	any	non-empty	subset	of	A,	we	wish	to	prove	that	X	has	an	∈-minimal	element.	Well,	let	α
be	the	minimal	rank	among	all	elements	in	X,	and	let	y	∈	X	be	an	element	whose	rank	is	α,	hence	y	∈
Vα.	 Now	 suppose	 there	 is	 an	 element	 x	∈	X	 such	 that	 x	∈	 y:	 Then	 x	∈	 y	⇒	 x	∈	Vα	 because	Vα	 is
transitive.	But	that	is	impossible	because	x	∈	y	implies	that	the	rank	of	x	must	be	less	than	the	rank	of	y
which	is	minimal	in	X.	So	x	cannot	exist,	hence	y	is	minimal	in	X.	

Next,	 it	would	be	nice	 if	we	were	able	 to	 show	 that	 for	 every	ordinal	α,	 every	member	of	Vα	 is	 a
transitive	 set.	 If	 that	 were	 the	 case,	 we	 could	 characterize	V	 as	 the	 collection	 of	 all	 transitive	 well-
founded	sets.	Unfortunately,	we	cannot	do	this	because	it	turns	out	that	not	every	set	in	V	is	transitive.
When	mathematicians	find	a	roadblock	of	 this	kind,	 they	usually	search	for	a	detour	 that	 leads	 to	 the
same	result.	The	roadblock	we	have	just	encountered	motivates	the	following	definition:

11.12	DefinitionThe	transitive	closure	of	a	set	A	is	the	smallest	transitive	set	that	contains	A.

The	 transitive	 closure	 of	 a	 set	 A	 is	 easy	 to	 construct	 by	 using	 the	 Axiom	 of	 Union.	 Begin	 with	
	and	for	every	n,	 .	Then	the	transitive	closure	of	A	is	defined	to

be	the	set

Intuitively,	tc(A)	is	the	set	of	all	objects	which	are	elements	of	elements	of…of	elements	of	A	(iterated
a	finite	number	of	times).	It	is	a	simple	exercise	to	verify	that	tc(A)	is	a	transitive	set	that	contains	A,
and	moreover,	that	if	B	is	a	transitive	set	such	that	A	⊆	B,	then	tc(A)	⊆	B.



11.13	LemmaFor	any	ordinal	α,	A	∈	Vα	iff	tc(A)	∈	Vα.

Proof.	From	 the	previous	paragraph:	 tc(A)	 is	 a	 transitive	 set	 that	 contains	A,	 and	moreover,	 if	B	 is	 a
transitive	set	such	that	A	⊆	B,	then	tc(A)	⊆	B.	Because	Vα	is	transitive,	if	A	∈	Vα	then	A	⊆	Vα.	Thus,
(with	Vα	in	the	role	of	B	above),	tc(A)	⊆	Vα.	Conversely,	if	tc(A)	∈	Vα,	then	tc(A)	⊆	Vα	so	A	⊆	tc(A)	⊆
Vα.	So	from	Lemma	11.9,	A	∈	Vα+1.	

In	particular,	 if	A	 is	 a	member	of	 some	Vα,	 then	 tc(A)	∈	Vα	 and	by	Theorem	11.11,	 tc(A)	 is	well-
founded.	Thus	 every	member	 of	V	 has	 a	 transitive	well-founded	 closure.	 In	 our	 last	 theorem	of	 this
section	we	shall	prove	 the	converse	of	 the	above,	namely:	Every	set	whose	 transitive	closure	 is	well-
founded	is	a	member	of	V.	It	will	follow	from	this	that	we	have	fully	characterized	V:	It	is	the	class	of
all	the	sets	whose	transitive	closure	is	well-founded.
Compare	 this	with	 a	 corresponding	 result	 about	 ordinal	 numbers	 in	Chapter	9,	Section	5:	OR	 (the

class	 of	 all	 ordinal	 numbers)	 is	 the	 class	 of	 all	 transitive	∈-well-ordered	 sets.	 Since	 every	∈-well-
ordered	set	is	well-founded—and	since	every	transitive	set	is	its	own	transitive	closure—it	follows	that
every	ordinal	number	is	a	member	of	V.

11.14	TheoremEvery	transitive	well-founded	set	is	a	member	of	V.

Proof.Let	A	 be	 a	 transitive,	well-founded	 set.	 It	 suffices	 to	 prove	 that	A	⊆	V,	 for	 by	Lemma	 11.9	 it
follows	that	A	∈	V.	If	A	 	V,	let	y	be	a	minimal	element	of	A	−	V,	and	let	z	∈	y.	Then	z	∈	A	because	A	is
transitive.	We	have	just	shown	that	y	⊆	A.	By	Lemma	11.9	y	∈	V.	But	this	contradicts	y	∈	A	−	V,	and
from	this	contradiction	we	conclude	that	A	⊆	V.	

The	central	fact	about	V—the	reason	for	its	importance	in	mathematics—is	that	all	the	axioms	of	set
theory	 hold	when	 the	word	 “set”	 is	 replaced	 by	 the	words	 “transitive	well-founded	 set”.	 That	 is	 the
reason	why	V	 is	 called	 the	universe	of	sets.	The	 class	V	 contains	 all	 the	 ordinal	 numbers	 (hence	 the
cardinals	as	well),	and	all	the	constructions	needed	in	mathematics	can	be	carried	out	on	the	members	of
V.
In	V,	sets	are	built	from	the	bottom	up.	The	members	of	V	are	clear,	clean,	well	defined	objects	which

satisfy	simple	axioms,	so	set	theory	on	V	is	a	branch	of	mathematics	as	rigorous	as	other	areas	such	as
algebra	and	analysis.	Notice	that	we	have	stated	that	all	the	axioms	of	set	theory	apply	to	V.	The	proofs
are	 straightforward	 verifications,	 and	 several	 of	 them	 are	 given	 in	 the	 exercises	 at	 the	 end	 of	 this
section.	 It	 is	 therefore	 perfectly	 reasonable	 to	 assert	 that	 all	 the	 sets	 that	 exist	 in	 mathematics	 are
members	of	V.	 If	 you	wish	 to	 consider	 the	members	of	V	 to	be	 all	 the	 sets	 there	 are,	 then	you	must
legislate	this	fact	as	an	axiom:

Axiom	of	FoundationV	is	the	class	of	all	sets,	that	is,	V	=	 .

From	this	point	onward,	we	take	the	Axiom	of	Foundation	to	be	one	of	our	axioms.

EXERCISES	11.1

1. 	 Suppose	that	in	a	set	A	there	is	no	descending	set	of	elements	…	∈	x2	∈	x1	∈	x0	∈	A.	Prove	that	A
is	well-founded.

2. 	 Prove	that	a	set	A	is	well-founded	iff	∃x	∈	A	such	that	x	∩	A	=∅.



3. 	 Prove	that	every	subset	of	a	well-founded	set	is	well-founded,	and	every	element	of	a	well-founded
set	is	well-founded.

4. 	 Prove	that	if	x	and	y	are	well-founded,	so	are	 .
5. 	 Prove	that	every	subset	of	a	transitive	set	is	transitive.
6. 	 Prove	that	any	union	of	transitive	sets	is	transitive.
7. 	 Prove	that	the	power	set	of	any	transitive	set	is	transitive.
8. 	 Prove	that	a	set	A	is	transitive	iff	 .
9. 	 Prove	that	a	set	A	is	transitive	iff	 .
10. 	 Suppose	that	α	is	a	limit	ordinal.	Prove	(a)	If	ξ	<	α	then	Vξ	⊆	Vα.

(b)	If	Vξ	is	transitive	for	every	ξ	<	α	then	Vα	is	transitive.

11. 	 If	A	is	a	set	and	tc(A)	is	its	transitive	closure,	prove:	(a)	tc(A)	is	transitive.
(b)	A	⊆	tc(A).

12. 	 Prove:	If	A	is	a	set,	B	is	a	transitive	set,	and	A	⊆	B,	then	tc(A)	⊆	B.
13. 	 Prove	(a)	If	A	is	a	transitive	set	then	A	=	tc(A).	(b)	If	x	∈	A	then	tc(x)	⊆	tc(A).
14. 	 If	A	∈	V	and	B	⊆	A	then	B	∈	V.	(You	may	use	Lemma	11.9).
15. 	 Prove:	if	x,	y	∈	V,	then	{x},	{x,	y},x	×	y,	and	x	∩	y	are	in	V.
16. 	 Prove:	For	all	n	∈	ω,	|Vn|	is	finite.	(Prove	by	induction	on	n.)
17. 	 Every	well-founded	set	is	in	V.	Conclude	that	V	is	the	class	of	well-founded	sets.
18. 	 The	axiom	of	pairs	states	that	if	x	and	y	are	sets,	then	{x,	y}	is	a	set.	To	prove	the	axiom	of	pairs	for

V	 is	 to	 show	 that	 if	 x,	 y	∈	 V	 then	 {x,	 y}∈	 V.	 Prove	 this,	 using	 the	 rule	 for	 constructing	 the
cumulative	hierarchy.

19. 	 The	axiom	of	union	asserts	that	if	A	is	a	set,	then	 	is	a	set.	To	prove	the	axiom	of
union	on	V	is	to	show	that	if	A	∈	V	then	 .	Prove	this.

20. 	 The	power	set	axiom	states	that	if	A	is	a	set,	so	is	 .	Prove	that	the	power	set	axiom	holds	in	V.
That	is,	if	A	∈	V,	then	 	∈	V.

2	MODELS

Whenever	mathematics	is	done	rigorously,	one	begins	with	a	formal	language	 	which	has	symbols	to
denote	 the	 relations	 and	 operations	 pertaining	 to	 the	 mathematical	 theory	 under	 discussion.	 For
example,	when	studying	ordered	sets,	one	uses	a	language	 	with	two	binary	relation	symbols	<	and	=,
together	with	the	logical	connectives	∧,	∨,	¬	and	the	quantifiers	∃	and	∀.	For	the	theory	of	rings	we	use
a	 language	 	 with	 a	 binary	 relation	 symbol	 =,	 operation	 symbols	 ·,	 +	 and	 −,	 and	 the	 logical
connectives	and	quantifiers.
If	 	is	a	formal	language,	one	obtains	a	theory	T	in	the	language	 	by	laying	down	a	set	of	axioms

for	the	theory.	For	example,	if	T	is	the	theory	of	partially	ordered	sets,	its	axioms	are:



Finally,	a	model	of	a	theory	T	is	a	set	A	together	with	a	relation	on	A	corresponding	to	each	relation
symbol,	and	an	operation	on	A	corresponding	to	each	operation	symbol.	For	example,	a	model	for	the
theory	of	ordered	sets	would	consist	of	a	set	A	 together	with	a	relation	on	A	(that	 is,	a	set	of	ordered
pairs	of	A)	satisfying	the	three	axioms	above.	In	plain	language,	a	model	for	the	theory	of	ordered	sets	is
an	ordered	set.	Likewise,	a	model	for	the	theory	of	rings	is	a	ring.
A	mathematical	 theory	 is	said	 to	be	consistent	 if	 it	does	not	harbor	any	contradictions,	 that	 is,	you

cannot	use	the	axioms	of	 the	theory	to	prove	a	statement	F	as	well	as	 its	negation	¬F.	Proving	that	a
theory	T	 is	consistent	 is	notoriously	difficult,	because	 in	 the	worst	case,	you	would	have	to	see	every
theorem	of	T	to	know	whether	or	not	there	are	contradictions.	However,	one	of	the	first	results	of	model
theory	is	called	the	Completeness	Theorem	and	states	that	a	theory	T	is	consistent	if	and	only	if	it	has	a
model.	 In	 practice,	 this	 is	 the	 easiest—and	 sometimes	 the	 only—way	 to	 prove	 that	 a	 theory	 is
consistent.	In	plain	language,	it	is	only	if	you	produce	a	model	of	a	theory	that	you	can	be	certain	it	is
consistent.
One	 of	 the	 most	 productive	 branches	 of	 mathematics	 during	 the	 20th	 Century	 (it	 occupied

mathematical	 geniuses	 such	 as	Gödel	 and	 von	Neumann	 during	much	 of	 their	 careers)	 has	 been	 the
study	of	models	of	set	theory.	Note	that	set	theory	cannot	be	taken	seriously	as	a	rigorous	discipline	in
mathematics	until	it	is	shown	that	there	are	models	of	set	theory,	because	it	is	only	once	we	see	a	model
of	the	axioms	of	set	theory	that	we	know	it	is	consistent.
However,	a	model	of	set	theory	is	not	like	any	other	model:	For	example,	a	model	of	group	theory	is

a	 set	with	an	operation	 that	 satisfies	 the	usual	group	axioms.	 In	 the	same	way,	a	model	of	 set	 theory
would	have	to	be	a	set	whose	members	(sets)	satisfy	the	axioms	of	set	theory.	Achieving	such	a	thing	is
fraught	with	difficulties.	In	the	first	place,	you	want	a	set	to	serve	as	a	model	of	set	theory,	but	it	is	only
inside	set	 theory	 that	you	come	to	know	what	a	set	 is.	Secondly,	 if	 it	 is	a	model	of	set	 theory	we	are
constructing,	then—in	that	model—we	are	able	to	construct	every	ordinal	number,	and	we	know	that	the
class	 of	 all	 the	 ordinal	 numbers	 is	 a	 proper	 class:	So	 the	 set,	 in	 our	model,	would	have	 to	 contain	 a
proper	class,	which	is	impossible.
At	the	very	time	when	these	questions	were	being	asked,	a	remarkable	result	about	models—called

the	Löwenheim-Skolem	Theorem—was	 discovered.	 It	was	 proved	 that	every	 consistent	 theory	 has	 a
countable	model.	In	other	words,	if	a	theory	has	a	model	of	any	size,	it	also	has	a	countable	model.	So	if
set	theory	is	consistent,	not	only	must	it	have	a	model,	but	it	must	have	a	countable	model.	Imagine:	a
countable	model	for	all	of	set	theory!	In	the	1920s,	ingenious	models	were	constructed	for	subsets	of	the
axioms,	but	never	for	the	full	set	of	axioms	of	set	theory.	This	quest	was	abandoned	at	the	beginning	of
the	1930s	when	Kurt	Gödel	dropped	a	bombshell	on	the	mathematical	world.

3	INDEPENDENCE	RESULTS	IN	SET	THEORY

In	1931,	as	part	of	his	doctoral	dissertation,	Kurt	Gödel	proved	that	if	a	consistent	system	of	axioms	is
sufficient	to	prove	the	theorems	of	arithmetic,	then	the	consistency	of	such	a	system	cannot	be	proved
by	the	standard	methods	of	mathematics.	As	we	have	seen	in	this	book,	it	 is	possible	to	construct	the
natural	 numbers	 and	 carry	 out	 arithmetic	within	 axiomatic	 set	 theory.	 Thus,	 by	Gödel’s	 Theorem,	 if
axiomatic	set	theory	is	consistent,	then	its	consistency	cannot	be	proved.	In	particular,	we	must	abandon
our	quest	to	construct	a	model	of	set	theory.
Where	 does	 this	 leave	 us?	 We	 appear	 to	 have	 just	 two	 choices:	 Either	 we	 choose	 to	 accept	 the

consistency	 of	 axiomatic	 set	 theory	 on	 faith,	 or	 alternatively,	 we	 abandon	 the	 ideal	 of	 founding
mathematics	on	axioms	and	rigorous	proof,	and	put	our	faith	in	intuition	instead.	Most	mathematicians
accept	 the	consistency	of	 the	various	axiomatic	systems	of	set	 theory	because	 the	axioms	strike	us	as
absolutely	plausible	and	almost	undeniably	true.	Primarily,	they	are	willing	to	accept	the	axioms	of	one



system	 of	 set	 theory	 (axioms	 similar	 to	 the	 ones	 we	 have	 been	 using)	 called	 the	 Zermelo-Fraenkel
axioms	and	discussed	in	the	next	Section.	This	system,	known	at	ZF	set	theory,	does	not	require	proper
classes	because	it	places	other	limitations	on	what	is	allowed	to	be	a	set.
I	 have	 said	 that	 the	 axioms	 of	 set	 theory	 seem	 perfectly	 plausible.	 That	 is	 true	 with	 two	 notable

exceptions:	The	Axiom	of	Choice	and	the	Continuum	Hypothesis.	We	like	them	because	they	simplify
and	beautify	mathematics,	but	 they	do	not	strike	us	as	unquestionably	 true.	Thus,	 for	many	years	 the
Holy	Grail	 after	which	 the	most	 gifted	 knights	 of	mathematics	 quested	was	 a	 proof	 of	 the	 axiom	of
choice	(AC)	and	the	continuum	hypothesis	(CH)	from	the	other	axioms	of	set	theory.	Once	again,	it	was
Kurt	Gödel	who	settled	the	issue	in	a	most	provocative	way:	In	1936	he	published	a	proof	that	both	AC
and	CH	are	consistent	with	the	other	axioms	of	set	theory.	Specifically,	he	showed	that—assuming	the
other	axioms	of	set	theory	are	consistent—then	¬AC	and	¬CH	cannot	be	deduced	from	them.
This	discovery	set	off	a	new	race	 to	prove	that	 the	negations	of	AC	and	CH	(denoted	by	¬AC	and

¬CH)	are	likewise	consistent	with	the	other	axioms.	It	was	not	until	thirty	four	years	later	that	this	result
was	achieved,	using	very	new	ideas,	by	Paul	Cohen.	Taken	together,	what	these	results	show	is	that	AC
and	CH	are	independent	of	other	axioms	of	set	theory.	If	you	want	AC	in	set	theory,	you	must	state	it	as
an	independent	axiom,	and	if	you	want	CH	then	you	must	state	CH	as	an	independent	axiom.	And	for
that	matter,	you	may	add	¬AC	as	a	new	axiom	without	any	danger	of	contradiction,	and	likewise	you
may	add	¬CH.	The	proofs	of	these	results	are	called	the	Independence	Proofs	of	set	theory.
There	was	 a	 time	when	 people	 asked:	 “After	 all,	 is	 the	Continuum	Hypothesis	 true	 or	 not?	 Is	 the

Axiom	of	Choice	true	in	reality	or	is	it	not?”	We	no	longer	ask	these	questions	today	because	we	have
become	 a	 little	more	 cynical	 about	 absolute	 truth.	 Few	 people	 today	 believe	 in	 the	 Platonic	 heaven
where	 all	 truths	 are	 enthroned	 forever.	Most	mathematicians	 don’t	 ask	 such	 questions,	 but	 generally
accept	 AC	 and	 CH	 because	 it	 makes	 their	 work	 easier.	 For	 the	 Philosophical	 Few,	 it	 is	 clear	 that
mathematics	 is	 a	 great	 fountain	 of	 abstract	 ideas,	 perfect	 if	 viewed	 from	within,	 somewhat	 flawed	 if
viewed	 from	without.	 In	 an	axiomatic	 system	you	 lay	down	a	 set	of	 axioms	and	work	 to	deduce	 the
consequences	of	your	axioms.	You	do	not	ask	if	your	axioms	are	“true”.
A	perfect	exemplar	for	this	is	 the	Parallel	Postulate	in	Euclidean	geometry.	For	two	thousand	years

brilliant	 thinkers	 burned	 out	 their	 synapses	 in	 vain	 attempts	 to	 prove	 the	 Parallel	 Postulate	 from	 the
other	axioms	of	geometry.	One	fine	day	people	realized	that	there	are	other	kinds	of	geometry	in	which
the	Parallel	Postulate	does	not	hold	in	its	Euclidean	form.	It	turns	out,	then,	that	the	Parallel	Postulate	is
neither	 true	 nor	 false.	 That	 is	 the	 very	 situation	 we	 have	 today	 with	 the	 Axiom	 of	 Choice	 and	 the
Continuum	Hypothesis.	 It	 seems	very	 likely	 that	 there	will	 be	useful	 applications	 in	mathematics	 for
¬AC	and	¬CH.

4	THE	QUESTION	OF	MODELS	OF	SET	THEORY

We	have	seen,	above,	that	axiomatic	set	theory	is	consistent	if	and	only	if	it	has	a	model.	The	foremost
problem	with	building	a	model	of	set	theory	is	that	it	would	be	too	big.	For	example,	V	is	a	class	of	sets
that	satisfies	all	the	axioms	of	set	theory,	but	it	is	too	large	to	be	a	model:	V	is	a	proper	class,	whereas	a
model	 must	 be	 a	 set.	 The	 only	 way	 out	 of	 this	 trap	 is	 to	 ingeniously	 construct	 a	 model	M	 whose
elements	mimic	all	 the	properties	of	sets,	but	such	 that	M	does	not	 truly	contain	every	set.	 In	 fact,	 in
view	of	the	Löwenheim-Skolem	theorem,	the	model	M	we	construct	may	be	countable.
The	 idea	 for	 achieving	 this	 is	 deceptively	 simple:	 We	 mimic	 the	 construction	 of	 the	 cumulative

hierarchy	{Vα}α∈ON	while	placing	restrictions	on	the	sets	that	are	admitted	into	each	Vα.	This	is	done	in
such	a	way	as	to	keep	only	those	sets	that	are	indispensable	to	our	arguments,	while	excluding	all	the
“inconvenient”	sets.	The	resulting	universe	of	sets	M	 is	a	 set—and	we	recall	 that	“sets”	 include	such



things	as	functions,	relations,	the	natural	numbers,	and	so	on.
As	a	model	of	set	theory,	M	must	include	an	uncountable	set	y	(in	fact	many	uncountable	sets).	A	set

y	is	uncountable	if	there	is	no	1-1	correspondence	between	y	and	ω.	Remember	that	M	does	not	contain
all	sets—many	“true”	sets	are	absent	from	M—and	among	the	sets	absent	from	M	are	all	the	bijective
functions	between	ω	and	y.	As	a	result,	in	the	model	M	there	is	no	1-1	correspondence	between	ω	and	y,
and	 that	 makes	 y	 uncountable	 by	 definition.	 This	 is	 true	 even	 though	 from	 outside	 the	 model,	 y	 is
countable—perhaps	even	finite.	The	idea,	then,	is	that	there	are	two	parallel	universes:	The	universe	of
sets	as	observed	from	inside	the	model	M,	and	the	universe	of	“true”	sets	as	observed	from	outside	the
model.
For	example,	in	M	let	x	be	the	set	that	plays	the	role	of	 	and	y	the	set	that	plays	the	role	of	 .

Then	y	does	not	really	contain	every	subset	of	 ,	it	contains	only	those	subsets	of	x	that	are	in	M.	So	if
M	 is	 a	 countable	model	 then	 y	must	 be	 countable,	 and	 so	 clearly	 y	 cannot	 be	 equal	 to	 	 for	 the
outside	observer.	The	set	y	that	we	call	the	powerset	of	 	in	M	is	not	the	same	as	the	“real”	powerset	of	
	because	many	subsets	of	 	are	missing	in	M.
What	we	have	just	related	is	the	underlying	idea	behind	Gödel’s	proof—but	the	devil	is	in	the	details.

A	full	account	of	Gödel’s	results	and	those	of	Paul	Cohen	is	beyond	the	scope	of	this	book.	But	I	shall
outline	the	principal	stages	of	the	argument.	The	first	problem	is	the	construction	of	a	model	M	of	set
theory	having	the	properties	described	in	the	previous	paragraphs.	The	key	idea	is	that	of	constructible
sets.
In	a	true	universe	of	sets,	if	A	is	any	set	then	by	the	axioms	of	set	theory,	the	universe	must	contain

such	things	as	 	and	all	the	combinations	of	A	with	other	sets	 in	 the	universe.	So	the	supply	of
sets	rapidly	outstrips	the	boundaries	of	a	countable	universe,	or	any	universe	which	is	a	set.	What	must
be	done	at	the	very	start,	then,	is	to	restrict	what	counts	as	a	set.	The	idea	is	that	the	only	kinds	of	set
that	can	play	any	role	in	set-theoretic	proofs	are	sets	that	can	be	described	in	formulas	of	the	language
of	set	theory.	It	stands	to	reason	that	indescribable	sets	can	play	no	part	in	any	reasoning	about	sets.
Recall	that	an	expression	in	the	formal	language	of	set	theory	is	any	formula	that	can	be	written	as	a

valid	 combination	of	 the	 logical	 connectives	∨,	∧,	 ¬,	 the	 quantifiers	∀	 and	∃,	 and	 the	 relation	∈.	A
formula	may	also	contain	parameters,	that	is,	constant	symbols	referring	to	objects	already	constructed
at	an	earlier	stage	of	a	proof.	An	arbitrary	formula	with	free	variables	x1,x2,	…,	xn	may	be	written	as
ϕ(x1,x2,	…,	xn)	without	displaying	the	parameters.
This	 is	a	 timely	moment	 to	say	a	word	about	 the	Zermelo-Fraenkel	 (ZF)	axioms	of	set	 theory,	and

how	they	differ	from	the	axioms	we	have	been	using	throughout	this	book.	The	distinction	boils	down
to	an	important	difference	between	the	Axiom	of	Class	Construction	(Axiom	A2)	used	in	this	book,	and
the	 corresponding	 axiom	 in	 the	 ZF	 system,	 called	 the	 Axiom	 of	 Selection.	 The	 Axiom	 of	 Class
Construction	 asserts	 the	 existence	 of	 a	 class	C	 consisting	 of	 all	 sets	x	 that	 satisfy	 a	 formula	ϕ(x).	 In
many	 cases,	 the	 class	C	 formed	 in	 this	manner	 is	 a	 proper	 class.	 The	Axiom	of	 Selection	 in	 the	ZF
system	 is	 more	 conservative:	 It	 asserts	 that	 if	 A	 is	 any	 set	 and	 ϕ(x)	 is	 a	 formula,	 there	 is	 a	 set	 S
consisting	of	all	x	such	that	x	∈	A	and	ϕ(x).	It	asserts	the	existence	of	sets	that	are	subsets	of	existing
sets,	hence	it	cannot	give	rise	to	proper	classes.
In	ZF	set	theory,	if	A	and	B	are	sets,	then	A	is	said	to	be	constructible	over	B	if	there	exists	a	formula

ϕ(x)	in	the	formal	language	of	set	theory	such	that	A	consists	of	all	the	elements	of	B	which	satisfy	ϕ(x).
The	formula	ϕ	may	 contain	parameters	 (constant	 symbols)	which	 refer	 to	 elements	of	B.	That	 is,	we
may	form:

We	now	 revise	 the	 cumulative	 hierarchy	by	 restricting	 sets	 to	 constructible	 sets.	The	constructible



universe	is	built	as	a	hierarchy	of	sets	indexed	by	the	ordinals,	just	as	the	cumulative	hierarchy	was.	In
each	successor	step,	instead	of	adding	all	subsets	of	the	current	set,	only	the	definable	ones	are	added.
That	is,	we	replace	the	power	set	operation	by	the	constructible	power	set	operation	defined	as	follows:

This	small	difference	makes	a	big	difference:	The	reason	is	that	in	a	countable	formal	language	there
are	only	countably	many	formulas,	hence	there	are	only	countably	many	constructible	sets.	Thus,	even
if	A	is	an	infinite	set,	 	has	no	more	than	countably	many	members.	Except	for	this	one	difference,
the	constructible	hierarchy	is	defined	like	the	cumulative	hierarchy.

Finally,	L	is	defined	to	be	the	union	of	all	the	levels:	
L	is	called	the	constructible	universe.	Now	let’s	slow	down	a	moment,	because	a	reader	sitting	in	the

back	of	the	room	has	a	question:
—“Author:	You	tell	us	on	the	one	hand	that	by	Gödel’s	incompleteness	theorem,	it	is	impossible	to

prove	 the	 consistency	 of	 the	 ZF	 axioms.	 You	 also	 tell	 us	 that	 consistency	means	 that	 there	 exists	 a
model.	And	 finally,	 you	 speak	 to	us	 about	 constructing	models	of	 set	 theory.	Surely	 if	 you	 construct
such	a	model,	you	have	proved	the	consistency	of	ZF	which	you	say	is	impossible.	What	gives?”
—Thank	 you,	 that’s	 an	 excellent	 question!	The	model	we	want	 to	 construct	 is	 built	within	ZF	 set

theory.	So	if	ZF	happens	to	be	inconsistent	to	begin	with,	then	the	model	we	have	built	is	flawed,	since
it	is	built	within	the	constraints	of	ZF.	So	our	model	is	only	a	model	of	ZF	on	the	prior	assumption	that
ZF	is	consistent.	Consequently,	any	result	we	are	able	to	derive	from	this	model	 is	conditional	on	the
consistency	of	the	ZF	axioms.

EXERCISES	11.4

1. 	 a) 	 Write	the	definition	of	x	=	y	as	a	formula	ϕ	in	the	language	of	set	theory.	(See	Definition	1.9	for
the	formal	definition	of	the	equality	of	sets.)
b) 	 Write	a	formula	ψ	which	states	Axiom	A1	in	the	language	of	set	theory.
c) 	 The	set	{a,	b}	is	the	set	{x	:	ϕ(x)}.	Write	the	correct	formula	for	ϕ(x).
d) 	 The	set	 	Write	the	correct	formula	for	ψ(x).
e) 	 The	set	 .	Write	the	formula	for	ξ(x).
f)	The	ordered	pair	(a,	b)	=	{x	:	χ(x)}.	Write	the	formula	for	χ(x).	(Harder	than	(a)–(e).)

2. 	 If	A	is	a	class	and	ϕ	is	a	formula	in	the	language	of	set	theory	then	ϕA	is	the	formula	obtained	by
replacing	every	quantifier	∃x	in	ϕ	by	(∃x	∈	A)	and	every	∀x	by	(∀x	∈	A).
a) 	 Prove	that	if	B	⊆	A,	then	ϕ	is	true	in	B	iff	ϕB	is	true	in	A.
b) 	 Give	 an	 informal	 example	 (e.g.	 using	 finite	 sets)	 showing	 that	 there	 are	 classes	B	⊆	A	 and

formulas	ϕ	such	that	ϕB	is	true	in	A	but	ϕ	is	not	true	in	A,	and	where	ϕ	is	true	in	A	but	ϕB	is	not



true	in	A.
3. 	 Suppose	a	and	b	are	sets	such	that	a,	b	∈	L.

a) 	 Prove	that	{a,	b}∈	L,	and	explain	from	this	why	the	axiom	of	pairs	is	true	in	L.
b) 	 Prove	that	the	ordered	pair	(a,	b)	∈	L.
c) 	 Prove	that	 .	Explain	why	the	axiom	of	union	is	true	in	L.

4. 	 Each	of	the	following	is	a	set	{x	:	ϕ(x)}	where	ϕ	may	contain	parameters.	For	each	of	the	following
sets,	give	the	formula	ϕ	in	the	language	of	set	theory,	and	indicate	which	are	the	parameters	in	ϕ.
Explain	why	each	is—or	is	not—a	constructible	set.
a) 	 a	∪	b.
b) 	 a	×	b.
c) 	 (a,	b),	where	(a,	b)	is	an	ordered	pair.
d) 	 .

5	PROPERTIES	OF	THE	CONSTRUCTIBLE	UNIVERSE

The	hierarchy	of	constructible	sets	has	many	of	the	same	properties	as	the	cumulative	hierarchy,	but	the
style	of	 reasoning	about	constructible	 sets	 is	more	 subtle	 than	 the	way	we	 reason	about	conventional
sets.	Look	carefully	at	the	proof	of	the	next	theorem.

11.15	TheoremFor	each	ordinal	α,	the	following	are	true:

a) 	 Lα	is	transitive.
b) 	 For	β	<	α,	Lβ	⊆	Lα.
c) 	 For	β	<α,	Lβ	∈	Lα.

Proof.The	first	two	statements	are	proved	jointly	by	induction	on	α.	Thus,	suppose	(a)	and	(b)	are	true
for	β.	In	particular,	Lβ	is	transitive.	If	α	=	β	+	1,	then	 .	If	x	∈	Lβ,	let	A	=	{a	∈	Lβ	:	a	∈	x}.
Note	that	A	is	the	set	of	all	elements	a	∈	Lβ	that	satisfy	the	formula	a	∈	x,	where	x	is	a	parameter	that
refers	 to	 an	 element	 of	 Lβ.	 (You	 are	 free	 to	 replace	 the	 parameter	 x	 by	 an	 n-tuple	 x1,x2,	 …xn	 of
parameters.)	 Thus,	A	 is	 a	 constructible	 set.	 Moreover,	A	 consists	 of	 all	 the	 elements	 of	 Lβ	 that	 are
elements	of	x:	In	other	words	A	=	x.	Thus,	x	∈	Lβ+1	=	Lα,	which	shows	that	Lβ	⊆	Lα.
Moreover,	 if	 x	∈	 Lα	 then	 x	⊆	 Lβ,	 hence	 x	⊆	 Lα	 from	 the	 previous	 line.	 Thus,	 Lα	 is	 transitive.

Consequently,	(a)	and	(b)	are	true	for	α	if	α	is	a	successor	ordinal.	If	α	happens	to	be	a	limit	ordinal,	the
result	is	very	simple.
Now	 for	 Part	 (c):	 Note	 that	 the	 formula	 x	 =	 x	 is	 trivially	 a	 formula	 (without	 parameters)	 in	 the

language	of	set	theory,	hence	{a	∈	Lβ	:	a	=	a}=	Lβ	is	an	element	of	Lβ+1.	This	proves	Part	(c)	if	α	is	a
successor	ordinal,	and	the	proof	is	immediate	if	α	is	a	limit	ordinal.	

11.16	CorollaryL	is	transitive.

Proof.Indeed,	if	x	∈	L	then	x	∈	Lα	for	some	ordinal	α.	Since	Lα	is	transitive,	it	follows	that	x	⊆	Lα	⊆	L.	



Two	more	simple	facts	about	L	will	prove	useful,	and	are	stated	as	a	lemma:

11.17	LemmaFor	every	ordinal	α,

a) 	 α	∈	Lα.
b) 	 Lα	⊆	Vα.

Proof.(a)	is	an	easy	induction	on	α:	Suppose	our	claim	is	true	for	Lα,	and	prove	it	for	Lα+1.	Then	α	⊆	Lα
because	Lα	 is	 transitive.	Thus,	α	+	1	=	α	∪{α}⊆	Lα	hence	α	+	1	∈	Lα+1.	The	case	where	α	 is	a	 limit
ordinal	is	similar,	but	simpler.	As	for	(b),	we	note	that	 ,	hence	Lα+1	⊆	Vα+1.	

From	Lemma	11.17	(a)	 it	 follows	 that	L	contains	all	 the	ordinal	numbers.	L	 is	 transitive	as	 shown
above,	and	as	we	are	about	to	see,	L	satisfies	all	the	ZF	axioms.	Any	transitive	class	M	that	contains	all
the	ordinals	and	satisfies	the	ZF	axioms	is	called	an	inner	model	of	set	theory.
As	mentioned	earlier,	there	is	a	strong	intuitive	basis	for	considering	L	to	be	the	class	of	all	sets.	By

definition,	L	contains	all	 the	sets	 that	are	describable	by	a	formula	 in	 the	 language	of	set	 theory.	And
there	is	no	practical	reason	to	admit	sets	which	lack	any	description,	for	we	would	never	make	use	of
such	sets.	They	would	merely	sit	 there	and	muddy	the	waters.	Thus,	 from	this	point	onward	we	shall
assume	the	following	important	axiom:

Axiom	of	ConstructibilityEvery	 set	 is	 constructible,	 that	 is,	 every	 set	 is	 in	L.	This	 axiom	 is	 usually
denoted	by	the	symbol	V	=	L.

As	you	have	just	seen,	in	order	to	prove	statements	about	a	constructible	set	A,	it	is	necessary	to	keep
in	mind	that	A	consists	of	all	the	elements	x	(in	some	set)	that	satisfy	a	formula	ϕ(x).	A	crucial	subtlety
is	that	an	assertion	ϕ(x)	may	hold	in	a	set	A	but	may	fail	to	hold	in	a	subset	B	⊂	A,	or	vice-versa.	For
example,	let	 ,	and	let	B	=	{{a},	{a,	b},	{a,	b,	c}}.	Then	B	is	strictly	ordered	by	⊂	(hence	B
satisfies	a	formula	which	states	that	it	is	strictly	ordered)	but	A	does	not	because	A	is	not	strictly	ordered
by	⊂.	 To	 be	 precise,	 B	 satisfies	 the	 formula	 	 but	 A	 does	 not	 satisfy	 that
formula.	However,	A	satisfies	 .	This	latter	formula,	denoted	by	ϕB,
is	called	the	formula	ϕ	relativized	to	B	in	A.	It	is	obvious	that	ϕ	does	not	hold	in	A,but	ϕB	does.	You	may
think	of	ϕB	as	a	voice	in	A	that	makes	a	statement	about	B.
The	notion	of	relativized	formulas	is	clearly	essential	for	reasoning	about	constructible	sets	and	their

subsets.	We	now	give	a	precise	definition	for	it:

11.18	DefinitionIf	A	 is	any	class	and	ϕ	 is	a	 formula	 in	 the	 language	of	set	 theory	 then	ϕA,	 called	 the
relativization	of	ϕ	to	A,	is	the	formula	obtained	by	replacing	every	quantifier	∃x	in	ϕ	by	(∃x	∈	A),	and
likewise	replacing	every	quantifier	∀x	by	(∀x	∈	A).

It	is	clear	that	if	A	and	B	are	classes	such	that	B	⊆	A,	then	ϕ	is	true	in	B	iff	ϕB	is	true	in	A.	However,	if
ϕB	is	true	in	A	this	does	not	entail	that	ϕ	is	true	in	A.	This	fact	is	illustrated	in	the	previous	example,	and
motivates	the	definition	that	follows.

11.19	DefinitionLet	A	⊆	V.	We	say	that	ϕ	is	absolute	for	A	in	V	if	for	all	x1,	…,	xn	∈	A,



Informally,	ϕ	and	ϕA	are	equivalent	in	V	if	all	the	free	variables	of	ϕ	take	values	in	A.	We	say	that	ϕ	is
absolute	if	it	is	absolute	for	every	A.

If	 all	 the	 important	 formulas	were	absolute,	 it	would	make	 life	 simpler	 for	 set	 theorists.	Mainly,	 it
would	be	possible	to	form	“small”	models	of	set	theory.	Unfortunately,	that	is	not	the	case.	As	the	next
example	shows,	even	a	simple	formula	such	as	x	⊆	y	is	not	absolute.

ExampleLet	A	⊆	V	be	the	set	whose	only	elements	are	∅	and	{{∅}}.	If	ϕA	is	the	formula	(∀x	∈	A)(x	∈
{{∅}}	⇒	 x	∈∅)—equivalently	 {{∅}}	⊆	∅—then	 ϕ	 is	 true	 in	 V.	 [Note	 that	 the	 only	 x	∈	 {{∅}}	 is
{∅},but	{∅}	is	not	in	A].	However,	ϕ	is	not	true	in	V.

11.20	DefinitionA	formula	ϕ	is	said	to	be	absolute	over	transitive	domains	if,	for	every	transitive	class
A,	ϕ	is	absolute	for	A	in	V.

The	good	news	 is	 that	a	great	many	formulas	are	absolute	over	 transitive	domains.	All	 the	models
that	we	shall	be	working	with	from	this	point	onward	will	have	transitive	domains.	To	begin,	it	will	be
shown	that	Axiom	A1	is	absolute	over	transitive	domains.	That	is,	Axiom	A1	is	true	in	every	transitive
class.	Please	note	carefully	how	the	proof	works.

11.21	LemmaIf	A	 is	 a	 transitive	 class,	 then	A	 satisfies	Axiom	A1.	 (In	 other	words,	 the	 formula	 for
Axiom	A1	is	absolute	for	transitive	classes.)

Proof.Axiom	A1	is	the	following	formula	ϕ	:	(∀x,	y)[(x	=	y)	⇔	((∀u)(u	∈	x	⇔	u	∈	y)].
Then	ϕA	is:	(∀x,	y	∈	A)[(x	=	y)	⇔	((∀u	∈	A)(u	∈	x	⇔	u	∈	y)].	It	is	obvious	that	if	ϕ	is	true	in	V,	then	a

fortiori	ϕA	is	true.	For	the	converse,	suppose	ϕA	holds	in	V,	and	show	that	ϕ	holds	in	V	for	elements	x,	y
∈	A.	Our	proof	is	by	contradiction:	We	shall	assume	there	is	a	u	such	that	u	∈	x	and	u	∉	y.	Since	A	is
transitive,	 u	∈	A.	 Since	 we	 assume	 that	 ϕA	 holds,	 it	 follows	 from	 u	∈	 x	 that	 u	∈	 y,	 and	 this	 is	 a
contradiction.	Thus,	ϕ	is	true	in	A.	

At	 the	heart	of	 the	proof	 is	 the	fact	 that—because	A	is	 transitive—every	element	of	x	 is	 in	A,	and
every	element	of	y	is	in	A.	Note	that	the	argument	would	not	work	if	A	were	not	transitive.	Many	other
properties	similarly	illustrate	the	importance	of	transitivity.	For	instance,	look	at	the	notion	of	function,
and	 suppose	 f	 is	 a	 function	 in	V:	Then	 f	 is	 a	 set	 of	 ordered	 pairs	 (x,	y)	 =	 {{x},	 {x,	 y}}.	 If	A	 is	 not
transitive,	we	cannot	prove	that	x	is	in	A	or	y	is	in	A,	hence	we	cannot	prove	that	f	is	a	function	in	A.
(But	if	A	is	transitive,	we	can.)

Many	 other	 properties	 and	 relations	 are	 absolute	 for	 transitive	 models.	 These	 include:	 being	 an
ordered	pair,	a	function,	a	1-1	function,	a	relation,	the	domain	or	range	of	a	relation,	the	set	x	×	y,	being
an	 ordinal	 number,	 the	 set	ω,	 and	many	 others.	 In	 fact,	 the	 next	 theorem	 yields	 a	 treasure-trove	 of
formulas	that	are	absolute	on	transitive	domains.

11.22	DefinitionA	 formula	ϕ	 is	 called	 a	Δ0	 formula	 if	 all	 of	 its	 quantifiers	 are	 bounded.	 That	 is,	 all
quantifiers	in	ϕ	are	of	the	form	∃x	∈	y	or	∀x	∈	y	for	a	set	y.



11.23	TheoremIf	A	is	transitive	and	ϕ	is	a	Δ0	formula,	then	ϕ	is	absolute	for	A.

Proof.It	 is	 clear	 that	x	 =	y	 and	x	∈	y	 are	 absolute	 for	 any	A,	 because	 they	do	not	 change	when	you
relativize	 them.	In	fact,	all	quantifier-free	formulas	ϕ	are	unchanged	when	relativized,	 that	 is,	ϕ	=	ϕA.
The	 proof	 of	 the	 theorem	 is	 by	 induction	 on	 the	 length	 of	ϕ,	 which	 is	 defined	 to	 be	 the	 number	 of
occurrences	of	logical	operators	(∧,	∨,	¬,	∃,	∀)	in	ϕ.	We	have	already	given	the	proof	for	formulas	of
length	0	(namely	x	∈	y	and	x	=	y).
Now,	if	ϕ	and	ψ	are	absolute	for	A,	then	clearly,	so	are	¬ϕ,	ϕ	∧	ψ	and	ϕ	∨	ψ.	The	delicate	step	of	the

proof	begins	here:	Assume	that	ϕ	is	of	the	form	(∃x	∈	y)ψ	and	suppose	that	ϕA	is	true	in	V,	where	y	and
other	possible	free	variables	in	ψ	represent	elements	in	A.	Since	A	is	transitive,	x	∈	A,	and	therefore	(∃x
∈	A)[x	∈	y	∧	ψA]	holds	in	V.	By	the	hypothesis	of	induction,	ψ	holds	iff	ψA	does,	hence	(∃x	∈	A)	(x	∈	y
∧	ψ)	=	(∃x	∈	y)(ψ)	=	ϕ	holds	in	V.
Conversely,	suppose	ϕ	 is	 true	 in	V,	 that	 is,	 (∃x	∈	y)ψ	 is	 true	 in	V,	where	y	 and	other	 possible	 free

variables	in	ψ	represent	elements	in	A.	Since	A	is	transitive,	y	∈	A.	Now,	ϕA	=	(∃x	∈	y)ψA,	and	the	proof
is	essentially	the	same	as	in	the	previous	paragraph.	

Other	 broad	 categories	 of	 formulas	 can	 also	 be	 proved	 to	 be	 absolute	 over	 transitive	 domains.
Actually,	what	is	even	more	important	in	mathematics	is	the	fact	that	many	simple	properties	fail	to	be
absolute	for	transitive	models.	The	reason	this	is	desirable	is	that	we	wish	to	construct	models	M	having
properties	 that	 hold	 in	 M	 but	 are	 not	 consequences	 of	 ZF.	 For	 example,	 we	 would	 like	 to	 find	 a
transitive	model	M	in	which	the	negation	of	the	axiom	of	choice	(¬AC)	holds.	This	would	imply	that	ZF
(without	AC)	does	not	imply	AC.	The	very	purpose	of	the	endeavor	of	creating	models	of	set	theory	is
to	find	models	having	properties	that	are	not	absolute.	The	basis	of	Gödel’s	independence	results	is	that
the	concept	of	a	well-ordering,	as	well	as	the	concept	of	cardinality,	are	not	absolute.

Our	mission	now	is	to	prove	that	if	L	is	a	model	of	ZF,	then	a	number	of	additional	properties	also
hold	in	L.	And	because	these	properties	hold	in	L,	they	must	be	consistent	with	ZF.	To	be	explicit,	if	a
property	ϕ	is	true	in	L	(which	is	a	model	of	ZF)	then	it	is	not	possible	to	prove	¬ϕ	in	ZF,	because	we	are
assuming	that	ZF	is	consistent	on	account	of	its	having	a	model.

11.24Remark.	 In	order	to	prove	that	a	formula	ϕ	holds	in	the	model	L,	what	we	need	 to	show	is	 that	
.	The	reason	is	that	we	are	assuming	(this	is	merely	an	assumption	hence	requires	no	proof)	that

L	 is	 a	model	 of	 ZF.	 So	 if	 	 then	ϕL	 is	 true	 in	 every	model	 of	 ZF,	 hence	 in	L.	 Thus,	ϕL,	 and
therefore	ϕ	itself,	are	true	in	the	model	L.

From	the	previous	Remark,	in	order	to	show	that	the	axioms	in	ZF	hold	in	L,	we	must	show	that	for
each	axiom	ϕ,	the	formua	ϕL	is	true.	It	is	this	task	that	we	undertake	next.	We	are	substantially	aided	by
the	fact	that	L	is	a	transitive	class.

11.25	TheoremFor	every	axiom	ϕ	of	ZF,	ϕL	is	true	in	L.

Proof.	To	carry	out	this	proof,	it	is	essential	first,	to	be	clear	about	the	relationship	between	an	axiom	ϕ
of	ZF	and	the	corresponding	formula	ϕL.	We	have	already	seen	that	in	V,	the	unordered	pair	{a,	b}	is	the
set	{x	:	x	=	a	∨	x	=	b}.	Note	that	the	set	is	defined	by	the	formula	ϕ	=	(x	=	a	∨	x	=	b).	But	in	L,	{a,	b}	is
the	set	{x	∈	L	 :	x	=	a	∨	x	=	b}.	You	will	note	 that	ϕ	 is	 the	 same	as	ϕL,	 so	 the	operation	of	 forming
ordered	pairs	is	absolute.



For	unions,	suppose	that	a	∈	L:	Then	 	is	the	set	of	all	x	that	satisfy	the	formula	ϕ	=	(∃y	∈	a)(x	∈
y).	So	 relativized	 to	L,	 	=	 {x	∈	L	 :	 (∃y	∈	a)(x	∈	y)}.	Note	 the	 importance	 of	 assuming	 that	L	 is
transitive:	If	a	∈	L	and	y	∈	a	then	you	conclude	that	y	∈	L.	As	you	can	see,	in	this	case	ϕL	is	the	same
formula	as	ϕ,	hence	ϕ	is	absolute	over	L.	Since	we	have	shown	that	unions	are	the	same	in	L	as	in	V,	the
Axiom	of	Unions	holds	in	L.
Likewise,	for	subsets,	z	⊆	x	is	an	abbreviation	for	ϕ	=	(∀v)(v	∈	z	⇒	v	∈	x).	By	contrast,	ϕL	=	(∀v	∈	L)

(v	∈	z	⇒	v	∈	x)	where	z	and	x	are	parameters	representing	elements	in	L.	It	is	obvious	that	if	ϕ	is	true	in
V,	then	ϕL	is	likewise	true.	Conversely,	suppose	ϕL	is	true	in	V,	which	is	the	same	as	saying	that	ϕ	is	true
in	L.	Since	L	 is	 transitive,	z	⊆	x	 is	equivalent	 to	z	∈	x,	hence	(v	∈	z	⇒	v	∈	x).	So	ϕ	 is	 true	 in	V	 for
parameters	x,	z	∈	L.
This	shows	that	⊆	is	absolute	on	any	transitive	domain.	That	means	that	subsets	are	the	same	in	L	as

in	V.	Consequently,	the	power	set	axiom	is	true	in	L.
It	has	already	been	shown	(Lemma	11.21)	that	if	ϕ	is	the	formula	for	Axiom	A1,	then	ϕL	is	provable

from	ZF,	because	L	is	a	transitive	class.
Next,	the	Axiom	of	Foundation	is	true	in	L:	Indeed,	suppose	a	∈	L.	Recall	that	L	⊆	V.	Now,	since	the

Axiom	of	Foundation	is	true	in	V,	there	is	an	element	b	∈	V	such	that	(b	∈	a)	∧	(b	∩	a	=∅).	Since	L	is
transitive,	it	follows	from	b	∈	a	and	a	∈	L	that	b	∈	L.	Thus,	the	following	holds	in	L:	(b	∈	a)	∧	(b	∩	a
=∅).	From	Theorem	11.5(d),	L	is	well-founded.
Several	of	the	ZF	axioms	have	now	been	shown	to	hold	in	L;	others	are	very	technical	and	require

more	elaborate	machinery	for	their	proof.	They	are	omitted	here.	
It	turns	out	to	be	an	important	fact	that	the	Axiom	of	Constructibility	(V	=	L)	holds	in	L.	You	may

recall	 that	 the	 Axiom	 of	 Constructibility	 has	 been	 added	 to	 ZF,	 and	 it	 might	 appear	 that,	 as	 a
consequence,	it	is	true	in	L,	since	L	is	a	model	of	ZF.	However,	as	mentioned	above,	what	we	need	to
establish	is	that	(V	=	L)L	holds	in	L—and	that	turns	out	to	be	more	difficult	than	it	appears	to	be.
The	Axiom	of	Constructibility	 is	 the	 claim	 that	 every	 set	 is	 constructible,	 in	 other	words	 it	 is	 the

formula	(∀x)(∃α)[On(α)	∧	x	∈	Lα]	where	On(α)	stands	for	“α	 is	an	ordinal”.	As	explained	previously,
what	we	really	need	to	show	is	that	it	is	the	formula	for	(V	=	L)L	that	holds	in	L.	Now	(V	=	L)L	is	the
formula

It	can	be	shown	that	the	formulas	On(α)	as	well	as	(x	∈	Lα)L	are	absolute	in	L.	The	proofs	are	fairly
technical,	and	omitted	here.	Using	these	facts,	it	follows	that	(V	=	L)L	is	absolute,	and	therefore	is	true
in	the	model	L.	Our	conclusion	is:

11.26	TheoremL	is	a	model	of	ZF	+	(V	=	L).

Consequently,	the	Axiom	of	Constructibility	V	=	L	cannot	be	refuted	in	ZF,	so	it	may	be	added	as	a
new	axiom	without	danger	of	contradiction.	From	this	point	onward,	we	assume	that	V	=	L	is	one	of	our
axioms.
We	are	now	ready	to	reap	the	whirlwind!

EXERCISES	11.5

1. 	 For	any	class	A,	prove	each	of	the	following:



a) 	 If	A	is	transitive,	then	 .
b) 	 If	X	⊆	A	and	X	is	finite,	then	X	∈	 .	If	A	is	an	infinite	set,	then	 .

2. 	 Prove	that	for	every	ordinal	α,	Lα	∩	On	=	α,	where	On	is	the	class	of	the	ordinals.
3. 	 For	all	finite	n,	prove	that	Ln	=	Vn.
4. 	 For	all	infinite	cardinals	α,	prove	that	|Lα|	=	|α|.
5. 	 Of	all	 the	axioms	of	set	 theory	(including	AF,	V	=	L,	and	AC),	which	are	true	in	the	empty	set?

Which	are	true	in	the	finite	model	A	whose	elements	are:	a,	b,	{a},	{b},	{a,	b}?
6. 	 Referring	 to	 the	 previous	 exercise,	 let	 B	 be	 the	 subset	 of	 A	 whose	 elements	 are	 a,	 b.	Write	 a

formula	ϕ	such	that	ϕ	is	true	in	A	but	ϕB	is	not	true	in	A.
7. 	 Explain	why	each	of	the	following	formulas	is	absolute	over	transitive	domains:

a) 	 a	⊆	b.
b) 	 c	=	(a,	b)	where	(a,	b)	denotes	the	ordered	pair.
c) 	 c	=	a	∪	b.
e) 	 c	=	a	∩	b.
f) 	 c	=	a	∪{a}.
g) 	 a	is	a	transitive	set.

8. 	 It	was	mentioned	in	Chapter	1	that	there	is	an	axiom	proposed	by	von	Neumann	(but	not	used	here)
that	states	the	following:	A	is	a	proper	class	iff	A	is	in	1-1	correspondence	with	V.	Equivalently:	A
is	a	set	iff	A	is	not	in	1-1	correspondence	with	V.	Call	this	axiom	VN:
a) 	 Prove	that	VN	implies	the	Axiom	of	Choice.
b) 	 Explain	why	VN	implies	a	strengthened	version	of	the	Axiom	of	Choice	that	applies	not	only	to

sets	but	to	all	classes.	What	does	this	do	to	the	well-ordering	theorem?
c) 	 Prove	that	VN	implies	the	Axiom	of	Replacement	(our	Axiom	A9).
d) 	 Prove	that	Axiom	A9	together	with	the	strengthened	Axiom	of	Choice	imply	VN.

6	THE	GÖDEL	THEOREMS

Using	ZF	+	 (V=L),	Gödel	was	able,	 first,	 to	 show	 that	 the	Axiom	of	Choice	 is	 true	 in	L.	He	did	not
show	this	directly	by	proving	that	there	are	choice	functions.	Rather,	he	proved	that	it	was	possible	to
construct	 a	well-ordering	 of	L,	 from	which	 it	 is	 obvious	 that	 every	 set	 can	 be	well-ordered	 because
every	set	 is	a	subset	of	L.	And	as	we	know,	 the	well-ordering	 theorem	is	equivalent	 to	 the	Axiom	of
Choice.

11.27	TheoremIf	V=L,	 then	 the	Axiom	 of	Choice	 holds.	 This	 implies	 that	 if	 ZF	 is	 consistent,	 then	
.

Proof.	The	proof	 consists	 of	 defining	 a	 constructible	 relation	which	 is	 an	order	 relation	 	 on	L,	 and
showing	that	 	well-orders	L.	Let	x	and	y	be	two	arbitrary	elements	of	L,	and	let	us	define	the	condition
which	makes	x	 	y	true.	There	are	three	cases,	treated	differently:
1. 	 Let	α<	β	be	 two	cardinals	such	 that	x	 first	appears	 in	Lα,	whereas	y	 first	appears	 in	Lβ.	We	 then

decree	that	x	 	y	in	the	ordering	of	L	we	are	defining.



2. 	 Now	suppose	that	x	and	y	have	their	first	occurrence	in	the	same	Lγ,	call	it	Lα+1.	For	this	case,	let
{ϕi	 :	 i	 <	 ω}	 be	 an	 enumeration	 of	 all	 the	 formulas	 of	 our	 countable	 language.	 We	 reason	 by
induction,	 so	we	 assume	 that	 the	 ordering	 	 has	 already	 been	 defined	 on	Lα	 and	well-orders	 it.
Suppose	x	is	defined	by	a	formula	ϕx	and	y	is	defined	by	a	formula	ϕy,	where	both	formulas	have
(for	simplicity)	just	one	parameter—say	p	in	ϕx	and	r	in	ϕy:

We	decree	that	x	 	y	if	ϕx	precedes	ϕy	in	the	enumeration	of	formulas.	Or,	in	case	ϕx	=	ϕy,	then	x	 	y	if
p	precedes	r	in	the	order	relation	on	Lα.
Recall	that	the	class	of	the	ordinal	number	is	well-ordered,	and	by	induction	on	α,	Lβ	is	well-ordered

by	 	for	every	β	<	α.	Using	these	facts,	the	order	relation	 	we	have	just	defined	well-orders	L.	

11.28	TheoremL	satisfies	CH	(the	Continuum	Hypothesis),	that	is,	 .	It	follows	that	if	ZF	is
consistent	then	 .

The	 technical	machinery	 required	 to	 show	 that	CH	 is	 true	 in	L	goes	well	beyond	 the	scope	of	 this
book.	We	shall	therefore	confine	ourselves	here	to	outlining	the	intuitive	basis	for	the	proof.	We	have
already	discussed	the	implications	of	the	fact	that	L	contains	only	constructible	sets:	For	α<	ω1,	(where
ω1	 is	 the	 first	uncountable	ordinal)	Lα	 is	 countable:	Every	 set	 in	Lα	 is	defined	by	a	 formula	ϕ	 in	 the
countable	 language	 of	 set	 theory.	 Moreover,	 the	 language	 includes	 no	 more	 than	 countably	 many
parameters,	because	the	parameters	denote	elements	in	the	countable	set	Lα.	So	there	are	only	countably
many	formulas.
Since	there	are	no	more	than	countably	many	formulas	available	to	construct	sets,	there	are	no	more

than	countably	many	sets	in	Lα	for	each	α<	ω1.	So	finally,	the	union	of	a	strictly	increasing	family	of	ω1
=	 	many	countable	 sets	has	cardinality	no	 less	 than	 	nor	greater	 than	 .	A	 formal	version	of	 this
proof	can	be	generalized	to	higher	cardinals,	and	yields	the	following	theorem:

11.29	TheoremL	satisfies	GCH	(the	Generalized	Continuum	Hypothesis),	 .	Consequently,	
.

For	 a	 brief	 recapitulation	 of	 what	 has	 been	 done,	 we	 have	 shown	 that	 if	 you	 assume	 ZF	 to	 be
consistent,	 then	 so	 is	ZF	+	AF	+	V	=	L	+	AC	+	GCH.	After	Gödel	demonstrated	 that	 the	Axiom	of
Choice	 and	 the	 Continuum	 Hypothesis	 are	 relatively	 consistent	 with	 the	 ZF	 axioms—that	 is,	 if	 we
assume	 the	ZF	system	 is	 consistent,	 then	 so	are	AC	and	GCH—the	question	was	 immediately	 raised
whether	the	negations	of	AC	and	GCH	are	likewise	consistent	with	ZF.	If	they	are,	that	means	that	AC
and	GCH	are	 independent	of	 the	 ZF	 axioms—in	 other	words,	 they	may	 be	 added	 to	 the	 ZF	 axioms
without	 contradiction,	 and	 likewise,	 their	 negations	 may	 be	 added	 to	 ZF	 without	 producing
contradictions.
It	was	not	until	1964	that	this	question	was	answered	affirmatively:	In	a	groundbreaking	paper,	Paul

Cohen	 invented	 a	 method	 called	 forcing	 to	 show	 that	 indeed	 (if	 ZF	 is	 consistent)	 it	 is	 possible	 to
construct	models	of	ZF	that	satisfy	¬AC	and	¬GCH.	Perhaps	these	results	do	not	advance	the	practice	of
mathematics	 to	any	appreciable	degree,	but	 their	philosophical	 impact	 is	 tremendous.	They	show	that
the	concept	of	set—though	founded	on	very	concrete	 intuitions	and	mental	pictures—is	not	nearly	as



elementary	as	we	are	prepared	to	believe.	There	is	no	one	unique	truth	concerning	the	properties	of	sets:
Rather,	the	reality	of	what	a	set	is	bifurcates	into	several	alternative	realities,	all	equally	plausible	and
all	equally	true.
Lastly,	it	has	been	shown	that	we	will	never	have	absolute	certainty	that	set	theory—or	mathematics

generally—is	 free	 of	 contradictions.	 It	 is	 not	 merely	 a	 question	 of	 the	 state	 of	 current	 knowledge:
Rather,	what	 has	 been	 shown	 is	 that	 it	 is	 fundamentally	 impossible	 ever	 to	 prove	 the	 consistency	 of
mathematics.
For	 set	 theory,	 is	 that	 really	 surprising?	 Think	 of	 it!	 It	 is	 already	 a	 remarkable	 fact	 that	 animals

(including	homo	sapiens)	are	able	to	abstract	out	of	experience	the	fact	 that	 there	is	such	a	thing	as	a
cluster,	a	batch,	a	bundle	of	similar	objects—and	that	such	a	bundle	is	a	separate	unit	of	reality.	Then
we	build	on	that	and	think	of	collections	we’ve	never	experienced,	such	as	all	the	trees	in	a	forest,	or	all
the	natural	numbers.	Then	we	abstract	further	and	think	of	a	set	as	a	thing	in	itself,	irrespective	of	what
its	members	are.	The	notion	of	set	 is	 the	abstraction	of	an	abstraction	of	an	abstraction.	That	kind	of
iterated	abstracting	seems	 to	be	 the	essence	of	 the	human	 intellectual	enterprise.	More	 than	 that,	 it	 is
perhaps	the	long-term	ecological	function	of	brains.
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