IX Simposio Nororiental de Matemáticas

Diciembre 2 - 4, 2012, Bucaramanga - SAN, Colombia

Y. Takeuchi, 1927 - 2014, IN MEMORIAM

On the separability of the partial skew groupoid ring

Héctor Pinedo^{*}

Dirceu Bagio[†]

Abstract

Given a partial action α of a groupoid \mathcal{G} on a unital K-algebra \mathcal{A} , we establish necessary and sufficient conditions for which the extension $\mathcal{A} \star_{\alpha} \mathcal{G} \supset \mathcal{A}$ is separable.

Key words & phrases: Partial action of groupoid, skew groupoid ring, separable extension.

1 Introduction

The notion of partial groupoid action that we use in this work was introduced by D. Bagio and A. Paques in [2], which is a natural extension of the concept of partial group action given by M. Docuchaev and R. Exel in [3].

Let \mathcal{G} be a groupoid, K a commutative ring and \mathcal{A} a unital K-algebra. A partial action of \mathcal{G} on \mathcal{A} is a pair

$$\alpha = (\{\mathcal{A}_g\}_{g \in \mathcal{G}}, \{\alpha_g\}_{g \in \mathcal{G}}),$$

where for each $g \in \mathcal{G}$, \mathcal{A}_g is an ideal of $\mathcal{A}_{r(g)}$, $\mathcal{A}_{r(g)}$ is an ideal of \mathcal{A} , $\alpha_g : \mathcal{A}_{q^{-1}} \to \mathcal{A}_q$ is an K-isomorphism, and the following conditions hold:

(i) $\alpha_e = id_{\mathcal{A}_e}$ is the identity map of \mathcal{A}_e for any identity e of \mathcal{G} ,

^{*}Escuela de Matemáticas, Universidad Industrial de Santander, Bucaramanga, Colombia, e-mail: hpinedot@uis.edu.co

[†]Departamento de Matemática, Universidade Federal de Santa Maria, Santa Maria - RS, Brasil, e-mail: bagio@smail.ufsm.br

- (ii) $\alpha_h^{-1}(\mathcal{A}_{g^{-1}} \cap \mathcal{A}_h) \subseteq \mathcal{A}_{(gh)^{-1}},$
- (iii) $\alpha_g(\alpha_h(x)) = \alpha_{gh}(x)$, for each $x \in \alpha_h^{-1}(\mathcal{A}_g^{-1} \cap \mathcal{A}_h)$ and $g, h \in \mathcal{G}$ such that gh exists.

Given such an action α of \mathcal{G} on \mathcal{A} , according to [1] the partial skew groupoid ring $\mathcal{A} \star_{\alpha} \mathcal{G}$ is defined by the direct sum

$$\mathcal{A}\star_{\alpha}\mathcal{G}=\bigoplus_{g\in\mathcal{G}}\mathcal{A}_g\delta_g,$$

where the δ_g 's are symbols, with the usual addition, and multiplication determined by the rule

$$(a_g \delta_g)(b_h \delta_h) = \begin{cases} \alpha_g(\alpha_{g^{-1}}(a_g)b_h)\delta_{gh}, & \text{if } (g,h) \in \mathcal{G}^2\\ 0, & \text{otherwise} \end{cases}$$

for all $g, h \in \mathcal{G}, a_g \in \mathcal{A}_g \neq b_h \in \mathcal{A}_h$.

It is possible to show that this multiplication is well defined, and that $\mathcal{A} \star_{\alpha} \mathcal{G}$ is an associative algebra, but in general it has no unity, [1].

A ring extension $S \supset R$ is called separable, if S is a direct sum of $S \bigotimes_R S$ as an (R, R)-bimodule, which is equivalent to say that there exists an element $x \in S \bigotimes_R S$ which is S-central (i.e., xs = sx for all $s \in S$) and satisfies the condition $m_S(x) = 1_s$, see [4].

If \mathcal{G} is a finite groupoid, we characterize when the extension $\mathcal{A} \supset \mathcal{A} \star_{\alpha} \mathcal{G}$ is separable. Furthermore, we show that such a condition on \mathcal{G} no possible removed it.

References

- D. BAGIO, D. FLÔRES AND A. PAQUES, Partial actions of ordered groupoids on rings. J. Algebra Appl. 9 (2010):501-517.
- [2] D. BAGIO AND A. PAQUES, Partial groupoid actions: globalization, Morita theory and Galois theory. Commun. Algebra 40 (2012):3658-3678.
- [3] M. DOKUCHAEV AND R. EXEL, Associativity of crossed products by partial actions, enveloping actions and partial representations. Trans. AMS 357 (2005):1931-1952.
- [3] M. DOKUCHAEV, M. FERRERO AND A. PAQUES, Partial actions and Galois theory. J. Pure Appl. Algebra 208 (2007):77-87.
- [4] K. HIRATA AND K. SUGANO, On semisimple extensions and separable extensions over noncommutative rings J. Math. Soc. Japan 18 (1966):360-373.